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Improvements

No improvement on Hoogeveen’s algorithm for s-t path TSP, until
just the last few years.

An, Kleinberg, Shmoys 2012 1.618
Sebő 2013 1.6
Vygen 2015 1.599
Gottschalk and Vygen 2015 1.56
Sebő and Van Zuylen 2016 1.52

Today: Look at the case of graph TSP instances (e.g. input is
undirected graph, cost c(i , j) is number of edges in shortest i-j
path)
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Integrality Gap

The performance of Best-of-Many Christofides’ cannot do better
than the integrality gap of the LP relaxation.

The integrality gap is

µ ≡ sup OPT
OPTLP

over all instances of the problem.

Note that we have shown µ ≤ 1.618, since we find a tour of cost
at most 1.618 · OPTLP .
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Integrality Gap

We can show a lower bound on the integrality gap using an
instance of graph TSP: input is a graph G = (V ,E ), cost ce for
e = (i , j) is number of edges in a shortest i-j path in G .
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Integrality Gap

We can show a lower bound on the integrality gap using an
instance of graph TSP: input is a graph G = (V ,E ), cost ce for
e = (i , j) is number of edges in a shortest i-j path in G .
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OPT
OPTLP

→ 3
2 as k →∞
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Graph Instances

Sebő and Vygen (2014) show that for graph TSP instances of s-t
path TSP, can get a 3

2 -approximation algorithm (i.e. the algorithm
produces a solution of cost at most 3

2OPTLP), so the integrality
gap is tight for these instances.

We’ll present a simplified version of this result due to Gao (2013).
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Graph Instances

Given the input graph G = (V ,E ) and an optimal solution, can
replace any edge (i , j) in the optimal solution with the i-j path in
G since these have the same cost.

So finding an optimal solution is equivalent to finding a multiset F
of edges such that (V ,F ) is connected, degF (s) and degF (t) are
odd, degF (v) is even for all v ∈ V − {s, t}, and |F | is minimum.
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LP Relaxation

Min
∑
e∈E

x(e)

subject to: x(δ(S)) ≥
{

1, |S ∩ {s, t}| = 1,
2, |S ∩ {s, t}| 6= 1,

x(e) ≥ 0, ∀e ∈ E .

Let x∗ be an optimal LP solution.
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Narrow Cuts

As before, focus on narrow cuts S such that x∗(δ(S)) < 2 (i.e. a
τ -narrow cut for τ = 1). Recall:

Theorem (An, Kleinberg, Shmoys (2012))
If S1, S2 are narrow cuts, S1 6= S2, then either S1 ⊂ S2 or S2 ⊂ S1.

So the narrow cuts look like s ∈ S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ V .

s . . . t

Let S0 ≡ ∅, Sk+1 ≡ V , Li ≡ Si − Si−1.
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Key Idea

Find a tree spanning Li in the support of x∗ for each i . Connect
each of these via a single edge from Li to Li+1. Let F be the
resulting tree, T the vertices in F whose parity needs changing.

Then |F | = n − 1 and |δ(Si) ∩ F | = 1 for each narrow cut Si .

s L1 L2 . . . Lk t
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Key Lemma

Recall:

Lemma
Let S be an odd set. If |S ∩ {s, t}| = 1, then |F ∩ δ(S)| is even.

Min
∑
e∈E

c(e)x(e)

subject to: x(δ(S)) ≥ 1, ∀S ⊆ V , |S ∩ T | odd
x(e) ≥ 0, ∀e ∈ E .

Lemma
y = 1

2x∗ is feasible for the the T -join LP.
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Gao (2013)

Theorem (Gao (2013))
For spanning tree F constructed by the algorithm, let J be a
minimum-cost T -join. Then c(F ∪ J) ≤ 3

2OPTLP .

Min
∑
e∈E

x(e)

subject to: x(δ(S)) ≥
{

1, |S ∩ {s, t}| = 1,
2, |S ∩ {s, t}| 6= 1,

x(e) ≥ 0, ∀e ∈ E .
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Last Lemma
Let E (x∗) = {e ∈ E : x∗(e) > 0} be the support of LP solution x∗,
H = (V ,E (x∗)) the support graph of x∗, H(S) the graph induced
by a set S of vertices.

Lemma (Gao (2013))

For 1 ≤ p ≤ q ≤ k + 1, H
(⋃

p≤i≤q Li
)

is connected.

s L1 L2 . . . Lk t
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The Big Question

Is there a 3
2 -approx. alg. for s-t path TSP for general costs?
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One Idea

Idea: Construct a spanning tree F just as in Gao’s algorithm for
the graph case. Then again y = 1

2x∗ is feasible for the T -join LP,
and the overall cost of F plus the T -join is at most
c(F ) + 1

2
∑

e∈E c(e)x∗(e).

Problem: Not clear how to bound the cost of F . Gao (2014) has
an example showing that F can have cost greater than OPTLP .
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Further directions

Best-of-Many Christofides from An et al. works with any possible
decomposition of the LP solution into spanning trees. Recent
improvements of Vygen (2015), Gottschalk and Vygen (2015), and
Sebő and Van Zuylen (2016) all use decompositions that have
particular properties.

In particular, the last two use a decomposition that gives an
ordering on trees such that at every narrow cut Q, the first
2− x∗(Q) fraction of trees in the ordering have exactly one edge in
δ(Q).
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More ideas

Sebő and Van Zuylen (2016) also (like Mömke and Svensson) use
an idea in which edges are sometimes removed from the tree in
hopes that the T -join will connect the two parts together again.
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The Big Open Questions

• Beat 3
2 for TSP

• Achieve 3
2 for s-t path TSP

• Achieve 4
3 for graph TSP


