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US 42 cities
From Bill Cook’s site at the University of Waterloo
(www.math.uwaterloo.ca/tsp)

Solved by Dantzig, Fulkerson, and Johnson (1954) using linear
programming.
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US 33 cities

Proctor and Gamble contest in 1962.
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Germany 120 cities

Solved by Grötschel (1977).
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World tour 666 cities

Solved by Grötschel and Holland (1987).
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Brazil closeup
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Germany 15112 cities

Solved by Applegate, Bixby, Chvat́al, and Cook (2001)).
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Sweden 24978 cities

Solved by Applegate, Bixby, Chvat́al, Cook, and Helsgaun (2004).
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Book
To learn more about the history of the TSP, read
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Graph TSP

Recall Graph TSP: Input is connected graph G = (V ,E ) and cost
c(i , j) is number of edges in shortest path from i to j in G .
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Graph TSP

There has been recent progress on the case of graph TSP.

Oveis Gharan, Saberi, Singh 2010 3/2− ε
Mömke, Svensson 2011 1.461
Mömke, Svensson 2011 4/3 if graph subcubic
Mucha 2011 13/9
Sebő and Vygen 2012 1.4
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Another perspective

Equivalent problem: Find Eulerian multigraph of (V ,E ) with the
fewest number of edges. Recall Eulerian means every vertex has
even degree, and the graph is connected.

Given any tour, replace any non-edge (i , j) with all edges in the
shortest i-j path.
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Today

Theorem (Mömke, Svensson (2011))
If G is cubic and 2-vertex-connected, then there is a
4
3 -approximation algorithm for the Graph TSP.

Cubic means all vertices have degree three. 2-vertex-connected
means that removing any one vertex (and its incident edges) from
the graph does not disconnect the graph.
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Idea

First idea: Since all vertices are odd-degree, add a matching to G .
Then all vertices have even degree and G connected.
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Lemma

Lemma (Naddef, Pulleyblank (1981))
Given a 2-edge-connected, cubic graph G with costs c(e) on the
edges, there is a perfect matching of cost at most 1

3
∑

e∈E c(e).

Suppose we set c(e) = 1 for all e ∈ E . Then cost of the graph plus
matching is at most

|E |+ 1
3 |E | =
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Proof of Naddef-Pulleyblank lemma

Lemma (Naddef, Pulleyblank (1981))
Given a 2-edge-connected, cubic graph G with costs c(e) on the
edges, there is a perfect matching of cost at most 1

3
∑

e∈E c(e).

Recall that the minimum-cost perfect matching can be found as
the solution to the following LP:

Minimize
∑
e∈E

c(e)z(e)

z(δ(i)) = 1 ∀i ∈ V
z(δ(S)) ≥ 1 ∀S ⊂ V , |S| odd.

S
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Proof of the Naddef-Pulleyblank lemma

Lemma (Naddef, Pulleyblank (1981))
Given a 2-edge-connected, cubic graph G with costs c(e) on the
edges, there is a perfect matching of cost at most 1

3
∑

e∈E c(e).

Min
∑
e∈E

c(e)z(e)

z(δ(i)) = 1 ∀i ∈ V
z(δ(S)) ≥ 1 ∀S ⊂ V , |S| odd

z(e) ≥ 0 ∀e ∈ E .

S
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New idea

Key idea: Use matchings to figure out which edges to remove and
to add.
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Removable pairing

Definition (Mömke, Svensson (2011))
Given G 2-vertex connected, R ⊆ E removable edges, P ⊆ R × R
is a removable pairing if:

• Any edge is in at most one pair of P;
• Edges in a pair have a common endpoint of degree at least 3;
• If we remove edges in R from G with at most one edge per
pair in P removed, the resulting graph is still connected.
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Theorem

Theorem (Mömke, Svensson (2011))
Given a removable pairing (R,P) and G 2-vertex-connected and
cubic, there is an Eulerian multigraph with at most 4

3 |E | −
2
3 |R|

edges.

Idea: Take the graph, compute a perfect matching. If matching
edge is in R, remove it, otherwise add it.
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Theorem

Theorem (Mömke, Svensson (2011))
Given a removable pairing (R,P) and G 2-vertex-connected and
cubic, there is an Eulerian multigraph with at most 4

3 |E | −
2
3 |R|

edges.

Proof of second claim: At most 4
3 |E | −

2
3 |R| edges.
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Theorem

Theorem (Mömke, Svensson (2011))
Given a removable pairing (R,P) and G 2-vertex-connected and
cubic, there is an Eulerian multigraph with at most 4

3 |E | −
2
3 |R|

edges.

Proof of first claim: Result is connected and has even degree at all
nodes.
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Final Lemma

Lemma (Mömke, Svensson (2011))
In any cubic, 2-vertex-connected graph G, there is a removable
pairing (R,P) with |R| ≥ |V |.

Therefore, we can find an Eulerian graph with total number of
edges at most

4
3 |E | −

2
3 |R| =
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Proof of final lemma

Lemma (Mömke, Svensson (2011))
In any cubic, 2-vertex-connected graph G, there is a removable
pairing (R,P) with |R| ≥ |V |.

Start by considering a depth-first search tree T of the graph G .
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Proof of final lemma

For each back edge (u,w) with u the ancestor of w , tree edge
(u, v), make (u,w) and (u, v) a removable pair. For root put only
one back edge in the pair.

u
v

w
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Proof of final lemma

For each back edge (u,w) with u the ancestor of w , tree edge
(u, v), make (u,w) and (u, v) a removable pair. For root put only
one back edge in the pair.
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Definition again

Definition (Mömke, Svensson (2011))
Given G 2-vertex connected, R ⊆ E removable edges, P ⊆ R × R
is a removable pairing if:

• Any edge is in at most one pair of P;
• Edges in a pair have a common endpoint of degree at least 3;
• If we remove edges in R from G with at most one edge per
pair in P removed, the resulting graph is still connected.



David P. Williamson Recent Progress for the TSP

Proof of final lemma

Number of back edges is

|R| =
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Proof of final lemma

Need to show that G stays connected if we remove at most one
edge per pair. Prove by induction bottom up on subtrees; let Tu
be subtree rooted at vertex u.

Case 1: u has two children v and w , one parent in T .
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Proof of final lemma

Need to show that G stays connected if we remove at most one
edge per pair. Prove by induction bottom up on subtrees; let Tu
be subtree rooted at vertex u.

Case 2: u has one child v , one parent in T .
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Extensions

Mömke and Svensson (2011) show that the same ideas can be
extended to:

• a 4
3 -approximation algorithm for subcubic graphs (all degrees

at most 3)
• a 1.461-approximation algorithm for all graphs (improved by
Mucha (2012) to 13

9 )

Sebő and Vygen (2012) add some new ideas and get a
1.4-approximation algorithm.
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