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PLAN FOR TODAY

e Limits of dense graphs
recap of yesterday’s lecture
existence of a limit graphon
graph quasirandomness

some other applications




DENSE GRAPH CONVERGENCE

e d(H,G) = probability |H|-vertex subgraph of G is H

e a sequence (G, )nen of graphs is convergent
if d(H,G,,) converges for every H

e examples of convergent sequences:
complete and complete bipartite graphs K,, and K., p
Erdds-Rényi random graphs G, ,,
sequences of sparse graphs (planar graphs)




LIMIT OBJECT: GRAPHON

graphon W : [0,1]* — [0,1], s.t. W(x,y) = W(y, x)

W-random graph of order n
random points x; € [0, 1], edge probability W (z;, z;)

d(H,W) = prob. |H|-vertex W-random graph is H
W is a limit of (G, )nen if d(H, W) = lim d(H,G,)

n—oo
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every convergent sequence of graphs has a limit
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(FRAPH REGULARITY

Frieze-Kannan regularity, Szemerédi regularity

Ve > 0 dK, such that every graph G has an e-regular
equipartition V7,..., V. with k < K,

Vil = |V;]] <1 for all 7 and j

equipartition Vi, ..., Vi — density matrix 4;; = 7%\&\)
7 J

Vo > 0, H de > 0 such that the density matrix of an

e-regular partition determines d(H, G) upto an d-error

the lemma holds with prepartitions




EXISTENCE OF LIMIT GRAPHON

fix a convergent sequence G;, ¢ € N, of graphs

set £; = 277 and fix e;-regular partition of G;

fix €;41-regular partition refining the €;-regular one

take a subsequence GG, of GG; such that all but finitely

many ¢ ;-regular partitions have the same num. parts

let A* be the density matrix for G; and &;

take a subsequence G of GG such that

A% coordinate-wise converge for every j




EXISTENCE OF LIMIT GRAPHON

e a convergent sequence (G;, density matrices A%

let A7 be the coordinate-wise limit of A%

e interpret A7 as a random variable on [0, 1] and

apply Doob’s Martingale Convergence Theorem

in this way, we obtain a graphon W

e relate d(H, W) to the density of H based on A7
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(Questions?
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PARAMETER TESTING

graph parameter P : graphs — R

large input data, not possible to process

providing an estimate based on a small sample

P is testable if there exists a randomized algorithm that

estimates the parameter P within the additive error ¢

based on a sample of size f(e) with probability > 1 — ¢

P is testable < P is continuous on the graphon space
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(FRAPHON ENTROPY

Hatami, Janson, Szegedy (2013)
Falgas-Ravry, O’Connell, Stromberg, Uzzell

How many graphs resemble a graphon W7

the number ~ 26”2/2+0(”2), what is c?
log|n-vertex graphs e-close to W|

c= lim lim
e—0n—oo

n2/2

graphon entropy Ent(W) = [ h(W (z,y))dzy
where h(p) = —plogy p — (1 — p)logy(1 —p)

the constant ¢ is Ent(W)
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(QUASIRANDOM GRAPHS

Thomason, and Chung, Graham and Wilson (1980’s)
a sequence G; is quasirandom if d(H,G;) ~ d(H, G, ;)

G; converges to the constant graphon W),

h(-,G) and d(-, G) for k-vertex subgraphs
determine each other
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(QUASIRANDOM GRAPHS

e d(H,G;) — d(H,W,) for every H if and only if
h(K>,G;) — p and h(Cy,G;) — p?

® = easy

e < not that easy
let G; be such that h(Ks,G;) — p and h(Cy, G;) — p*
let G, be a convergent subsequence and W its limit

we show that W is equal to p almost everywhere
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(QUASIRANDOM GRAPHS

d(K2, W) =pand h(Cy,W) =p* = W =W,
where h(Cy, W) = 2d(Cy, W) + 2d(K; , W) + d(K4, W)

degree of a vertex z € [0,1]: w(z) = [ W(z,z)dx
Jw(z)dz =d(K2, W) =p

apply Cauchy-Schwarz Inequality

[w(z)?*dz- [1dz > ( | w(z)dz) — p?

[0,1]
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(QUASIRANDOM GRAPHS

00<f(fW33zW( Ndz — p?)°
- =p* = 2p° [w(z)?dz 4 p*
so, we get that [w(z)?dz =p

2

e recall the Cauchy-Schwarz Inequality we used

w(z) = p for almost every z € [0, 1]
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(QUASIRANDOM GRAPHS

e d(Ky,W)=pand h(Cy,W) =p* = W =W,
= [W(z,z)dx w(z) = p2a.e.
= [ (f Wiz, 2)W(y, z)dz —p2) dxy

o [W(x,2)W(y,2)dz =p?* for a.e. x,y € [0, 1]
fWa;zzdz—p for a.e. x € [0,1]
[ W (z,2z)*dx = p* for a.e. z € [0,1]

e we apply the Cauchy Schwarz Inequality again
p° (sz:I;d:E) < [W(z,2)*dz - [ 1dz = p?

for a.e. z, W(z,x) = p for a.e. x
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(Questions?
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