Graph limits and their applications in extremal combinatorics (Part 4)

Dan Král' University of Warwick

São Paulo

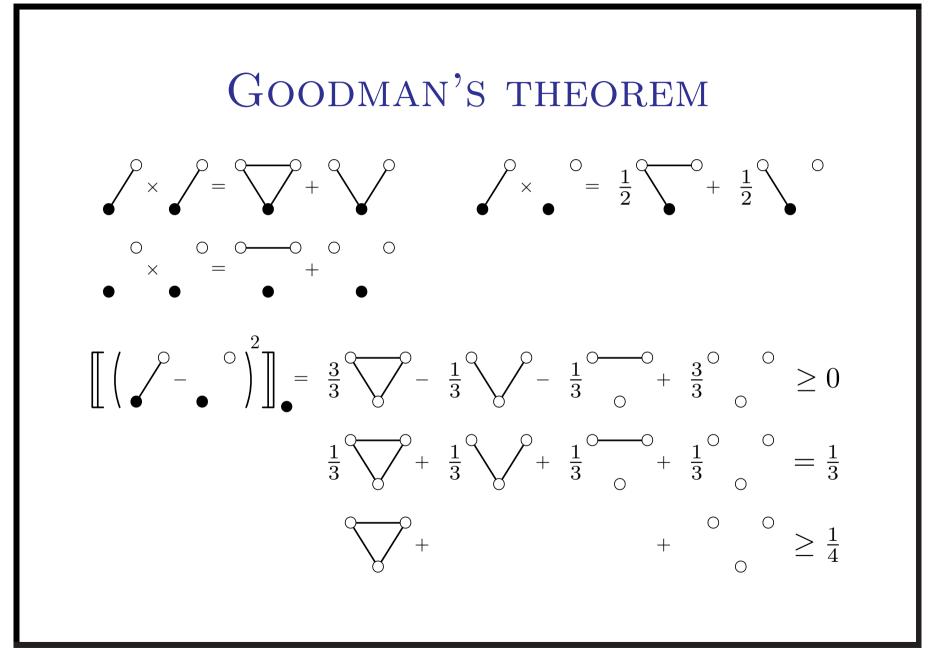
July 2016

FLAG ALGEBRAS

- algebra A of formal linear combinations of graphs addition and multiplication by a scalar
- homomorphism $f_W : \mathcal{A} \to \mathbb{R}$ for a graphon W $f_W(\sum \alpha_i H_i) := \sum \alpha_i d(H_i, W)$ multiplication, elements always in $\operatorname{Ker}(f_W)$
- algebra \mathcal{A}^R of R-rooted graphs random homomorphism $f_W^R : \mathcal{A}^R \to \mathbb{R}$ multiplication, average operator $\llbracket \cdot \rrbracket_R : \mathcal{A}^R \to \mathcal{A}$ $\mathbb{E}_R f_W^R(x) = f_W(\llbracket x \rrbracket_R)$ for every $x \in \mathcal{A}^R$

Computing with flags

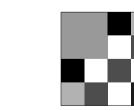
- simple applications yields results such as $f_W(K_2) > 1/2 \Rightarrow f_W(K_3) > 0$ for every W $f_W(K_3 + \overline{K_3}) \ge 1/4$ for every W
- shorthand notation for $x, y \in \mathcal{A}$ $x = y \Leftrightarrow \forall W \ f_W(x) = f_W(y)$ $x \ge 0 \Leftrightarrow \forall W \ f_W(x) \ge 0$
- What can we use in computations? $x^2 \ge 0$ for every $x \in \mathcal{A}$ $\llbracket x^2 \rrbracket_R \ge 0$ for every $x \in \mathcal{A}^R$



Questions?

FINITELY FORCIBLE GRAPHONS

- a graphon W is finitely forcible if there exist H_1, \ldots, H_k and d_1, \ldots, d_k such that W is the only graphon with the expected density of H_i equal to d_i
- $W \equiv p$ is forced by densities of 4-vertex subgraphs
- Lovász, Sós (2008): Step graphons are finitely forcible.



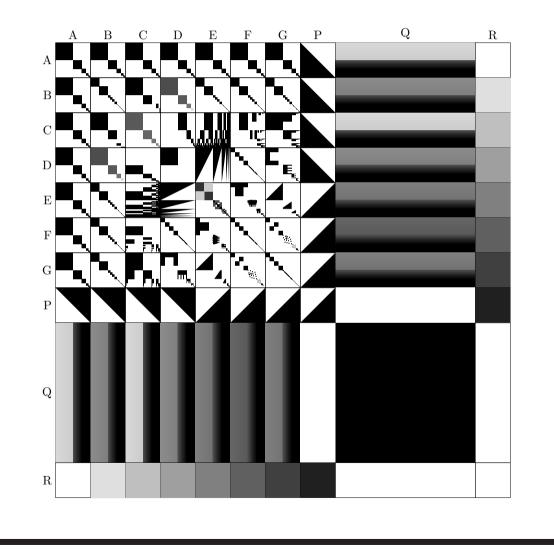
LINK TO EXTREMAL COMBINATORICS

- suppose W is forced by $d(H_i, W) = d_i$ density calculation: $\sum (H_i - d_i)^2 = \sum \alpha_j H'_j$ W is the unique minimizer of $\sum \alpha_j d(H'_j, W)$
- Conjecture (Lovász and Szegedy, 2011): Every extremal problem $\min \sum \alpha_j d(H_j, W)$ has a finitely forcible optimal solution.
- Conjecture (Lovász and Szegedy, 2011): Every finitely forcible graphons has polynomial-size weak ε -regular partitions.

LINK TO EXTREMAL COMBINATORICS

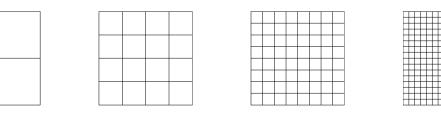
- suppose W is forced by $d(H_i, W) = d_i$ density calculation: $\sum (H_i - d_i)^2 = \sum \alpha_j H'_j$ W is the unique minimizer of $\sum \alpha_j d(H'_j, W)$
- Conjecture (Lovász and Szegedy, 2011): Every extremal problem $\min \sum \alpha_j d(H_j, W)$ has a finitely forcible optimal solution.
- Conjecture (Lovász and Szegedy, 2011): Every finitely forcible graphons has polynomial-size weak ε -regular partitions. FALSE

NON-REGULAR GRAPHON

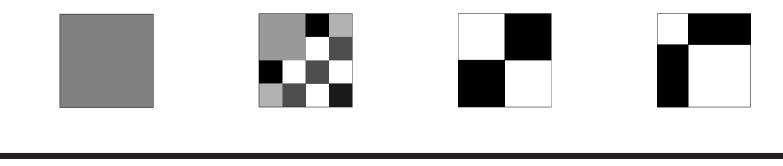


FINITELY FORCIBLE GRAPHONS

- Theorem (Cooper, K., Lopes Martins) If W is a computable graphon, then there exists a finitely forcibly graphon W_0 such that $W_0(x/100, y/100) = W(x, y)$ for every $(x, y) \in [0, 1]^2$.
- methods developed by Glebov, Klimošová, K., Volec non-regular graphon due to Cooper, Kaiser, K., Noel



- Lovász, Sós (2008): Step graphons are finitely forcible.
- step graphon W: k parts, i.e. $[0,1] = J_1 \cup \cdots \cup J_k$ W is equal to D_{ij} on every $J_i \times J_j, i, j \in [k]$
- we prove the theorem under two additional assumptions all parts have the same size, say $J_i = [(i-1)/k, i/k)$ $D_{i1} + \dots + D_{ik} \neq D_{i'1} + \dots + D_{i'k}$ for $i \neq i'$



- graphon W_0 , k parts, equal to D_{ij} on $J_i \times J_j$ $f_W(H) = f_{W_0}(H)$ for all (8k + 4)-vert. $H \Rightarrow W = W_0$
- degree in the *i*-th part: $\delta_i = (D_{i1} + \dots + D_{ik})/k$ we have assumed that $\delta_i \neq \delta_j$ for $i \neq j$
- let $e \in \mathcal{A}^{\bullet}$ be the rooted K_2 $\mathbb{E}_x f_W^x \left(\prod_{i=1}^k (e - \delta_i)^2 \right) = 0 \Rightarrow f_W^x(e) \in \{\delta_1, \dots, \delta_k\}$ a.s. $\int W(x, z) dz \in \{\delta_1, \dots, \delta_k\}$ for a.e. $x \in [0, 1]$

• graphon W_0 , k parts, equal to D_{ij} on $J_i \times J_j$ $f_W(H) = f_{W_0}(H)$ for all (8k + 4)-vert. $H \Rightarrow W = W_0$

•
$$f_W^x(e) \in \{\delta_1, \dots, \delta_k\}$$
 for a.e. $x \in [0, 1]$
 $J_i = \{x \text{ s.t. } f_W^x(e) = \delta_i\}$

•
$$\mathbb{E}_x f_W^x \left(\prod_{i=1, i \neq j}^k (e - \delta_i)^2 \right) = \frac{1}{k} \prod_{i=1, i \neq j}^k (\delta_j - \delta_i)^2 \Rightarrow$$

the measure of J_i is $1/k$, w.l.o.g. $J_i = [(i - 1)/k, i/k)$

•
$$f_W^x(e) = f_{W_0}^x(e)$$
 for a.e. $x \in [0, 1]$

- graphon W_0 , k parts, equal to D_{ij} on $J_i \times J_j$ $f_W(H) = f_{W_0}(H)$ for all (8k + 4)-vert. $H \Rightarrow W = W_0$ $f_W^x(e) = f_{W_0}^x(e)$ for a.e. $x \in [0, 1]$
- 4-vertex decorated graph Hthe *i*-th vertex must belong to part ℓ_i
- the density d(H, W) is equal to normalization factor \times $\int_{J_{\ell_1} \times \cdots \times J_{\ell_4}} \prod_{v_i v_j} W(x_i, x_j) \prod_{v_i v_j} (1 - W(x_i, x_j)) dx_1 \cdots x_4$

- graphon W_0 , k parts, equal to D_{ij} on $J_i \times J_j$ $f_W(H) = f_{W_0}(H)$ for all (8k + 4)-vert. $H \Rightarrow W = W_0$ $f_W^x(e) = f_{W_0}^x(e)$ for a.e. $x \in [0, 1]$
- 4-vertex decorated graph H with ℓ_1, \ldots, ℓ_4
- H₀ = the graph H with all vertices roots
 H_i = sum of 5-vert. H₀-rooted graphs with the *i*-th root adjacent to the non-root vertex

•
$$d(H,W) = \frac{\mathbb{E}_{H_0} f_W^{H_0} \left(\prod_{i=1}^4 \prod_{j=1, j \neq \ell_i}^k (H_i - \delta_j)^2 \right)}{\prod_{i=1}^4 \prod_{j=1, j \neq \ell_i}^k (\delta_{\ell_i} - \delta_j)^2}$$

Questions?