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s-t path TSP

Recall the s-t path TSP:
Usual TSP input plus s, t ∈ V , find a min-cost path from s to t
visiting all other nodes in between (an s-t Hamiltonian path).



David P. Williamson Recent Progress for the TSP

A Linear Programming Relaxation

Min
∑
e∈E

cexe

subject to: x(δ(v)) =
{

1, v = s, t,
2, v 6= s, t,

x(δ(S)) ≥
{

1, |S ∩ {s, t}| = 1,
2, |S ∩ {s, t}| 6= 1,

0 ≤ xe ≤ 1, ∀e ∈ E ,

where δ(S) is the set of edges with exactly one endpoint in S, and
x(E ′) ≡

∑
e∈E ′ xe .

Lemma
Any solution x feasible for the s-t path TSP LP relaxation is in the
spanning tree polytope.
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Best-of-Many Christofides’ Algorithm

An, Kleinberg, Shmoys (2012) propose the Best-of-Many
Christofides’ algorithm: given optimal LP solution x∗, compute
convex combination of spanning trees

x∗ =
k∑

i=1
λiχFi .

For each spanning tree Fi , let Ti be the set of vertices whose parity
needs fixing, let Ji be the minimum-cost Ti -join. Find s-t
Hamiltonian path by shortcutting Fi ∪ Ji . Return the shortest path
found over all i .
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From last time

To prove that Best-of-Many Christofides is at most 5
3OPTLP for

optimal LP solution x∗, show that

yi = 1
3χFi + 1

3x
∗

is feasible for the Ti -join LP:

Min
∑
e∈E

cexe

subject to: x(δ(S)) ≥ 1, ∀S ⊆ V , |S ∩ Ti | odd
xe ≥ 0, ∀e ∈ E .
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Improvement?

To do better, we need to improve the analysis for the costs of the
Ti -joins; recall that we use that

yi = 1
3χFi + 1

3x
∗

is feasible for the Ti -join LP.

Consider
yi = αχFi + βx∗.

Then the cost of the best s-t Hamiltonian path is at most

(1 + α+ β)OPTLP .



David P. Williamson Recent Progress for the TSP

Improvement?

Proof that yi feasible for Ti -join LP had two cases. Assume S odd
(|S ∩ Ti | odd).

If |S ∩ {s, t}| 6= 1, then

yi(δ(S)) = α|Fi ∩ δ(S)|+ βx∗(δ(S)) ≥ α+ 2β.

We will want α+ 2β ≥ 1, so the Ti -join LP constraint is satisfied.
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Improvement?

If |S ∩ {s, t}| = 1, then

yi(δ(S)) = α|Fi ∩ δ(S)|+ βx∗(δ(S)) ≥ 2α+ βx∗(δ(S)).

Since we assume α+ 2β ≥ 1, we only run into problems if

x∗(δ(S)) < 1− 2α
β

.

Note that α = 0, β = 1
2 works if x∗(δ(S)) ≥ 2 for all S ⊂ V , and

gives a tour of cost at most 3
2OPTLP .

So focus on s-t cuts for which x∗(δ(S)) < 2, and add an extra
“correction” term to yi to handle these cuts.
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τ -Narrow Cuts

Definition
S is τ -narrow if x∗(δ(S)) < 1 + τ for fixed τ ≤ 1.

Only S such that |S ∩ {s, t}| = 1 are τ -narrow.

Definition
Let Cτ be all τ -narrow cuts S with s ∈ S.
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τ -Narrow Cuts

The τ -narrow cuts in Cτ have a nice structure.

Theorem (An, Kleinberg, Shmoys (2012))
If S1, S2 ∈ Cτ , S1 6= S2, then either S1 ⊂ S2 or S2 ⊂ S1.

So the τ -narrow cuts look like s ∈ Q1 ⊂ Q2 ⊂ · · · ⊂ Qk ⊂ V .

s . . . t
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Correction Factor

Let eQ be the minimum-cost edge in δ(Q). Then consider the
following (from Gao (2014)):

yi = αχFi + βx∗ +
∑

Q∈Cτ ,|Q∩Ti | odd
(1− 2α− βx∗(δ(Q)))χeQ

for α, β, τ ≥ 0 such that

α+ 2β = 1 and τ = 1− 2α
β

− 1.

Theorem
yi is feasible for the Ti -join LP.
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Parameters

By choosing

α = 1− 2√
5
, β = 1√

5
, τ = 3−

√
5,

then one can show that the total cost is at most

1 +
√
5

2 OPTLP .
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Today

Today: Combine the two special cases: Look at s-t path TSP in
the case of graph TSP instances (e.g. input is undirected graph,
cost c(i , j) is number of edges in shortest i-j path)
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Integrality Gap

The performance of Best-of-Many Christofides’ cannot do better
than the integrality gap of the LP relaxation.

The integrality gap is

µ ≡ sup OPT
OPTLP

over all instances of the problem.

Note that An, Kleinberg, Shmoys have shown µ ≤ 1.618, since
Best-of-Many Christofides’ algorithm finds a tour of cost at most
1.618 · OPTLP .



David P. Williamson Recent Progress for the TSP

Integrality Gap

The performance of Best-of-Many Christofides’ cannot do better
than the integrality gap of the LP relaxation.

The integrality gap is

µ ≡ sup OPT
OPTLP

over all instances of the problem.

Note that An, Kleinberg, Shmoys have shown µ ≤ 1.618, since
Best-of-Many Christofides’ algorithm finds a tour of cost at most
1.618 · OPTLP .



David P. Williamson Recent Progress for the TSP

Integrality Gap

The performance of Best-of-Many Christofides’ cannot do better
than the integrality gap of the LP relaxation.

The integrality gap is

µ ≡ sup OPT
OPTLP

over all instances of the problem.

Note that An, Kleinberg, Shmoys have shown µ ≤ 1.618, since
Best-of-Many Christofides’ algorithm finds a tour of cost at most
1.618 · OPTLP .



David P. Williamson Recent Progress for the TSP

Integrality Gap

We can show a lower bound on the integrality gap using an
instance of graph TSP: input is a graph G = (V ,E ), cost ce for
e = (i , j) is number of edges in a shortest i-j path in G .

s t

k
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Integrality Gap

We can show a lower bound on the integrality gap using an
instance of graph TSP: input is a graph G = (V ,E ), cost ce for
e = (i , j) is number of edges in a shortest i-j path in G .

s t

k

OPT
OPTLP

→ 3
2 as k →∞
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Graph Instances

Sebő and Vygen (2014) show that for graph TSP instances of s-t
path TSP, can get a 3

2 -approximation algorithm (i.e. the algorithm
produces a solution of cost at most 3

2OPTLP), so the integrality
gap is tight for these instances.

We’ll present a simplified version of this result due to Gao (2013).
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Graph Instances

Given the input graph G = (V ,E ) and an optimal solution, can
replace any edge (i , j) in the optimal solution with the i-j path in
G since these have the same cost.

So finding an optimal solution is equivalent to finding a multiset F
of edges such that (V ,F ) is connected, degF (s) and degF (t) are
odd, degF (v) is even for all v ∈ V − {s, t}, and |F | is minimum.
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LP Relaxation

Min
∑
e∈E

x(e)

subject to: x(δ(S)) ≥
{

1, |S ∩ {s, t}| = 1,
2, |S ∩ {s, t}| 6= 1,

x(e) ≥ 0, ∀e ∈ E .

Let x∗ be an optimal LP solution.
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Narrow Cuts

As before, focus on narrow cuts S such that x∗(δ(S)) < 2 (i.e. a
τ -narrow cut for τ = 1). Recall:

Theorem (An, Kleinberg, Shmoys (2012))
If S1, S2 are narrow cuts, S1 6= S2, then either S1 ⊂ S2 or S2 ⊂ S1.
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Proof

First need to show that

x∗(δ(S1)) + x∗(δ(S2)) ≥ x∗(δ(S1 − S2)) + x∗(δ(S2 − S1)).

S1 S2
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Proof

Theorem (An, Kleinberg, Shmoys (2012))
If S1, S2 are narrow cuts, S1 6= S2, then either S1 ⊂ S2 or S2 ⊂ S1.
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Narrow Cuts

Theorem (An, Kleinberg, Shmoys (2012))
If S1, S2 are narrow cuts, S1 6= S2, then either S1 ⊂ S2 or S2 ⊂ S1.

So the narrow cuts look like s ∈ S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ V .

s . . . t

Let S0 ≡ ∅, Sk+1 ≡ V , Li ≡ Si − Si−1.
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Key Idea

Find a tree spanning Li in the support of x∗ for each i . Connect
each of these via a single edge from Li to Li+1. Let F be the
resulting tree, T the vertices in F whose parity needs changing.

Then |F | = n − 1 and |δ(Si) ∩ F | = 1 for each narrow cut Si .

s L1 L2 . . . Lk t
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Key Lemma

Recall:

Lemma
Let S be an odd set. If |S ∩ {s, t}| = 1, then |F ∩ δ(S)| is even.

Min
∑
e∈E

c(e)x(e)

subject to: x(δ(S)) ≥ 1, ∀S ⊆ V , |S ∩ T | odd
x(e) ≥ 0, ∀e ∈ E .

Lemma
y = 1

2x
∗ is feasible for the the T -join LP.
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Proof
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Gao (2013)

Theorem (Gao (2013))
For spanning tree F constructed by the algorithm, let J be a
minimum-cost T -join. Then c(F ∪ J) ≤ 3

2OPTLP .

Min
∑
e∈E

x(e)

subject to: x(δ(S)) ≥
{

1, |S ∩ {s, t}| = 1,
2, |S ∩ {s, t}| 6= 1,

x(e) ≥ 0, ∀e ∈ E .
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Proof
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Last Lemma
Let E (x∗) = {e ∈ E : x∗(e) > 0} be the support of LP solution x∗,
H = (V ,E (x∗)) the support graph of x∗, H(S) the graph induced
by a set S of vertices.

Lemma (Gao (2013))

For 1 ≤ p ≤ q ≤ k + 1, H
(⋃

p≤i≤q Li
)
is connected.

s L1 L2 . . . Lk t
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Proof
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One Big Question

Is there a 3
2 -approx. alg. for s-t path TSP for general costs?
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One Idea

Idea: Construct a spanning tree F just as in Gao’s algorithm for
the graph case. Then again y = 1

2x
∗ is feasible for the T -join LP,

and the overall cost of F plus the T -join is at most
c(F ) + 1

2
∑

e∈E c(e)x∗(e).

Problem: Not clear how to bound the cost of F . Gao (2014) has
an example showing that F can have cost greater than OPTLP .
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Further directions

Best-of-Many Christofides from An et al. works with any possible
decomposition of the LP solution into spanning trees. Recent
improvements of Vygen (2015), Gottschalk and Vygen (2015), and
Sebő and Van Zuylen (2016) all use decompositions that have
particular properties.
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Integrality Gap for standard TSP

As with s-t path TSP, we can show a lower bound on the
integrality gap using an instance of graph TSP.

k
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Integrality Gap for standard TSP

As with s-t path TSP, we can show a lower bound on the
integrality gap using an instance of graph TSP.

k

OPT
OPTLP

→ 4
3 as k →∞
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What about the standard TSP?

One can define Best-of-Many Christofides’ for the standard TSP:
solve the subtour LP, get LP solution x∗. Then since n−1

n x∗ is in
the spanning tree polytope, find a decomposition of x∗ into a
convex combination of spanning trees. Run Christofides’ algorithm
on each one, return the best solution found.
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Best-of-Many Christofides’
Unfortunately, the following example (due to Schalekamp and Van
Zuylen) shows that an arbitrary decomposition into spanning trees
will not improve on Christofides’ 3

2 -approximation algorithm.

1
1

0

0

1

2

0

1

1

0

1
1

1

2

1

2

1

1
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Experiments

Together with an undergraduate (Kyle Genova), we tried several
different algorithms for decomposing the subtour LP into spanning
trees.

We ran these algorithms on several types of instances:
• 59 Euclidean TSPLIB (Reinelt 1991) instances up to 2103
vertices (avg. 524);

• 5 non-Euclidean TSPLIB instances (gr120, si175, si535,
pa561, si1032);

• 39 Euclidean VLSI instances (Rohe) up to 3694 vertices (avg.
1473);

• 9 graph TSP instances (Kunegis 2013) up to 1615 vertices
(avg. 363).
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The results
Std ColGen ColGen+SR

Best Ave Best Ave
TSPLIB (E) 9.56% 4.03% 6.44% 3.45% 6.24%
VLSI 9.73% 7.00% 8.51% 6.40% 8.33%
TSPLIB (N) 5.40% 2.73% 4.41% 2.22% 4.08%
Graph 12.43% 0.57% 1.37% 0.39% 1.29%

MaxEnt Split Split+SR
Best Ave Best Ave Best Ave

TSPLIB (E) 3.19% 6.12% 5.23% 6.27% 3.60% 6.02%
VLSI 5.47% 7.61% 6.60% 7.64% 5.48% 7.52%
TSPLIB (N) 2.12% 3.99% 2.92% 3.77% 1.99% 3.82%
Graph 0.31% 1.23% 0.88% 1.77% 0.33% 1.20%

Costs given as percentages in excess of the cost of the optimal
tour.
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The results

Standard Christofides MST (Rohe VLSI instance XQF131)

Splitting off + SwapRound
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The results
BoMC yields more vertices in the tree of degree two.
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The results

So while the tree costs more (as percentage of optimal tour)...

Std BOM
TSPLIB (E) 87.47% 98.57%
VLSI 89.85% 98.84%
TSPLIB (N) 92.97% 99.36%
Graph 79.10% 98.23%
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The results

...the matching costs much less.

Std CG CG+SR MaxE Split Sp+SR
TSPLIB (E) 31.25% 11.43% 11.03% 10.75% 10.65% 10.41%
VLSI 29.98% 14.30% 14.11% 12.76% 12.78% 12.70%
TSPLIB (N) 24.15% 9.67% 9.36% 8.75% 8.77% 8.56%
Graph 39.31% 5.20% 4.84% 4.66% 4.34% 4.49%
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Conclusion

Q: Are there empirical reasons to think BoMC might be provably
better than Christofides’ algorithm?

A: Yes.
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The Big Open Questions

• Beat 3
2 for TSP

• Achieve 3
2 for s-t path TSP

• Achieve 4
3 for graph TSP
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The End


