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Course outline

1. Lecture I. Introduction to the regularity method

2. Lecture II. The blow-up lemma

3. Lecture III. The sparse case: small subgraphs

4. Lecture IV. The sparse case: large subgraphs
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Lecture I. Introduction to the regularity method
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Introduction

Regularity method:

B A powerful method in graph theory and combinatorics and beyond.

B Shall focus on graphs, including some applications in the theory of
random and pseudorandom graphs (Lecture III).

B Shall consider blow-up lemmas in the dense and sparse settings (Lec-
tures II & IV).

B Lecture I: introduction to the regularity method
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Outline (Lecture I)

1. Basic definitions

2. The regularity lemma

3. Embedding/counting lemmas

4. Example applications

5. Some words on proofs
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Basic definitions

Definition 1 (Basic definition). G = (V, E) a graph; U, W ⊂ V non-empty
and disjoint. Say (U,W) is ε-regular (in G) if

B for all U ′ ⊂ U, W ′ ⊂W with |U ′| ≥ ε|U| and |W ′| ≥ ε|W|, we have∣∣∣∣∣|E(U ′,W ′)||U ′||W ′|
−

|E(U,W)|

|U||W|

∣∣∣∣∣ ≤ ε.

Density :

d(U,W) =
e(U,W)

|U||W|
=

|E(U,W)|

|U||W|
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Basic definitions

Definition 2. A partition V = V1 ∪ · · · ∪ Vt is an equipartition if

|V1| ≤ · · · ≤ |Vt| ≤ |V1| + 1.

Definition 3. A partition V = V1 ∪ · · · ∪ Vt is ε-regular if at least (1 − ε)
(
t
2

)
pairs (Vi, Vj) (i < j) are ε-regular.
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Szemerédi’s regularity lemma

Theorem 4 (The regularity lemma). For any ε > 0 and t0 ≥ 1, there exist T0
such that any graph G admits an ε-regular equipartition V = V1 ∪ · · · ∪ Vt
with t0 ≤ t ≤ T0.

Crucial: T0 is independent of |V(G)|.

Earlier version: important lemma in Szemerédi’s proof of the Erdős–Turán
conjecture on arithmetic progressions in sets of integers of positive density.

Komlós:

‘This is not a very transparent theorem, but it grows on you with time.’
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Exceptional class

Sometimes consider partitions as follows:

(i ) V = V0 ∪ V1 ∪ · · · ∪ Vt,

(ii ) |V0| ≤ ε|V |,

(iii ) |V1| = · · · = |Vt|.

Can even demand |V0| < t. Regularity lemma delivers such partitions, as
long as |V | ≥ n0(t0, ε).

Exceptional class: V0
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The embedding lemma/counting lemma (simplest version)

Set-up 5. Let G = (V, E) be a graph with

(i ) V = V1 ∪ · · · ∪ Vr and |Vi| = m for all i,

(ii ) (Vi, Vj) ε-regular for all i < j,

(iii ) |E(Vi, Vj)| = ρm
2 for all i < j.

Write G(ε)
r (m, ρ) for a graph as above.
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The embedding lemma/counting lemma (simplest version)

Let Kr have vertices x1, . . . , xr.

Lemma 6 (Embedding lemma/Counting lemma). ∀r ≥ 2, ρ > 0 and δ > 0
∃ε > 0, m0: if m ≥ m0, then the number of homomorphisms Kr ↪→ G =

G
(ε)
r (m, ρ) with xi 7→ some vi ∈ Vi for all i is

mrρ(
r
2) ± δmr.

In particular, Kr ⊂ G.
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The reduced graph R

After regularization, can consider the so-called reduced graph.

B Vertex i for each Vi (1 ≤ i ≤ t),

B Edge-weight d(Vi, Vj) for each 1 ≤ i < j ≤ t that is ε-regular and
dense (usually, use some cut-off density as threshold).

We can use R to define a ‘generalized random graph’ Grand on V(G):
replace each edge ij of R by a random bipartite graph on Vi × Vj with edge
probability d(Vi, Vj).
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G and Grand are ‘similar’

B For any fixed graph H, the number of copies of H in G and in Grand are
approximately equal, as long as n = |V(G)| is large.

B For any δ > 0 and h, there are ε and ε ′ such that if R is obtained from
SzRL with parameter ε and cut-off ε ′, then, for any H = Hh,

#{H ⊂ G} = E(#{H ⊂ Grand})± δnh.

B Follows from ‘counting lemmas’ [exercise!].

B How about large H? E.g., h = n? Lectures II & IV will focus on
‘embedding lemmas’ for such H (‘blow-up lemmas’).
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The embedding lemma/counting lemma (exercises)

Exercise 7 (Counting lemma). What is the CL for a general graph H = Hr?
Suppose H has vertices x1, . . . , xr. What is the number of homomorphisms
H ↪→ G

(ε)
r (m, ρ) with xi 7→ some vi ∈ Vi for all i?

Exercise 8 (Counting lemma). What is the CL for a general r-partite graph
H = H`? Suppose H has vertices x1, . . . , x`. Suppose χ : V(H) → [r] =

{1, . . . , r} is an r-partition of H. What is the number of homomorphisms
H ↪→ G

(ε)
r (m, ρ) with xi 7→ some vi ∈ Vχ(i) for all i?

Could also consider G(ε)
r (m, (ρij)1≤i<j≤r).
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The embedding lemma/counting lemma (exercises)

Exercise 9 (Counting lemma (induced version)). What is the induced CL
for a general graph H = Hr? Suppose H has vertices x1, . . . , xr. What is
the number of homomorphisms H ↪→ G

(ε)
r (m, ρ) with xi 7→ some vi ∈ Vi

for all i such that H is isomorphic to G[v1, . . . , vr]?

Could also consider r-partite graphs H = H`.
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A few applications of the regularity method

(i ) The removal lemma

(ii ) The Erdős–Stone–Simonovits theorem
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Triangle removal lemma

Theorem 10 (Triangle removal lemma). ∀ε > 0 ∃δ > 0 for which the fol-
lowing holds. Suppose G = Gn = (V, E) is such that G − F = (V, E \ F)

contains a triangle ∀F ⊂
(
V
2

)
with |F| ≤ ε

(
n
2

)
. Then G contains ≥ δn3

triangles.

That is: G = Gn ε-far from K3-free, then #{K3 ↪→ G} ≥ δn3.

Exercise 11. Deduce the triangle removal lemma from the regularity lemma.

Hint 12. Analyse the ‘cleaned-up graph’ G∗ (Definition 19).

Exercise 13. State and prove the removal lemma for general graphs H.
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Triangle removal lemma

Exercise 14 (Roth’s theorem). ∀δ > 0 ∃n0 such that, for all n ≥ n0, if
A ⊂ [n] and |A| ≥ δn, then A contains a 3-term arithmetic progression
{a, a + d, a + 2d} (d > 0).

Hint 15. Consider a 3-partite graph G = (X, Y, Z;E) defined as follows.
Let X = [n], Y = [2n] and Z = [3n] (disjoint). For each a ∈ A, put in G the
edges (x, x+ a) ∈ X× Y, (x, x+ 2a) ∈ X×Z and (y, y+ a) ∈ Y×Z. What
happens if G contains a triangle not of the form {x, x + a, x + 2a}?
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The Erdős–Stone–Simonovits theorem

B Let ex(n, F) = max{e(G) : F 6⊂ G ⊂ Kn}. Mantel: ex(n, K3) =
bn/2cdn/2e.

B Mantel implies that 1/2 is the density threshold for K3: if G has “den-
sity” 1/2 + ε, then G ⊃ K3 (if n large). Indeed,

ex(n, K3) =
(
1

2
+ o(1)

) (n
2

)
.

B Turán: what is ex(n, Kq+1)? Turán graph Tnq : split n vertices into q
classes as equally as possible; add all edges connecting vertices in
different classes. Lower bound:

ex(n, Kq+1) ≥ e(Tnq ).
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The Erdős–Stone–Simonovits theorem

Theorem 16 (Turán (1941)). For all n and q,

ex(n, Kq+1) = e(Tnq ).

Density threshold for Kq+1 is 1 − 1/q.

How about arbitrary F?
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The Erdős–Stone–Simonovits theorem

F: an arbitrary graph (e(F) ≥ 1). Lower bound for ex(n, F)?

χ(F): the chromatic number of F, that is, the smallest q such that F ⊂ T∞q
Lower bound: ex(n, F) ≥ e

(
Tn
χ(F)−1

)
=

(
1 − 1

χ(F)−1
+ o(1)

) (
n
2

)

Theorem 17 (Erdős & Stone 1946, Erdős and Simonovits 1966). For every
graph F, we have

ex(n, F) =
(
1 −

1

χ(F) − 1
+ o(1)

)(n
2

)
.

Density threshold for F is 1 − 1
χ(F)−1

.
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The Erdős–Stone–Simonovits theorem

Exercise 18. Deduce the Erdős–Stone–Simonovits theorem from Turán’s
theorem and the regularity lemma.

Outline: G = Gn with e(G) ≥ (1 − 1/(q − 1) + η)
(
n
2

)
, where q = χ(G).

(i ) Regularize G: apply Szemerédi’s regularity lemma to G (use ε� η)

(ii ) Analyse the ‘cleaned-up graph’ G∗ (Definition 19). Deduce from Turán’s
theorem that G(ε)

q (m, ρ) ⊂ G.

(iii ) Apply the counting lemma.
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Terminology: Cleaned-up graph G∗

Definition 19. After regularization of G, have V = V1 ∪ · · · ∪ Vt. Remove
all edges in G[Vi, Vj] for all i and j such that

1. (Vi, Vj) is not ε-regular,

2. |E(Vi, Vj)| ≤ f(ε)|Vi||Vj| (suitable f with f(ε)→ 0 as ε→ 0).

Resulting graph: cleaned-up graph G∗.

In G∗, every G∗[Vi, Vj] is regular and ‘dense’. Usually, lose very little.
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A Ramsey–Turán result

Exercise 20 (Szemerédi 1972). Suppose G = Gn has independence num-
ber o(n) and e(G) ≥ (1/8+ε)n2 for some fixed ε > 0. Prove that G contains
a K4.
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Further exercises

Notation/definitions:

(i ) G→ H: if E(G) = B ∪ R, then H ⊂ G[B] or H ⊂ G[R].

(ii ) G ind
−→H: if E(G) = B ∪ R, then there is an induced subgraph H ′ of G

isomorphic to H with H ′ ⊂ G[B] or H ′ ⊂ G[R].

(iii ) The (2-colour) Ramsey number of H is

r(H) = min{|V(G)| : G→ H} = min{n : Kn → H}.

Exercise 21. Prove that, for every H, there is G such that G ind
−→H.
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Another application

Theorem 22 (Chvátal, Rödl, Szemerédi and Trotter 1983). For every ∆,
there is c = c∆ such that, for every graph H = H` with ∆(H) ≤ ∆, we have

r(H) ≤ c`.

That is, bounded degree graphs have linear Ramsey numbers.

Recall

2`/2 ≤ r(K`) ≤ 4`.

Theorem 22: typical application of the regularity method.
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Positive proportion EL/CL

Important: suppose xi to be embedded in G, and Y ⊂ NH(xi) already
embedded. Then have the set of candidate vertices

C(xi) = Vχ(i) ∩
⋂
y∈Y

NG(y).

More precisely, have the set of available vertices

A(xi) = Vχ(i) ∩
⋂
y∈Y

NG(y) \ Imψ,

where ψ is the current partial embedding. Can make the sets C(xi) sh-
rink in a controlled way: |C(xi)| ≈ ρ|Y||Vi|. When H = H` and ` = O(1),
then A(xi) ≈ C(xi). How about if `→∞?
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Positive proportion EL/CL

Natural restriction. Suppose H = H` has bounded maximum degree:
∆(H) = O(1) (i.e., ∆ = ∆(H) independent of n = |V(G)| → ∞), but
allow `→∞.

Let H = H` be r-partite and suppose V(H) = {x1, . . . , x`}. Suppose

χ : V(H)→ [r] = {1, . . . , r}

is an r-partition of H. We think of r as fixed and `→∞.
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Positive proportion EL/CL

Lemma 23 (Embedding lemma/Counting lemma). ∀r ≥ 2, ` ≥ 1, ρ > 0,
δ > 0 and ∆ ∃ε > 0, m0: if ∆(H) ≤ ∆ and m ≥ m0, then the number of
homomorphisms H ↪→ G = G

(ε)
k (m, ρ) with xi 7→ some vi ∈ Vχ(i) for all i is

m`ρe(H) ± δm`.

In particular, H ⊂ G.

Suffices: m0 � `ρ−∆

Exercise 24. Deduce the Chvátal–Rödl–Szemerédi–Trotter theorem from
Lemma 23.
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Almost spanning embedding lemma

Challenge 25. State and prove an almost spanning embedding lemma: a
version of the embedding lemma in which the vertex classes X1, . . . , Xr of H
are each of size .99m. Here, we suppose r = O(1) and ∆(H) = O(1).
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Proof of the regularity lemma (rough sketch)

Let G = (V, E) and ε > 0 be fixed. Let P = (Ci)0≤i≤k be an equitable
partition of V (V = C0 ∪ · · · ∪ Ck). For each ε-irregular pair (Cs, Ct)

with 1 ≤ s < t ≤ k, choose X(s, t) ⊂ Cs, Y(s, t) ⊂ Ct witnessing this fact.

For fixed 1 ≤ s ≤ k, the sets X(s, t) in

{X(s, t) ⊂ Cs : 1 ≤ t ≤ k and (Cs, Ct) is not ε-regular}

define a natural partition of Cs into at most 2k−1 blocks, called atoms. Put
all of these atoms together to form an equitable partition Q = (C ′i)0≤i≤k ′,
with k ′ = k4k and |C ′0| ≤ |C0| + n4

−k.
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Proof of the regularity lemma (rough sketch)

Definition 26. The index ind(R) of an equitable partition R = (Ci)
r
0 of V is

ind(R) =
2

r2

∑
1≤i<j≤`

d(Ci, Cj)
2.

Trivially, 0 ≤ ind(R) < 1.
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Proof of the regularity lemma (rough sketch)

Recall we constructed an equipartition Q = Q(P) from P.

Lemma 27. If P is not ε-regular, then

ind(Q) ≥ ind(P) + 10−2ε5.

Conclusion: we can’t iterate more than 102/ε5 times!
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Proof of the regularity lemma (rough sketch)

Where does the gain come from?

Lemma 28. Let y1, . . . , yv ≥ 0 be given. Suppose 0 ≤ ρ = u/v < 1,
and
∑
1≤i≤u yi = αρ

∑
1≤i≤v yi. Then

∑
1≤i≤v

y2i ≥
1

v

(
1 + (α − 1)2

ρ

1 − ρ

){ ∑
1≤i≤v

yi

}2
.

Each irregular pair contributes ≈ ε4 to the index. An ε-fraction of the pairs
contributes that much; total is ε5, as claimed.
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Summary

B The regularity method

B The regularity lemma + embedding lemmas

B Example applications

Lecture II:

◦ The blow-up lemma: embedding large graphs


