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s-t path TSP

Recall the s-t path TSP:
Usual TSP input plus s, t ∈ V , find a min-cost path from s to t
visiting all other nodes in between (an s-t Hamiltonian path).
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Eulerian path
There is an Eulerian path that starts at s, ends at t, and visits
every edge exactly once iff s and t have odd-degree and all other
vertices have even degree.
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Hoogeveen’s algorithm
Let F be the min-cost spanning tree. Let T be the set of vertices
whose parity needs changing: s iff s has even degree in F , t iff t
has even degree in F , and v 6= s, t iff v has odd degree. Then find
a minimum-cost perfect matching M on the vertices in T . Find
Eulerian path on F ∪M; shortcut to an s-t Hamiltonian path.
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T -joins

Rather than a minimum-cost perfect matching on T , will construct
a minimum-cost T-join: a set of edges that has odd degree at
every vertex in T , even degree at every vertex not in T .
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Hoogeveen’s algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices
whose parity needs changing. Then find a minimum-cost T -join J .
Find Eulerian path on F ∪ J ; shortcut to an s-t Hamiltonian path.

Theorem
Hoogeveen’s algorithm is a 5

3 -approximation algorithm.
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Proof of theorem
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Tight Example

The analysis is tight. Consider the graph TSP instance below: cost
c(e) for e = (i , j) is number of edges in shortest i-j path in graph.
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Improvements

No improvement on Hoogeveen’s algorithm for s-t path TSP, until
just the last few years.

An, Kleinberg, Shmoys 2012 1.618
Sebő 2013 1.6
Vygen 2015 1.599
Gottschalk and Vygen 2015 1.56
Sebő and Van Zuylen 2016 1.52

Goal: Understand the An et al. algorithm and analysis; will sketch
some of the ideas of the improvements.
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A Linear Programming Relaxation

Min
∑
e∈E

cexe

subject to: x(δ(v)) =
{

1, v = s, t,
2, v 6= s, t,

x(δ(S)) ≥
{

1, |S ∩ {s, t}| = 1,
2, |S ∩ {s, t}| 6= 1,

0 ≤ xe ≤ 1, ∀e ∈ E ,

where δ(S) is the set of edges with exactly one endpoint in S, and
x(E ′) ≡

∑
e∈E ′ xe .
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The spanning tree polytope

The spanning tree polytope (convex hull of all spanning trees) is
defined by the following inequalities:

x(E ) = |V | − 1,
x(E (S)) ≤ |S| − 1, ∀|S| ⊆ V , |S| ≥ 2,
x(e) ≥ 0, ∀e ∈ E ,

where E (S) is the set of all edges with both endpoints in S.

S
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The LP relaxation and spanning trees

Lemma
Any solution x feasible for the s-t path TSP LP relaxation is in the
spanning tree polytope.



David P. Williamson Recent Progress for the TSP

Proof

x(δ(v)) =
{

1, v = s, t,
2, v 6= s, t,

x(δ(S)) ≥
{

1, |S ∩ {s, t}| = 1,
2, |S ∩ {s, t}| 6= 1,

0 ≤ x(e) ≤ 1, ∀e ∈ E .

x(E) = |V | − 1,
x(E(S)) ≤ |S| − 1, ∀|S| ⊆ V , |S| ≥ 2,

x(e) ≥ 0, ∀e ∈ E .
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A warmup to the improvements

Let OPTLP be the value of an optimal solution x∗ to the LP
relaxation.

Theorem (An, Kleinberg, Shmoys (2012))
Hoogeveen’s algorithm returns a solution of cost at most 5

3OPTLP .
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An extremely useful lemma

Let F be a spanning tree, and let T be the vertices whose parity
needs fixing in F .

Definition
S is an odd set if |S ∩ T | is odd.

Lemma
Let S be an odd set. If |S ∩ {s, t}| = 1, then |F ∩ δ(S)| is even. If
|S ∩ {s, t}| 6= 1, then |F ∩ δ(S)| is odd.
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|S ∩ {s, t}| 6= 1, then |F ∩ δ(S)| is odd.
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Proof of lemma

S

∑
v∈S

degF (v) = 2|E (S) ∩ F |+ |δ(S) ∩ F |
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T -join LP

The solution to the following linear program is the minimum-cost
T -join for costs c ≥ 0:

Min
∑
e∈E

cexe

subject to: x(δ(S)) ≥ 1, ∀S ⊆ V , |S ∩ T | odd
xe ≥ 0, ∀e ∈ E .

S

∑
v∈S

degJ(v) = 2|E (S) ∩ J |+ |δ(S) ∩ J |
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Proof of theorem

Theorem (An, Kleinberg, Shmoys (2012))
Hoogeveen’s algorithm returns a solution of cost at most 5

3OPTLP .

Lemma
Let S be an odd set. If |S ∩ {s, t}| = 1, then |F ∩ δ(S)| is even. If
|S ∩ {s, t}| 6= 1, then |F ∩ δ(S)| is odd.

Min
∑
e∈E

c(e)x(e)

x(δ(S)) ≥ 1, ∀S ⊆ V , |S ∩ T | odd
x(e) ≥ 0, ∀e ∈ E .
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Convex combination

Let x∗ be an optimal LP solution. Let χF be the characteristic
vector of a set of edges F , so that

χF (e) =
{

1 e ∈ F
0 e /∈ F

Since x∗ is in the spanning tree polytope, can write x∗ as a convex
combination of spanning trees F1, . . . ,Fk :

x∗ =
k∑

i=1
λiχFi ,

such that
∑k

i=1 λi = 1, λi ≥ 0.
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Best-of-Many Christofides’ Algorithm

An, Kleinberg, Shmoys (2012) propose the Best-of-Many
Christofides’ algorithm: given optimal LP solution x∗, compute
convex combination of spanning trees

x∗ =
k∑

i=1
λiχFi .

For each spanning tree Fi , let Ti be the set of vertices whose parity
needs fixing, let Ji be the minimum-cost Ti -join. Find s-t
Hamiltonian path by shortcutting Fi ∪ Ji . Return the shortest path
found over all i .
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Best-of-Many Christofides’ Algorithm

x∗ =
k∑

i=1
λiχFi .

For each spanning tree Fi , let Ti be the set of vertices whose parity
needs fixing, Ji be the minimum-cost Ti -join. Find s-t Hamiltonian
path by shortcutting Fi ∪ Ji . Return the shortest path found over
all i .

Theorem
The Best-of-Many Christofides’ algorithm returns a solution of cost
at most 5

3OPTLP .
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Proof
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Improvement?

To do better, we need to improve the analysis for the costs of the
Ti -joins; recall that we use that

yi = 1
3χFi + 1

3x
∗

is feasible for the Ti -join LP.

Consider
yi = αχFi + βx∗.

Then the cost of the best s-t Hamiltonian path is at most

(1 + α+ β)OPTLP .
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Improvement?

Proof that yi feasible for Ti -join LP had two cases. Assume S odd
(|S ∩ Ti | odd).

If |S ∩ {s, t}| 6= 1, then

yi(δ(S)) = α|Fi ∩ δ(S)|+ βx∗(δ(S)) ≥ α+ 2β.

We will want α+ 2β ≥ 1, so the Ti -join LP constraint is satisfied.
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Improvement?

If |S ∩ {s, t}| = 1, then

yi(δ(S)) = α|Fi ∩ δ(S)|+ βx∗(δ(S)) ≥ 2α+ βx∗(δ(S)).

Since we assume α+ 2β ≥ 1, we only run into problems if

x∗(δ(S)) < 1− 2α
β

.

Note that α = 0, β = 1
2 works if x∗(δ(S)) ≥ 2 for all S ⊂ V , and

gives a tour of cost at most 3
2OPTLP .

So focus on cuts for which x∗(δ(S)) < 2, and add an extra
“correction” term to yi to handle these cuts.
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τ -Narrow Cuts

Definition
S is τ -narrow if x∗(δ(S)) < 1 + τ for fixed τ ≤ 1.

Only S such that |S ∩ {s, t}| = 1 are τ -narrow.

Definition
Let Cτ be all τ -narrow cuts S with s ∈ S.
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τ -Narrow Cuts

The τ -narrow cuts in Cτ have a nice structure.

Theorem (An, Kleinberg, Shmoys (2012))
If S1, S2 ∈ Cτ , S1 6= S2, then either S1 ⊂ S2 or S2 ⊂ S1.
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First need to show that

x∗(δ(S1)) + x∗(δ(S2)) ≥ x∗(δ(S1 − S2)) + x∗(δ(S2 − S1)).

S1 S2
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Proof of theorem

Theorem (An, Kleinberg, Shmoys (2012))
If S1, S2 ∈ Cτ , S1 6= S2, then either S1 ⊂ S2 or S2 ⊂ S1.

So the τ -narrow cuts look like s ∈ Q1 ⊂ Q2 ⊂ · · · ⊂ Qk ⊂ V .

s . . . t
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Correction Factor

Let eQ be the minimum-cost edge in δ(Q). Then consider the
following (from Gao (2014)):

yi = αχFi + βx∗ +
∑

Q∈Cτ ,|Q∩Ti | odd
(1− 2α− βx∗(δ(Q)))χeQ

for α, β, τ ≥ 0 such that

α+ 2β = 1 and τ = 1− 2α
β

− 1.

Theorem
yi is feasible for the Ti -join LP.
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Proof
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Two Lemmas

Recall x∗ =
∑k

i=1 λiχFi , with
∑k

i=1 λi = 1 and λi ≥ 0. So λi is a
probability distribution on the trees Fi ; probability of Fi is λi .

Lemma
Let F be a randomly sampled tree Fi , and T the corresponding
vertices Ti . Let Q ∈ Cτ be a τ -narrow cut. Then

Pr[|δ(Q) ∩ F| = 1] ≥ 2− x∗(δ(Q))
Pr[|Q ∩ T | odd] ≤ x∗(δ(Q))− 1.
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Two Lemmas
Recall eQ is the cheapest edge crossing a τ -narrow cut Q ∈ Cτ .

Lemma ∑
Q∈Cτ

ceQ ≤
∑
e∈E

cex∗e .

s

Q1 Q2

v . . . t
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An-Kleinberg-Shmoys

Theorem (An, Kleinberg, and Shmoys (2012))

Best-of-Many Christofides’ is a 1+
√

5
2 -approximation algorithm for

s-t path TSP.
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Proof of AKS
For the proof, recall that eQ is min-cost edge in δ(Q), Cτ are the
cuts Q with x∗(δ(Q)) < 1 + τ ,

yi = αχFi + βx∗ +
∑

Q∈Cτ ,|Q∩Ti | odd
(1− 2α− βx∗(δ(Q)))χeQ

is feasible for the Ti -join LP, and

Lemma
Let F be a randomly sampled tree Fi , and T the corresponding
vertices Ti . Let Q ∈ Cτ be a τ -narrow cut. Then

Pr[|δ(Q) ∩ F| = 1] ≥ 2− x∗(δ(Q))
Pr[|Q ∩ T | odd] ≤ x∗(δ(Q))− 1.

Lemma ∑
Q∈Cτ

ceQ ≤
∑
e∈E

cex∗e .
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Next time

A 3
2 -approximation algorithm for s-t TSP path in graph TSP

instances.


