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Course outline

1. Lecture l. Introduction to the regularity method
2. Lecture Il. The blow-up lemma
3. Lecture lll. The sparse case: small subgraphs

4. Lecture IV. The sparse case: large subgraphs
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Lecture |. Introduction to the regularity method
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Introduction

Regularity method:

> A powerful method in graph theory and combinatorics and beyond.

> Shall focus on graphs, including some applications in the theory of
random and pseudorandom graphs (Lecture lll).

> Shall consider blow-up lemmas in the dense and sparse settings (Lec-
tures Il & V).

> Lecture |: introduction to the regularity method
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Outline (Lecture I)

1. Basic definitions
The regularity lemma
Embedding/counting lemmas

Example applications

ok~ W Db

Some words on proofs
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Basic definitions

Definition 1 (Basic definition). G = (V, E) a graph; U, W C V non-empty
and disjoint. Say (U, W) is e-reqular (in G) if

> forallU’ c U, W/ c W with |U’| > ¢|U] and |W'| > ¢|W/|, we have

E(U, W EUW)I|
wiw o uw | =

Density:
e(U,W) [E(U, W)

d(U, W) = =
W) ufjw] ufwi
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Basic definitions

Definition 2. A partitionV =V, U - - - U V4 IS an equipartition if

Vil < - SV < TV + 1.

Definition 3. A partitionV =V, U - - - U V4 IS e-reqular if at least (1 — ¢) G)
pairs (Vi, V;) (1 < j) are e-regular.
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Szemereédi’'s regularity lemma

Theorem 4 (The regularity lemma). Forany ¢ > 0 andty > 1, there exist T
such that any graph G admits an e-reqular equipartition V=V, U - - - U V4
withty <t < T.

Crucial: Ty is independent of [V(G)|.

Earlier version: important lemma in Szemerédi’s proof of the Erdos—Turan
conjecture on arithmetic progressions in sets of integers of positive density.

Komlds:

‘This is not a very transparent theorem, but it grows on you with time.
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Exceptional class

Sometimes consider partitions as follows:

() V=VoUVyU-- UV,
(i) Vol < ]V,

(i) V4] = - - = [,

Can even demand |V,| < t. Regularity lemma delivers such partitions, as
long as |V| > ny(tp, €).

Exceptional class: V)
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The embedding lemma/counting lemma (simplest version)

Set-up 5. Let G = (V, E) be a graph with

() V=ViU---UVrand|V;| =m foralli,
(i) (Vi,V;) e-regular for all 1 < j,

(iff) [E(Vy, V)| = pm? for alli < j.

Write G\¢)(m, p) for a graph as above.
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The embedding lemma/counting lemma (simplest version)

Let K" have vertices x1,..., Xr.

Lemma 6 (Embedding lemma/Counting lemma). vr > 2, p > 0 and é > 0
Je > 0, my: if m > my, then the number of homomorphisms K" — G =

foc“)(m, p) withx; — somev; € V; foralliis
mTp@ +om’.

In particular, K" C G.
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The reduced graph R

After regularization, can consider the so-called reduced graph.

> Vertex iforeach V; (1 <1i<t),

> Edge-weight d(V;, V;) foreach 1 < i < j < t that is e-regular and
dense (usually, use some cut-off density as threshold).

We can use R to define a ‘generalized random graph’ G™"d on V(G):

replace each edge ij of R by a random bipartite graph on V; x V; with edge
probability d(Vi, V;).

11
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G and G"nd gre ‘similar’

> For any fixed graph H, the number of copies of H in G and in G@"9 are
approximately equal, as long as n = |[V(G)| is large.

> For any & > 0 and h, there are ¢ and ¢’ such that if R is obtained from
SzRL with parameter ¢ and cut-off ¢/, then, for any H = HM

#{H C G} = E(#{H c Gy 4+ snh.

> Follows from ‘counting lemmas’ [exercise!].

> How about /large H? E.g., h = n? Lectures Il & IV will focus on
‘embedding lemmas’ for such H (‘blow-up lemmas’).
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The embedding lemma/counting lemma (exercises)

Exercise 7 (Counting lemma). What is the CL for a general graphH = H"?
Suppose H has vertices x1, ..., xr. What is the number of homomorphisms

H<— Gﬁe)(m, p) withx; — somev; € V; for alli?

Exercise 8 (Counting lemma). What is the CL for a general r-partite graph
H = H'? Suppose H has vertices x1,...,x;. Supposex : V(H) — [r] =
{1,...,7} is an r-partition of H. What is the number of homomorphisms
H < G (m, p) with x; — some v; € V. for all i?

Could also consider G\ (m, (pij)1 <ij<r)-
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The embedding lemma/counting lemma (exercises)

Exercise 9 (Counting lemma (induced version)). What is the induced CL

for a general graph H = H"? Suppose H has vertices x1,...,xr. What is
the number of homomorphisms H — GT(fC’)(m, p) with x; — somev; € V;
for all i such that H is isomorphic to G[vi,...,vy]?

Could also consider r-partite graphs H = HY.
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A few applications of the regularity method

(/) The removal lemma

(if) The Erdos—Stone—Simonovits theorem
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Triangle removal lemma

Theorem 10 (Triangle removal lemma). Ve > 0 36 > 0 for which the fol-
lowing holds. Suppose G = G™ = (V,E) is such that G — F = (V,E \ F)

contains a triangle vk C (\2/) with |F| < e(Tz‘) Then G contains > &n3
triangles.

Thatis: G = G™ e-far from K3-free, then #:{K3 — G} > &n3.

Exercise 11. Deduce the triangle removal lemma from the regularity lemma.

Hint 12. Analyse the ‘cleaned-up graph’ G* (Definition 19).

Exercise 13. State and prove the removal lemma for general graphs H.
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Triangle removal lemma

Exercise 14 (Roth’s theorem). V6 > 0 dng such that, for alln > ny, if
A C [n] and |A| > dn, then A contains a 3-term arithmetic progression
{a,a+d,a+ 2d} (d > 0).

Hint 15. Consider a 3-partite graph G = (X,Y, Z,t) defined as follows.
LetX =[n], Y =[2n] and Z = [3n] (disjoint). For each a € A, putin G the
edges (x,x+a) € XXY, (x,x+2a) e Xx Zand(y,y+a) € Yx Z. What
happens if G contains a triangle not of the form {x,x + a,x + 2a}?
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The Erdos—Stone—Simonovits theorem

> Let ex(n,F) = max{e(G): F ¢ G C K"}. Mantel: ex(n,kK3) =
[n/2][n/2].

> Mantel implies that 1/2 is the density threshold for K3: if G has “den-
sity” 1/2 + ¢, then G D K3 (if n large). Indeed,

ex(n, K3) = (% +o(1 )) @

> Turan: what is ex(n, K9t1)? Turan graph Tg: split n vertices into g
classes as equally as possible; add all edges connecting vertices in
different classes. Lower bound:

ex(n, KItT) > e(TH).
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The Erdos—Stone—Simonovits theorem

Theorem 16 (Turan (1941)). For alln and q,

ex(n, KITT) = e(T3).

Density threshold for K971 is 1 —1/q.

How about arbitrary F?
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The Erdos—Stone—Simonovits theorem

F: an arbitrary graph (e(F) > 1). Lower bound for ex(n, F)?

x (F): the chromatic number of F, that is, the smallest q such that F C Tq°

Lower bound: ex(n, F) > e(T;(‘(F)_O = (1 - x—(F])—1 ™ 0(”) (3)

Theorem 17 (Erd0s & Stone 1946, Erdds and Simonovits 1966). For every
graph F, we have

1 n
ex(n, F) = (1 — = +o(1)> (2)

: - ]
Density threshold for Fis T — =T
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The Erdos—Stone—Simonovits theorem

Exercise 18. Deduce the Erdos—Stone—Simonovits theorem from Turan’s
theorem and the regularity lemma.

Outline: G = G™" withe(G) > (1 —1/(q—1) +n)<g), where q = x(G).

() Regularize G: apply Szemerédi’s regularity lemma to G (use ¢ < 1)

(/i) Analyse the ‘cleaned-up graph’ G* (Definition 19). Deduce from Turan’s
theorem that Ggf)(m, o) C G.

(/iif) Apply the counting lemma.
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Terminology: Cleaned-up graph G*

Definition 19. After reqularization of G, have V = V; U - - - U V;. Remove
all edges in G|V, V;l for all i and j such that

1. (Vy,V;j) is not e-regular,

2. [E(Vy, V3l < 1(e)VillVjl (suitable T with f(e) — 0 as e — 0).

Resulting graph: cleaned-up graph G*.

In G*, every G*[V;, Vjl is regular and ‘dense’. Usually, lose very little.
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A Ramsey—Turan result

Exercise 20 (Szemerédi 1972). Suppose G = G™ has independence num-
bero(n) ande(G) > (1/8+¢)n? for some fixed ¢ > 0. Prove that G contains
a k.
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Further exercises

Notation/definitions:

(i) G— H:ifE(G) =BUR, thenH C G[B] or H C G[R].
(if) Gy jf E(G) = B U R, then there is an induced subgraph H’ of G
isomorphic to H with H’ ¢ G[B] or H' C G[R].
(ifii) The (2-colour) Ramsey number of H is

r(H) = min{|V(G)|: G = H} = min{n: K" — H}.

Exercise 21. Prove that, for every H, there is G such that Ggndy.
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25

Another application

Theorem 22 (Chvatal, Rodl, Szemeredi and Trotter 1983). For every A,
there is ¢ = c such that, for every graph H = H* with A(H) < A, we have

r(H) < cl.

That is, bounded degree graphs have linear Ramsey numbers.

Recall

242 < ¢ (kY < 4t

Theorem 22: typical application of the regularity method.
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Positive proportion EL/CL

Important: suppose x; to be embedded in G, and Y C Ny(x;) already
embedded. Then have the set of candidate vertices

C(xy) = Vx(i) M ﬂ Ng(y).
yey
More precisely, have the set of available vertices

Alxi) = Vo) N ()] Ng(y) \Imp,
yey

where 1V is the current partial embedding. Can make the sets C(x;) sh-
rink in a controlled way: |C(x;)| =~ p/Y|Vi]. When H = H' and ¢ = O(1),
then A(x;) = C(x;). How about if £ — co0?
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Positive proportion EL/CL

Natural restriction. Suppose H = H! has bounded maximum degree:
A(H) = O(T1) (i.e., A = A(H) independent of n = |[V(G)| — o0), but
allow { — oo.

Let H = H' be r-partite and suppose V(H) = {x1, ..., x;}. Suppose

x: V(H) - [r] ={1,...,1}

is an r-partition of H. We think of r as fixed and { — .
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Positive proportion EL/CL

Lemma 23 (Embedding lemma/Counting lemma).vr > 2, { > 1, p > 0,

O > 0andA de > 0, my: if A(H) < A andm > m, then the number of

homomorphisms H — G = G](:')(m, p) with x; — somev; € Vi) for alliis

mbpeH) 4 smt.
In particular, H C G.

Suffices: my > (p—2

Exercise 24. Deduce the Chvatal-Rodl-Szemerédi—Trotter theorem from
Lemma 23.
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Almost spanning embedding lemma

Challenge 25. State and prove an almost spanning embedding lemma: a
version of the embedding lemma in which the vertex classes Xy, ..., Xy of H
are each of size .99m. Here, we supposer = O(1) and A(H) = O(1).
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Proof of the regularity lemma (rough sketch)

Let G = (V,E) and ¢ > 0 be fixed. Let P = (C;)o<i<k be an equitable
partition of V (V = Cy U --- U Cy). For each e-irregular pair (Cs, Ct)
with 1 < s < t <k, choose X(s,t) C Cs, Y(s,t) C Cy witnessing this fact.

For fixed 1 < s < k, the sets X(s,t) in
{X(s,t) C Cs:1 <t<kand (Cs,Cy) is not e-regular}

define a natural partition of Cs into at most 2! blocks, called atoms. Put
all of these atoms together to form an equitable partition Q = (C{)y<i<y/,
with k/ = k4% and |C{| < |Co| + n4—*.
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Proof of the regularity lemma (rough sketch)

Definition 26. The index ind(R) of an equitable partition R = (C;)y of V is

ind(R Z d(Cy, G;)?

Trivially, 0 < ind(R) < 1.
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Proof of the regularity lemma (rough sketch)

Recall we constructed an equipartition Q = Q(P) from P.

Lemma 27. If P is not e-regular, then

ind(Q) > ind(P) + 10~ 2¢°.

Conclusion: we can't iterate more than 10%/¢° times!
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Proof of the regularity lemma (rough sketch)

Where does the gain come from?

Lemma 28. Let yq,...,yy > 0 be given. Suppose 0 < p = u/v < 1,
and ) j<i<yYi = ap ) 1<i<yYi- Then

2] 2 P 2
Z in;<1+(oc—1)1—>{ Z yi}.

—P 1<i<v

Each irregular pair contributes ~ ¢ to the index. An e-fraction of the pairs
contributes that much; total is ¢, as claimed.
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Summary

> The regularity method
> The regularity lemma + embedding lemmas

> Example applications

Lecture Il:

o The blow-up lemma: embedding large graphs

34



