Graph limits and their applications in extremal combinatorics (Part 3)

Dan Král' University of Warwick

São Paulo July 2016

FLAG ALGEBRAS

- the flag algebra method independent of graph limits we introduce the method using graphons for simplicity
- algebra \mathcal{A} of formal linear combinations of graphs addition and multiplication by a scalar
- homomorphism f_W from \mathcal{A} to \mathbb{R} for a graphon W $f_W(\sum \alpha_i H_i) := \sum \alpha_i d(H_i, W)$
- examples: $f_W(K_2) = d(K_2, W)$ $f_W(K_2 - K_3) = d(K_2, W) - d(K_3, W)$

MULTIPLICATION

- defined $f_W(H) := d(H, W)$ and extended linearly
- aim: define multiplication on \mathcal{A} preserved by f_W $f_W(H_1 \times H_2) = f_W(H_1) \cdot f_W(H_2)$
- $H_1 \times H_2 = \sum_{H} \frac{|\{(A,B)|V(H) = A \cup B, H[A] \cong H_1, H[B] \cong H_2\}|}{\binom{|H_1| + |H_2|}{|H_1|}} H$

$$\times = \frac{1}{6} + \frac{2}{6} + \frac{3}{6} + \frac{1}{6} + \frac{3}{6} + \frac{1}{6} +$$

KERNEL

- defined $f_W(H) := d(H, W)$ and extended linearly
- Ker (f_W) always contains certain elements $f_W(K_2) = \frac{1}{3} f_W(\overline{K_{1,2}}) + \frac{2}{3} f_W(K_{1,2}) + \frac{3}{3} f_W(K_3)$

• let \mathcal{A}' be the space generated by $H - \sum_{H'} d(H', H)H$ $\mathcal{A}' \subseteq \operatorname{Ker}(f_W) \Rightarrow \text{homomorphism } f_W : \mathcal{A}/\mathcal{A}' \to \mathbb{R}$

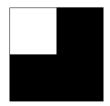
ROOTED HOMOMORPHISMS

- consider a graph G with a distinguish vertex (root) a random sample always includes the root
- algebra \mathcal{A}^{\bullet} on combinations of rooted graphs
- rooted graphon \to a homomorphism from \mathcal{A}^{\bullet} to \mathbb{R} random choice of the root $x_0 \to \text{probability distribution}$ on homomorphisms f^{x_0} from \mathcal{A}^{\bullet} to \mathbb{R}

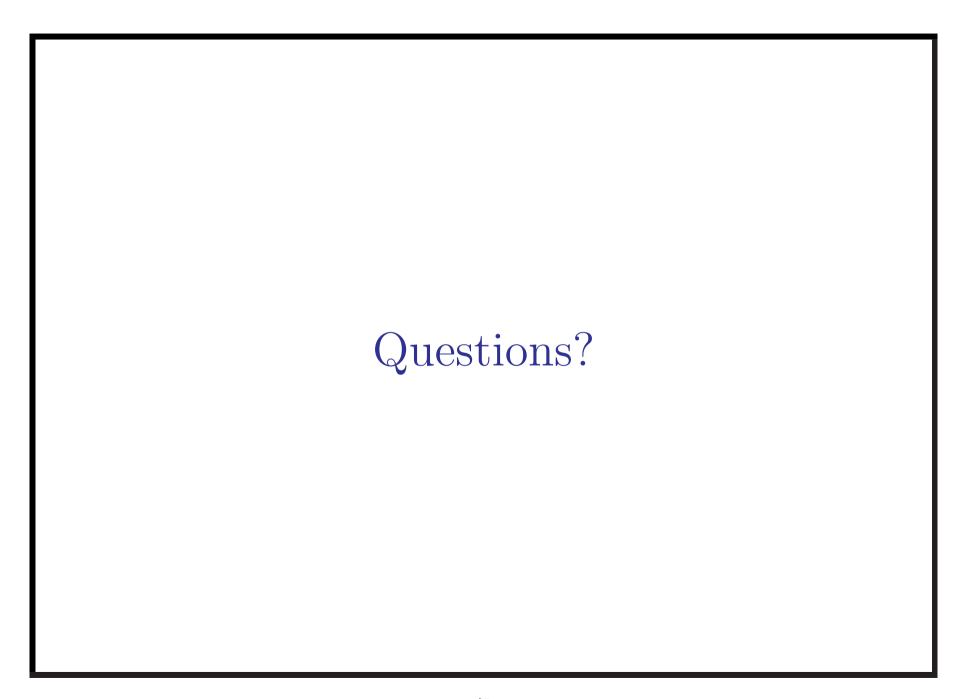
$$\frac{f^{\bullet}(K_{2}^{\bullet}) = 1/2, \ f^{\bullet}(\overline{K_{2}^{\bullet}}) = 1/2, \ f^{\bullet}(K_{3}^{\bullet}) = 1/4, \dots}{f^{\bullet}(K_{2}^{\bullet}) = 1, \ f^{\bullet}(\overline{K_{2}^{\bullet}}) = 0, \ f^{\bullet}(K_{3}^{\bullet}) = 3/4, \dots}$$

ROOTED HOMOMORPHISMS

- algebra \mathcal{A}^{\bullet} of combinations of rooted graphs random choice of the root $x_0 \to \text{probability distribution}$ on homomorphisms f^{x_0} from \mathcal{A}^{\bullet} to \mathbb{R}
- the value $f_W^{x_0}(H)$ for H with root v_0 is $\frac{k!}{|\operatorname{Aut}^{\bullet}(H)|} \times \int \prod_{v_i v_j \in E(H)} W(x_i, x_j) \prod_{v_i v_j \notin E(H)} (1 W(x_i, x_j)) dx_1 \cdots x_k$



$$\frac{f^{\bullet}(K_{2}^{\bullet}) = 1/2, \, f^{\bullet}(\overline{K_{2}^{\bullet}}) = 1/2, \, f^{\bullet}(K_{3}^{\bullet}) = 1/4, \dots}{f^{\bullet}(K_{2}^{\bullet}) = 1, \, f^{\bullet}(\overline{K_{2}^{\bullet}}) = 0, \, f^{\bullet}(K_{3}^{\bullet}) = 3/4, \dots}$$



GENERAL ROOTED GRAPHS

- fix a graph R with vertices r_1, \ldots, r_k algebra \mathcal{A}^R of combinations of R-rooted graphs
- random homomorphism f^R from \mathcal{A}^R to \mathbb{R} random choice of the roots x_1, \ldots, x_k the roots do not induce $R \Rightarrow f^R \equiv 0$ otherwise, sampling |H| k vertices \Rightarrow prob. $f^R(H)$

$$\frac{f^{K_2}(K_3^{K_2}) = 0, f^{K_2}(K_4^{K_2}) = 0, f^{K_2}(K_{1,2}^{K_2}) = 0, \dots}{f^{K_2}(K_3^{K_2}) = 1/2, f^{K_2}(K_4^{K_2}) = 1/4, f^{K_2}(K_{1,2}^{K_2}) = 1/2, \dots}$$

$$\frac{f^{K_2}(K_3^{K_2}) = 1/2, f^{K_2}(K_4^{K_2}) = 1/4, f^{K_2}(K_{1,2}^{K_2}) = 0, \dots}{f^{K_2}(K_3^{K_2}) = 1, f^{K_2}(K_4^{K_2}) = 3/4, f^{K_2}(K_{1,2}^{K_2}) = 0, \dots}$$

OPERATIONS WITH ROOTED GRAPHS

projection

prob. that deleting non-root vertices yields the flag

multiplication

prob. partitioning non-root vertices yields the terms

EXPECTED VALUE

- goal: $\mathbb{E}_R f_W^R(H) = f_W(\llbracket H \rrbracket_R)$ for $H \in \mathcal{A}^R$
- $f(\llbracket H \rrbracket_{\bullet}) = \mathbb{E}_z f^z(H)$

 $\bullet \ \llbracket \cdot \rrbracket_R : \mathcal{A}^R \to \mathcal{A} \qquad \llbracket H \rrbracket_R = \alpha H'$

H' is the graph H without distinguishing roots α is the prob. that randomly chosen roots yield H

