Graph limits and their applications in extremal combinatorics (Part 5)

Dan Král' University of Warwick

São Paulo July 2016

PLAN FOR TODAY

- Flag algebra method quick recap SDP formulation
- Limits of hypergraphs limit representation
- Limits of permutations convergence, limit representation

FLAG ALGEBRAS

- algebra \mathcal{A} of formal linear combinations of graphs addition and multiplication by a scalar
- homomorphism $f_W : \mathcal{A} \to \mathbb{R}$ for a graphon W $f_W(\sum \alpha_i H_i) := \sum \alpha_i d(H_i, W)$ multiplication, elements always in $\operatorname{Ker}(f_W)$
- algebra \mathcal{A}^R of R-rooted graphs
 random homomorphism $f_W^R: \mathcal{A}^R \to \mathbb{R}$ multiplication, average operator $[\![\cdot]\!]_R: \mathcal{A}^R \to \mathcal{A}$ $\mathbb{E}_R f_W^R(x) = f_W([\![x]\!]_R) \text{ for every } x \in \mathcal{A}^R$

GOODMAN'S THEOREM

SDP FORMULATION

- find maximum α_0 such that $f_W(G_0) \geq \alpha_0$ if $f_W(G_i) \geq \alpha_i$ where $G_0, \ldots, G_k \in \mathcal{A}$
- What inequalities can we use? $f_W(G') \ge 0$ for any graph G' $f_W(K_1) = 1$ where K_1 expressed in n-vertex graphs $f_W(\llbracket x^2 \rrbracket_R) \ge 0$ for $x \in \mathcal{A}^R$
- let H_1, \ldots, H_m be elements of \mathcal{A}^R , $h = (H_1, \ldots, H_m)$ if $M \succeq 0$, then $f_W(\llbracket h^T M h \rrbracket_R) \geq 0$

SDP FORMULATION

- prove $f_W(G_0) \ge \alpha_0$ if $f_W(G_i) \ge \alpha_i$
- find $\gamma_i \geq 0$, $\delta_0 \in \mathbb{R}$, $\delta_i \geq 0$, $M \succeq 0$ $G_0 = \sum_{i=1}^k \gamma_i G_i + \sum_{i=1}^\ell (\delta_0 + \delta_i) G'_i + \llbracket h^T M h \rrbracket_R$ $\alpha_0 = \delta_0 + \sum_{i=1}^k \gamma_i \alpha_i$ where G'_1, \ldots, G'_ℓ are all n-vert. graphs and $h \in (\mathcal{A}^R)^m$
- $\gamma_i \times f_W(G_i) \ge \gamma_i \times \alpha_i$ $\delta_0 \times f_W(G'_1 + \dots + G'_\ell) = \delta_0 \times 1$ $\delta_i \times f_W(G'_i) \ge 0$ $f_W(\llbracket h^T M h \rrbracket_B) \ge 0$

SDP EXAMPLE

- prove $f_W(\overline{K_3} + K_3) \ge \alpha_0$ for maximum α_0
- $(G'_1, \dots, G'_4) = (\overline{K_3}, \overline{K_{1,2}}, K_{1,2}, K_3), h = (\overline{K_2}^{\bullet}, K_2^{\bullet})$
- SDP: $\max \langle C, X \rangle$ s.t. $\langle A_i, X \rangle = b_i, X \succeq 0, X \in \mathbb{R}^{8 \times 8}$

SDP FORMULATION

- prove $f_W(G_0) \ge \alpha_0$ if $f_W(G_i) \ge \alpha_i$
- find $\gamma_i \geq 0$, $\delta_0 \in \mathbb{R}$, $\delta_i \geq 0$, $M \succeq 0$ $G_0 = \sum_{i=1}^k \gamma_i G_i + \sum_{i=1}^\ell (\delta_0 + \delta_i) G'_i + \llbracket h^T M h \rrbracket_R$ $\alpha_0 = \delta_0 + \sum_{i=1}^k \gamma_i \alpha_i$ where G'_1, \ldots, G'_ℓ are all n-vert. graphs and $h \in (\mathcal{A}^R)^m$
- SDP: $\max \langle C, X \rangle$ s.t. $\langle A_i, X \rangle = b_i$ and $X \succeq 0$ X of size $k + 2 + \ell + m$, diagonal $\gamma_i, \pm \delta_0, \delta_i, M$ ℓ constraints, b_i is the coefficient of G'_i in G_0

- 3-uniform hypergraphs (for simplicity)
- convergence d(H,G) = probab. |H| -vertex subhypergraph of G is H $(G_n)_{n \in \mathbb{N}} \text{ converges } \Leftrightarrow d(H,G_n) \text{ converges for every } H$
- naïve analytic representation measurable function $W:[0,1]^3 \to [0,1]$ symmetric: $W(x,y,z)=W(x,z,y)=W(y,x,z)=\cdots$ W-random hypergraph

- 3-uniform hypergraphs (for simplicity)
- convergence d(H,G) = probab. |H| -vertex subhypergraph of G is H $(G_n)_{n \in \mathbb{N}} \text{ converges } \Leftrightarrow d(H,G_n) \text{ converges for every } H$
- naïve analytic representation measurable function $W:[0,1]^3 \to [0,1]$ symmetric: $W(x,y,z)=W(x,z,y)=W(y,x,z)=\cdots$ W-random hypergraph FAIL

- construct G_n as follows take a random directed graph on n vertices include an edge for each cyclically oriented triangle
- $(G_n)_{n\in\mathbb{N}}$ converges with probability one density uniformly 1/4 everywhere $\Rightarrow W \equiv 1/4$
- $d(K_4^{(3)}, W) = 1/256$ but every G_n is $K_4^{(3)}$ -free

- hypergraphon $W : [0,1]^6 \to [0,1]$ $W(x,y,z,e_{xy},e_{yz},e_{xz}) = W(y,z,x,e_{yz},e_{xz},e_{xy}) = \cdots$
- sampling n-vertex W-random hypergraph K_n , each vertex/edge gets a random number from [0,1] ijk is an edge with prob. $W(x_i, x_j, x_k, x_{ij}, x_{jk}, x_{ik})$
- in the example, we define for x < y < z $W(x, y, z, \alpha, \beta, \gamma) = 1 \text{ if } (\alpha, \beta, \gamma) \in [0, 1/2)^2 \times [1/2, 1]$ $W(x, y, z, \alpha, \beta, \gamma) = 1 \text{ if } (\alpha, \beta, \gamma) \in [1/2, 1]^2 \times [0, 1/2)$ $W(x, y, z, \alpha, \beta, \gamma) = 0 \text{ otherwise}$

PERMUTATIONS

- permutation of order n: order on numbers $1, \ldots, n$ subpermutation: $4\underline{53}21\underline{6} \longrightarrow 213$
- density of a permutation π in a permutation Π :

$$d(\pi,\Pi) = \frac{\text{\# subpermutations of }\Pi \text{ that are }\pi}{\text{\# all subpermutations of order }\pi}$$

• $(\Pi_j)_{j\in\mathbb{N}}$ convergent if $\exists \lim_{j\to\infty} d(\pi,\Pi_j)$ for every π

Representation of a limit

- probability measure μ on $[0,1]^2$ with unit marginals $\mu([a,b]\times[0,1])=\mu([0,1]\times[a,b])=b-a$ Hoppen, Kohayakawa, Moreira, Ráth and Sampaio
- μ -random permutation choose n random points, x- and y-coordinates

Representation of a limit

- probability measure μ on $[0,1]^2$ with unit marginals $\mu([a,b]\times[0,1])=\mu([0,1]\times[a,b])=b-a$ Hoppen, Kohayakawa, Moreira, Ráth and Sampaio
- μ -random permutation choose n random points, x- and y-coordinates

Thank you for your attention!