Graph limits and their applications in extremal combinatorics (Part 2)

Dan Král' University of Warwick

São Paulo

July 2016

PLAN FOR TODAY

• Limits of dense graphs recap of yesterday's lecture existence of a limit graphon graph quasirandomness some other applications

DENSE GRAPH CONVERGENCE

- d(H,G) = probability |H|-vertex subgraph of G is H
- a sequence $(G_n)_{n \in \mathbb{N}}$ of graphs is convergent if $d(H, G_n)$ converges for every H
- examples of convergent sequences: complete and complete bipartite graphs K_n and $K_{\alpha n,n}$ Erdős-Rényi random graphs $G_{n,p}$ sequences of sparse graphs (planar graphs)

LIMIT OBJECT: GRAPHON

- graphon $W : [0,1]^2 \to [0,1]$, s.t. W(x,y) = W(y,x)
- W-random graph of order nrandom points $x_i \in [0, 1]$, edge probability $W(x_i, x_j)$
- d(H, W) = prob. |H|-vertex W-random graph is H
- W is a limit of $(G_n)_{n \in \mathbb{N}}$ if $d(H, W) = \lim_{n \to \infty} d(H, G_n)$

LIMIT OBJECT: GRAPHON

- graphon $W: [0,1]^2 \rightarrow [0,1]$, s.t. W(x,y) = W(y,x)
- W-random graph of order nrandom points $x_i \in [0, 1]$, edge probability $W(x_i, x_j)$
- d(H, W) = prob. |H|-vertex W-random graph is H
- W is a limit of $(G_n)_{n \in \mathbb{N}}$ if $d(H, W) = \lim_{n \to \infty} d(H, G_n)$
- W-random graphs converge to W with probability one
- every convergent sequence of graphs has a limit

LIMIT OBJECT: GRAPHON

- graphon $W: [0,1]^2 \rightarrow [0,1]$, s.t. W(x,y) = W(y,x)
- W-random graph of order nrandom points $x_i \in [0, 1]$, edge probability $W(x_i, x_j)$
- d(H, W) = prob. |H|-vertex W-random graph is H
- W is a limit of $(G_n)_{n \in \mathbb{N}}$ if $d(H, W) = \lim_{n \to \infty} d(H, G_n)$
- W-random graphs converge to W with probability one
- every convergent sequence of graphs has a limit

GRAPH REGULARITY

- Frieze-Kannan regularity, Szemerédi regularity
- $\forall \epsilon > 0 \ \exists K_{\varepsilon}$ such that every graph G has an ε -regular equipartition V_1, \ldots, V_k with $k \leq K_{\varepsilon}$ $||V_i| - |V_j|| \leq 1$ for all i and j
- equipartition $V_1, \ldots, V_k \to \text{density matrix } A_{ij} = \frac{e(V_i, V_j)}{|V_i| |V_j|}$
- $\forall \delta > 0, H \exists \varepsilon > 0$ such that the density matrix of an ε -regular partition determines d(H, G) upto an δ -error
- the lemma holds with prepartitions

EXISTENCE OF LIMIT GRAPHON

- fix a convergent sequence $G_i, i \in \mathbb{N}$, of graphs
- set $\varepsilon_j = 2^{-j}$ and fix ε_1 -regular partition of G_i fix ε_{j+1} -regular partition refining the ε_j -regular one
- take a subsequence G'_i of G_i such that all but finitely many ε_j -regular partitions have the same num. parts
- let A^{ij} be the density matrix for G_i and ε_j
- take a subsequence G''_i of G'_i such that A^{ij} coordinate-wise converge for every j

EXISTENCE OF LIMIT GRAPHON

- a convergent sequence G_i , density matrices A^{ij} let A^j be the coordinate-wise limit of A^{ij}
- interpret A^j as a random variable on $[0,1]^2$ and apply Doob's Martingale Convergence Theorem in this way, we obtain a graphon W
- relate d(H, W) to the density of H based on A^j

Questions?

PARAMETER TESTING

- graph parameter \mathcal{P} : graphs $\rightarrow \mathbb{R}$
- large input data, not possible to process providing an estimate based on a small sample
- \mathcal{P} is testable if there exists a randomized algorithm that estimates the parameter \mathcal{P} within the additive error ε based on a sample of size $f(\varepsilon)$ with probability $\geq 1 - \varepsilon$
- \mathcal{P} is testable $\Leftrightarrow \mathcal{P}$ is continuous on the graphon space

GRAPHON ENTROPY

- Hatami, Janson, Szegedy (2013)
 Falgas-Ravry, O'Connell, Strömberg, Uzzell
- How many graphs resemble a graphon W? the number $\approx 2^{cn^2/2 + o(n^2)}$, what is c? $c = \lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{\log |n \text{-vertex graphs } \varepsilon \text{-close to } W|}{n^2/2}$
- graphon entropy $\operatorname{Ent}(W) = \int h(W(x,y)) dxy$ where $h(p) = -p \log_2 p - (1-p) \log_2(1-p)$
- the constant c is Ent(W)

- Thomason, and Chung, Graham and Wilson (1980's)
- a sequence G_i is quasirandom if $d(H, G_i) \approx d(H, G_{n,p})$ G_i converges to the constant graphon W_p
- $d(H, G_i) \to d(H, W_p)$ for every H if and only if $h(K_2, G_i) \to p$ and $h(C_4, G_i) \to p^4$
- $h(H,G) = \text{prob. inj. map } H \to G \text{ is a homomorphism}$ $h(\cdot,G) \text{ and } d(\cdot,G) \text{ for } k\text{-vertex subgraphs}$ determine each other

- $d(H, G_i) \to d(H, W_p)$ for every H if and only if $h(K_2, G_i) \to p$ and $h(C_4, G_i) \to p^4$
- \Rightarrow easy
- \Leftarrow not that easy let G_i be such that $h(K_2, G_i) \to p$ and $h(C_4, G_i) \to p^4$ let G'_i be a convergent subsequence and W its limit we show that W is equal to p almost everywhere

- $d(K_2, W) = p$ and $h(C_4, W) = p^4 \Longrightarrow W = W_p$ where $h(C_4, W) = \frac{1}{3}d(C_4, W) + \frac{1}{3}d(K_4^-, W) + d(K_4, W)$
- degree of a vertex $z \in [0,1]$: $w(z) = \int W(z,x) dx$

•
$$\int w(z) \mathrm{d}z = d(K_2, W) = p$$

• apply Cauchy-Schwarz Inequality $\int w(z)^2 dz \cdot \int 1 dz \ge \left(\int_{[0,1]} w(z) dz \right)^2 = p^2$

• $d(K_2, W) = p$ and $h(C_4, W) = p^4 \Longrightarrow W = W_p$ $w(z) = \int W(z, x) dx \qquad \int w(z)^2 dz \ge p^2$

•
$$0 \leq \int \left(\int W(x,z)W(y,z)dz - p^2\right)^2 dxy =$$

 $\dots = p^4 - 2p^2 \int w(z)^2 dz + p^4$
so, we get that $\int w(z)^2 dz = p^2$

• recall the Cauchy-Schwarz Inequality we used w(z) = p for almost every $z \in [0, 1]$

•
$$d(K_2, W) = p$$
 and $h(C_4, W) = p^4 \Longrightarrow W = W_p$
 $w(z) = \int W(z, x) dx \qquad w(z) = p$ a.e.
 $0 = \int \left(\int W(x, z) W(y, z) dz - p^2 \right)^2 dxy$

•
$$\int W(x,z)W(y,z)dz = p^2 \text{ for a.e. } x, y \in [0,1]^2$$
$$\int W(x,z)^2 dz = p^2 \text{ for a.e. } x \in [0,1]$$
$$\int W(z,x)^2 dx = p^2 \text{ for a.e. } z \in [0,1]$$

• we apply the Cauchy-Schwarz Inequality again

$$p^2 = \left(\int W(z,x) dx\right)^2 \leq \int W(z,x)^2 dx \cdot \int 1 dx = p^2$$

for a.e. $z, W(z,x) = p$ for a.e. x

Questions?