The regularity method and blow-up lemmas for sparse graphs

Y. Kohayakawa (São Paulo)

SPSAS Algorithms, Combinatorics and Optimization

University of São Paulo

July 2016

Partially supported CAPES/DAAD (430/15), CNPq (459335/2014-6, 310974/2013-5), and FAPESP (2013/07699-0, 2013/03447-6)

Course outline

- 1. Lecture I. Introduction to the regularity method
- 2. Lecture II. The blow-up lemma
- 3. Lecture III. The sparse case: small subgraphs
- 4. Lecture IV. The sparse case: large subgraphs

Lecture I. Introduction to the regularity method

Introduction

Regularity method:

- ▷ A powerful method in graph theory and combinatorics and beyond.
- Shall focus on graphs, including some applications in the theory of random and pseudorandom graphs (Lecture III).
- Shall consider blow-up lemmas in the dense and sparse settings (Lectures II & IV).
- Lecture I: introduction to the regularity method

Outline (Lecture I)

- 1. Basic definitions
- 2. The regularity lemma
- 3. Embedding/counting lemmas
- 4. Example applications
- 5. Some words on proofs

Basic definitions

Definition 1 (Basic definition). G = (V, E) a graph; $U, W \subset V$ non-empty and disjoint. Say (U, W) is ε -regular (in G) if

 $\triangleright \text{ for all } U' \subset U, W' \subset W \text{ with } |U'| \ge \varepsilon |U| \text{ and } |W'| \ge \varepsilon |W|, \text{ we have}$ $\left| \frac{|E(U', W')|}{|U'||W'|} - \frac{|E(U, W)|}{|U||W|} \right| \le \varepsilon.$

Density:

$$d(\mathbf{U}, \mathbf{W}) = \frac{e(\mathbf{U}, \mathbf{W})}{|\mathbf{U}||\mathbf{W}|} = \frac{|\mathsf{E}(\mathbf{U}, \mathbf{W})|}{|\mathbf{U}||\mathbf{W}|}$$

Basic definitions

Definition 2. A partition $V = V_1 \cup \cdots \cup V_t$ is an equipartition if

 $|V_1| \leq \cdots \leq |V_t| \leq |V_1| + 1.$

Definition 3. A partition $V = V_1 \cup \cdots \cup V_t$ is ε -regular if at least $(1 - \varepsilon) \begin{pmatrix} t \\ 2 \end{pmatrix}$ pairs (V_i, V_j) (i < j) are ε -regular.

Szemerédi's regularity lemma

Theorem 4 (The regularity lemma). For any $\varepsilon > 0$ and $t_0 \ge 1$, there exist T_0 such that any graph G admits an ε -regular equipartition $V = V_1 \cup \cdots \cup V_t$ with $t_0 \le t \le T_0$.

Crucial: T_0 is independent of |V(G)|.

Earlier version: important lemma in Szemerédi's proof of the Erdős–Turán conjecture on arithmetic progressions in sets of integers of positive density.

Komlós:

'This is not a very transparent theorem, but it grows on you with time.'

Exceptional class

Sometimes consider partitions as follows:

- (i) $V = V_0 \cup V_1 \cup \cdots \cup V_t$,
- (ii) $|V_0| \leq \varepsilon |V|$,
- $(iii) |V_1| = \cdots = |V_t|.$

Can even demand $|V_0| < t$. Regularity lemma delivers such partitions, as long as $|V| \ge n_0(t_0, \epsilon)$.

Exceptional class: V₀

The embedding lemma/counting lemma (simplest version)

Set-up 5. Let G = (V, E) be a graph with

(i) $V = V_1 \cup \cdots \cup V_r$ and $|V_i| = m$ for all i,

(ii) $(V_i, V_j) \epsilon$ -regular for all i < j,

(iii) $|E(V_i, V_j)| = \rho m^2$ for all i < j.

Write $G_r^{(\epsilon)}(m, \rho)$ for a graph as above.

The embedding lemma/counting lemma (simplest version)

Let K^r have vertices x_1, \ldots, x_r .

Lemma 6 (Embedding lemma/Counting lemma). $\forall r \geq 2, \rho > 0$ and $\delta > 0$ $\exists \epsilon > 0, m_0$: if $m \geq m_0$, then the number of homomorphisms $K^r \hookrightarrow G = G_r^{(\epsilon)}(m, \rho)$ with $x_i \mapsto \text{some } v_i \in V_i$ for all i is

 $\mathfrak{m}^{r}\rho^{\binom{r}{2}} \pm \delta\mathfrak{m}^{r}.$

In particular, $K^{r} \subset G$.

The reduced graph R

After regularization, can consider the so-called *reduced graph*.

- ▷ Vertex i for each V_i (1 ≤ i ≤ t),
- ▷ Edge-weight $d(V_i, V_j)$ for each $1 \le i < j \le t$ that is ϵ -regular and *dense* (usually, use some cut-off density as threshold).

We can use R to define a 'generalized random graph' G^{rand} on V(G): replace each edge ij of R by a random bipartite graph on $V_i \times V_j$ with edge probability $d(V_i, V_j)$.

G and G^{rand} are 'similar'

- ▷ For any *fixed* graph H, the number of copies of H in G and in G^{rand} are approximately equal, as long as n = |V(G)| is large.
- ▷ For any $\delta > 0$ and h, there are ε and ε' such that if R is obtained from SzRL with parameter ε and cut-off ε' , then, for any $H = H^h$,

 $\#\{H \subset G\} = \mathbb{E}(\#\{H \subset G^{rand}\}) \pm \delta n^{h}.$

- ▷ Follows from 'counting lemmas' [exercise!].
- How about *large* H? E.g., h = n? Lectures II & IV will focus on 'embedding lemmas' for such H ('blow-up lemmas').

The embedding lemma/counting lemma (exercises)

Exercise 7 (Counting lemma). What is the CL for a general graph $H = H^r$? Suppose H has vertices x_1, \ldots, x_r . What is the number of homomorphisms $H \hookrightarrow G_r^{(\epsilon)}(m, \rho)$ with $x_i \mapsto \text{some } v_i \in V_i$ for all i?

Exercise 8 (Counting lemma). What is the CL for a general r-partite graph $H = H^{\ell}$? Suppose H has vertices x_1, \ldots, x_{ℓ} . Suppose $\chi : V(H) \rightarrow [r] = \{1, \ldots, r\}$ is an r-partition of H. What is the number of homomorphisms $H \hookrightarrow G_r^{(\epsilon)}(m, \rho)$ with $x_i \mapsto \text{some } v_i \in V_{\chi(i)}$ for all i?

Could also consider $G_r^{(\epsilon)}(m, (\rho_{ij})_{1 \le i < j \le r})$.

The embedding lemma/counting lemma (exercises)

Exercise 9 (Counting lemma (induced version)). What is the induced CL for a general graph $H = H^r$? Suppose H has vertices x_1, \ldots, x_r . What is the number of homomorphisms $H \hookrightarrow G_r^{(\varepsilon)}(m, \rho)$ with $x_i \mapsto \text{some } v_i \in V_i$ for all i such that H is isomorphic to $G[v_1, \ldots, v_r]$?

Could also consider r-partite graphs $H = H^{\ell}$.

A few applications of the regularity method

- (*i*) The removal lemma
- (ii) The Erdős–Stone–Simonovits theorem

Triangle removal lemma

Theorem 10 (Triangle removal lemma). $\forall \varepsilon > 0 \exists \delta > 0$ for which the following holds. Suppose $G = G^n = (V, E)$ is such that $G - F = (V, E \setminus F)$ contains a triangle $\forall F \subset {V \choose 2}$ with $|F| \leq \varepsilon {n \choose 2}$. Then G contains $\geq \delta n^3$ triangles.

That is: $G = G^n \epsilon$ -far from K^3 -free, then $\#\{K^3 \hookrightarrow G\} \ge \delta n^3$.

Exercise 11. Deduce the triangle removal lemma from the regularity lemma.

Hint 12. Analyse the 'cleaned-up graph' G* (Definition 19).

Exercise 13. State and prove the removal lemma for general graphs H.

Triangle removal lemma

Exercise 14 (Roth's theorem). $\forall \delta > 0 \exists n_0$ such that, for all $n \ge n_0$, if $A \subset [n]$ and $|A| \ge \delta n$, then A contains a 3-term arithmetic progression $\{a, a + d, a + 2d\} (d > 0)$.

Hint 15. Consider a 3-partite graph G = (X, Y, Z; E) defined as follows. Let X = [n], Y = [2n] and Z = [3n] (disjoint). For each $a \in A$, put in G the edges $(x, x + a) \in X \times Y$, $(x, x + 2a) \in X \times Z$ and $(y, y + a) \in Y \times Z$. What happens if G contains a triangle **not** of the form $\{x, x + a, x + 2a\}$?

- $\triangleright \text{ Let } ex(n,F) = max\{e(G): F \not\subset G \subset K^n\}. \text{ Mantel: } ex(n,K^3) = \lfloor n/2 \rfloor \lceil n/2 \rceil.$
- ▷ Mantel implies that 1/2 is the *density threshold* for K³: if G has "density" $1/2 + \varepsilon$, then G ⊃ K³ (if n large). Indeed,

$$\operatorname{ex}(n, K^3) = \left(\frac{1}{2} + \operatorname{o}(1)\right) \binom{n}{2}.$$

Turán: what is ex(n, K^{q+1})? Turán graph Tⁿ_q: split n vertices into q classes as equally as possible; add all edges connecting vertices in different classes. Lower bound:

 $ex(n, K^{q+1}) \ge e(T_q^n).$

Theorem 16 (Turán (1941)). For all n and q,

 $ex(n, K^{q+1}) = e(T_q^n).$

Density threshold for K^{q+1} is 1 - 1/q.

How about arbitrary F?

F: an arbitrary graph ($e(F) \ge 1$). Lower bound for ex(n, F)?

 $\chi(F)$: the *chromatic number* of F, that is, the smallest q such that $F \subset T_q^{\infty}$

Lower bound:
$$ex(n, F) \ge e(T_{\chi(F)-1}^n) = \left(1 - \frac{1}{\chi(F)-1} + o(1)\right) \binom{n}{2}$$

Theorem 17 (Erdős & Stone 1946, Erdős and Simonovits 1966). *For every* graph F, we have

$$\operatorname{ex}(n, F) = \left(1 - \frac{1}{\chi(F) - 1} + o(1)\right) \binom{n}{2}.$$

Density threshold for F is $1 - \frac{1}{\chi(F) - 1}$.

Exercise 18. Deduce the Erdős–Stone–Simonovits theorem from Turán's theorem and the regularity lemma.

Outline: $G = G^n$ with $e(G) \ge (1 - 1/(q - 1) + \eta) \binom{n}{2}$, where $q = \chi(G)$.

- (*i*) Regularize G: apply Szemerédi's regularity lemma to G (use $\varepsilon \ll \eta$)
- (*ii*) Analyse the 'cleaned-up graph' G^* (Definition 19). Deduce from Turán's theorem that $G_q^{(\epsilon)}(m, \rho) \subset G$.
- (*iii*) Apply the counting lemma.

Terminology: Cleaned-up graph G*

Definition 19. After regularization of G, have $V = V_1 \cup \cdots \cup V_t$. Remove all edges in $G[V_i, V_j]$ for all i and j such that

- 1. (V_i, V_j) is not ε -regular,
- $\textit{2.} |\mathsf{E}(V_i,V_j)| \leq f(\epsilon)|V_i||V_j| \ (\textit{suitable f with } f(\epsilon) \to 0 \ \textit{as} \ \epsilon \to 0).$

Resulting graph: cleaned-up graph G*.

In G^* , every $G^*[V_i, V_j]$ is regular and 'dense'. Usually, lose very little.

A Ramsey–Turán result

Exercise 20 (Szemerédi 1972). Suppose $G = G^n$ has independence number o(n) and $e(G) \ge (1/8 + \varepsilon)n^2$ for some fixed $\varepsilon > 0$. Prove that G contains a K⁴.

Further exercises

Notation/definitions:

- (*i*) $G \rightarrow H$: if $E(G) = B \cup R$, then $H \subset G[B]$ or $H \subset G[R]$.
- (*ii*) $G \xrightarrow{ind} H$: if $E(G) = B \cup R$, then there is an induced subgraph H' of G isomorphic to H with $H' \subset G[B]$ or $H' \subset G[R]$.
- (iii) The (2-colour) Ramsey number of H is

 $r(H) = min\{|V(G)|: G \to H\} = min\{n: K^n \to H\}.$

Exercise 21. Prove that, for every H, there is G such that $G \xrightarrow{ind} H$.

24

Another application

Theorem 22 (Chvátal, Rödl, Szemerédi and Trotter 1983). For every Δ , there is $c = c_{\Delta}$ such that, for every graph $H = H^{\ell}$ with $\Delta(H) \leq \Delta$, we have

 $r(H) \leq c \ell.$

That is, bounded degree graphs have linear Ramsey numbers.

Recall

$$2^{\ell/2} \le r(K^{\ell}) \le 4^{\ell}.$$

Theorem 22: typical application of the regularity method.

25

Positive proportion EL/CL

Important: suppose x_i to be embedded in G, and $Y \subset N_H(x_i)$ already embedded. Then have the set of *candidate vertices*

 $C(x_i) = V_{\chi(i)} \cap \bigcap_{y \in Y} N_G(y).$

More precisely, have the set of *available vertices*

$$A(x_i) = V_{\chi(i)} \cap \bigcap_{y \in Y} N_G(y) \setminus Im \psi,$$

where ψ is the current partial embedding. Can make the sets $C(x_i)$ shrink in a controlled way: $|C(x_i)| \approx \rho^{|Y|} |V_i|$. When $H = H^{\ell}$ and $\ell = O(1)$, then $A(x_i) \approx C(x_i)$. How about if $\ell \to \infty$?

Positive proportion EL/CL

Natural restriction. Suppose $H = H^{\ell}$ has bounded maximum degree: $\Delta(H) = O(1)$ (i.e., $\Delta = \Delta(H)$ independent of $n = |V(G)| \to \infty$), but allow $\ell \to \infty$.

Let $H = H^{\ell}$ be r-partite and suppose $V(H) = \{x_1, \dots, x_{\ell}\}$. Suppose

 $\chi \colon V(\mathsf{H}) \to [\mathsf{r}] = \{1, \ldots, \mathsf{r}\}$

is an r-partition of H. We think of r as fixed and $\ell \to \infty$.

Positive proportion EL/CL

Lemma 23 (Embedding lemma/Counting lemma). $\forall r \geq 2, \ell \geq 1, \rho > 0$, $\delta > 0$ and $\Delta \exists \epsilon > 0, m_0$: if $\Delta(H) \leq \Delta$ and $m \geq m_0$, then the number of homomorphisms $H \hookrightarrow G = G_k^{(\epsilon)}(m, \rho)$ with $x_i \mapsto \text{some } v_i \in V_{\chi(i)}$ for all i is

 $\mathfrak{m}^{\ell}\rho^{e(H)}\pm\delta\mathfrak{m}^{\ell}.$

In particular, $H \subset G$.

Suffices: $m_0 \gg \ell \rho^{-\Delta}$

Exercise 24. Deduce the Chvátal–Rödl–Szemerédi–Trotter theorem from Lemma 23.

Almost spanning embedding lemma

Challenge 25. State and prove an almost spanning embedding lemma: a version of the embedding lemma in which the vertex classes X_1, \ldots, X_r of H are each of size .99m. Here, we suppose r = O(1) and $\Delta(H) = O(1)$.

Let G = (V, E) and $\varepsilon > 0$ be fixed. Let $P = (C_i)_{0 \le i \le k}$ be an equitable partition of V ($V = C_0 \cup \cdots \cup C_k$). For each ε -irregular pair (C_s, C_t) with $1 \le s < t \le k$, choose $X(s, t) \subset C_s$, $Y(s, t) \subset C_t$ witnessing this fact.

For fixed $1 \le s \le k$, the sets X(s, t) in

 $\{X(s,t) \subset C_s : 1 \le t \le k \text{ and } (C_s, C_t) \text{ is not } \varepsilon\text{-regular}\}$

define a natural partition of C_s into at most 2^{k-1} blocks, called *atoms*. Put all of these atoms together to form an equitable partition $Q = (C'_i)_{0 \le i \le k'}$, with $k' = k4^k$ and $|C'_0| \le |C_0| + n4^{-k}$.

Definition 26. The index ind(R) of an equitable partition $R = (C_i)_0^r$ of V is

ind(R) =
$$\frac{2}{r^2} \sum_{1 \le i < j \le \ell} d(C_i, C_j)^2$$
.

Trivially, $0 \leq ind(R) < 1$.

Recall we constructed an equipartition Q = Q(P) from P.

Lemma 27. If P is not ε -regular, then ind(Q) > ind(P) + $10^{-2}\varepsilon^5$.

Conclusion: we can't iterate more than $10^2/\epsilon^5$ times!

Where does the gain come from?

Lemma 28. Let $y_1, \ldots, y_{\nu} \ge 0$ be given. Suppose $0 \le \rho = u/\nu < 1$, and $\sum_{1 \le i \le u} y_i = \alpha \rho \sum_{1 \le i \le \nu} y_i$. Then

$$\sum_{1 \leq i \leq \nu} y_i^2 \geq \frac{1}{\nu} \left(1 + (\alpha - 1)^2 \frac{\rho}{1 - \rho} \right) \left\{ \sum_{1 \leq i \leq \nu} y_i \right\}^2.$$

Each irregular pair contributes $\approx \varepsilon^4$ to the index. An ε -fraction of the pairs contributes that much; total is ε^5 , as claimed.

Summary

- ▷ The regularity method
- ▷ The regularity lemma + embedding lemmas
- ▷ Example applications

Lecture II:

• The blow-up lemma: embedding large graphs