
Recent Progress in Approximation Algorithms for
the Traveling Salesman Problem

Lecture 1: Some basic algorithms

David P. Williamson
Cornell University

July 18-22, 2016
São Paulo School of Advanced Science on

Algorithms, Combinatorics, and Optimization

David P. Williamson Recent Progress for the TSP

The traveling salesman problem

Traveling Salesman Problem (TSP)
Input:

• A complete, undirected graph G = (V ,E);
• Edge costs c(e) ≡ c(i , j) ≥ 0 for all e = (i , j) ∈ E .

Goal: Find the min-cost tour that visits each city exactly once.

Costs are symmetric (c(i , j) = c(j , i)) and obey the triangle
inequality (c(i , k) ≤ c(i , j) + c(j , k)).

Asymmetric TSP (ATSP) input has complete directed graph, and
c(i , j) may not equal c(j , i).

David P. Williamson Recent Progress for the TSP

ATSP example

Example due to Ola Svensson (EPFL)

David P. Williamson Recent Progress for the TSP

The traveling salesman problem

From Bill Cook, tour of 647 US colleges
(www.math.uwaterloo.ca/tsp/college)

David P. Williamson Recent Progress for the TSP

The traveling salesman problem

From Bill Cook, tour of 647 US colleges
(www.math.uwaterloo.ca/tsp/college)

David P. Williamson Recent Progress for the TSP

Approximation Algorithms

Definition
An α-approximation algorithm is a polynomial-time algorithm that
returns a solution of cost at most α times the cost of an optimal
solution.

David P. Williamson Recent Progress for the TSP

A simple approximation algorithm for TSP
• Compute a minimum spanning tree (MST) F on G.

• Double every edge in F . The result is an Eulerian graph: it is
connected, and every vertex has even degree.

• An Eulerian graph has an traversal that is easy to compute; it
starts at any vertex v , visits every edge, and returns to v .

• Compute the traversal, and follow it; if the next edge goes
back to a previously visited vertex, shortcut it, and go on to
the next vertex in the traversal.

David P. Williamson Recent Progress for the TSP

A simple approximation algorithm for TSP
• Compute a minimum spanning tree (MST) F on G.

• Double every edge in F . The result is an Eulerian graph: it is
connected, and every vertex has even degree.

• An Eulerian graph has an traversal that is easy to compute; it
starts at any vertex v , visits every edge, and returns to v .

• Compute the traversal, and follow it; if the next edge goes
back to a previously visited vertex, shortcut it, and go on to
the next vertex in the traversal.

David P. Williamson Recent Progress for the TSP

A simple approximation algorithm for TSP
• Compute a minimum spanning tree (MST) F on G.
• Double every edge in F . The result is an Eulerian graph: it is
connected, and every vertex has even degree.

• An Eulerian graph has an traversal that is easy to compute; it
starts at any vertex v , visits every edge, and returns to v .

• Compute the traversal, and follow it; if the next edge goes
back to a previously visited vertex, shortcut it, and go on to
the next vertex in the traversal.

David P. Williamson Recent Progress for the TSP

A simple approximation algorithm for TSP
• Compute a minimum spanning tree (MST) F on G.
• Double every edge in F . The result is an Eulerian graph: it is
connected, and every vertex has even degree.

• An Eulerian graph has an traversal that is easy to compute; it
starts at any vertex v , visits every edge, and returns to v .

• Compute the traversal, and follow it; if the next edge goes
back to a previously visited vertex, shortcut it, and go on to
the next vertex in the traversal.

David P. Williamson Recent Progress for the TSP

A simple approximation algorithm for TSP
• Compute a minimum spanning tree (MST) F on G.
• Double every edge in F . The result is an Eulerian graph: it is
connected, and every vertex has even degree.

• An Eulerian graph has an traversal that is easy to compute; it
starts at any vertex v , visits every edge, and returns to v .

• Compute the traversal, and follow it; if the next edge goes
back to a previously visited vertex, shortcut it, and go on to
the next vertex in the traversal.

David P. Williamson Recent Progress for the TSP

A simple approximation algorithm for TSP
• Compute a minimum spanning tree (MST) F on G.
• Double every edge in F . The result is an Eulerian graph: it is
connected, and every vertex has even degree.

• An Eulerian graph has an traversal that is easy to compute; it
starts at any vertex v , visits every edge, and returns to v .

• Compute the traversal, and follow it; if the next edge goes
back to a previously visited vertex, shortcut it, and go on to
the next vertex in the traversal.

David P. Williamson Recent Progress for the TSP

A simple approximation algorithm for TSP
• Compute a minimum spanning tree (MST) F on G.
• Double every edge in F . The result is an Eulerian graph: it is
connected, and every vertex has even degree.

• An Eulerian graph has an traversal that is easy to compute; it
starts at any vertex v , visits every edge, and returns to v .

• Compute the traversal, and follow it; if the next edge goes
back to a previously visited vertex, shortcut it, and go on to
the next vertex in the traversal.

David P. Williamson Recent Progress for the TSP

A simple approximation algorithm for TSP
• Compute a minimum spanning tree (MST) F on G.
• Double every edge in F . The result is an Eulerian graph: it is
connected, and every vertex has even degree.

• An Eulerian graph has an traversal that is easy to compute; it
starts at any vertex v , visits every edge, and returns to v .

• Compute the traversal, and follow it; if the next edge goes
back to a previously visited vertex, shortcut it, and go on to
the next vertex in the traversal.

David P. Williamson Recent Progress for the TSP

Theorem

Theorem
This algorithm is a 2-approximation algorithm for the TSP.

Let c(F) be the cost of the edges in the MST. Let OPT be the
cost of the optimal tour.

Lemma

c(F) ≤ OPT .

Proof.

David P. Williamson Recent Progress for the TSP

Proof of Theorem

Proof.
The cost of the tour given by the algorithm is at most
2c(F) ≤ 2OPT .

Next: a better approximation algorithm due to Christofides (1976).

David P. Williamson Recent Progress for the TSP

Proof of Theorem

Proof.
The cost of the tour given by the algorithm is at most
2c(F) ≤ 2OPT .

Next: a better approximation algorithm due to Christofides (1976).

David P. Williamson Recent Progress for the TSP

Christofides’ algorithm
• Compute minimum spanning tree (MST) F on G

• Compute a minimum-cost perfect matching M on odd-degree
vertices of F

• “Shortcut” Eulerian traversal in resulting Eulerian graph of
F ∪M

David P. Williamson Recent Progress for the TSP

Christofides’ algorithm
• Compute minimum spanning tree (MST) F on G

• Compute a minimum-cost perfect matching M on odd-degree
vertices of F

• “Shortcut” Eulerian traversal in resulting Eulerian graph of
F ∪M

David P. Williamson Recent Progress for the TSP

Christofides’ algorithm
• Compute minimum spanning tree (MST) F on G
• Compute a minimum-cost perfect matching M on odd-degree
vertices of F

• “Shortcut” Eulerian traversal in resulting Eulerian graph of
F ∪M

David P. Williamson Recent Progress for the TSP

Christofides’ algorithm
• Compute minimum spanning tree (MST) F on G
• Compute a minimum-cost perfect matching M on odd-degree
vertices of F

• “Shortcut” Eulerian traversal in resulting Eulerian graph of
F ∪M

David P. Williamson Recent Progress for the TSP

Christofides’ algorithm
• Compute minimum spanning tree (MST) F on G
• Compute a minimum-cost perfect matching M on odd-degree
vertices of F

• “Shortcut” Eulerian traversal in resulting Eulerian graph of
F ∪M

David P. Williamson Recent Progress for the TSP

Christofides’ algorithm
• Compute minimum spanning tree (MST) F on G
• Compute a minimum-cost perfect matching M on odd-degree
vertices of F

• “Shortcut” Eulerian traversal in resulting Eulerian graph of
F ∪M

David P. Williamson Recent Progress for the TSP

Christofides’ algorithm
• Compute minimum spanning tree (MST) F on G
• Compute a minimum-cost perfect matching M on odd-degree
vertices of F

• “Shortcut” Eulerian traversal in resulting Eulerian graph of
F ∪M

David P. Williamson Recent Progress for the TSP

Christofides’ algorithm
• Compute minimum spanning tree (MST) F on G
• Compute a minimum-cost perfect matching M on odd-degree
vertices of F

• “Shortcut” Eulerian traversal in resulting Eulerian graph of
F ∪M

David P. Williamson Recent Progress for the TSP

Theorem

Theorem
Christofides’ algorithm is a 3

2 -approximation algorithm for the TSP.

Let c(F) be the cost of the edges in the MST, c(M) the cost of the
edges in the matching Let OPT be the cost of the optimal tour.

Lemma

c(F) ≤ OPT .

Lemma

c(M) ≤ 1
2OPT .

Then the cost of the algorithm’s tour is at most

c(F) + c(M) ≤ OPT + 1
2OPT = 3

2OPT .

David P. Williamson Recent Progress for the TSP

Proof of Lemma

David P. Williamson Recent Progress for the TSP

Proof of Lemma

David P. Williamson Recent Progress for the TSP

Proof of Lemma

David P. Williamson Recent Progress for the TSP

Linear programs

A tool we’ll start using frequently: integer and linear programming.
We want to devise an integer program for the traveling salesman
problem.

For each edge e ∈ E , we introduce a decision variable xe , in which
we want

x(e) =
{

1 if tour uses edge e
0 otherwise

Then our objective function is to

Minimize
∑
e∈E

c(e)x(e).

David P. Williamson Recent Progress for the TSP

Linear programs

A tool we’ll start using frequently: integer and linear programming.
We want to devise an integer program for the traveling salesman
problem.

For each edge e ∈ E , we introduce a decision variable xe , in which
we want

x(e) =
{

1 if tour uses edge e
0 otherwise

Then our objective function is to

Minimize
∑
e∈E

c(e)x(e).

David P. Williamson Recent Progress for the TSP

Linear programs

A tool we’ll start using frequently: integer and linear programming.
We want to devise an integer program for the traveling salesman
problem.

For each edge e ∈ E , we introduce a decision variable xe , in which
we want

x(e) =
{

1 if tour uses edge e
0 otherwise

Then our objective function is to

Minimize
∑
e∈E

c(e)x(e).

David P. Williamson Recent Progress for the TSP

Initial constraint
Let δ(i) represent the set of all edges e that have i ∈ V as one
endpoint. Then we want ∑

e∈δ(i)
x(e) = 2

for all i ∈ V .

An initial integer programming formulation of the problem is then:

Minimize
∑
e∈E

c(e)x(e)

subject to: ∑
e∈δ(i)

x(e) = 2 ∀i ∈ V ,

x(e) ∈ {0, 1} ∀e ∈ E .

What might be a problem with this formulation?

David P. Williamson Recent Progress for the TSP

Initial constraint
Let δ(i) represent the set of all edges e that have i ∈ V as one
endpoint. Then we want ∑

e∈δ(i)
x(e) = 2

for all i ∈ V .

An initial integer programming formulation of the problem is then:

Minimize
∑
e∈E

c(e)x(e)

subject to: ∑
e∈δ(i)

x(e) = 2 ∀i ∈ V ,

x(e) ∈ {0, 1} ∀e ∈ E .

What might be a problem with this formulation?

David P. Williamson Recent Progress for the TSP

Initial constraint
Let δ(i) represent the set of all edges e that have i ∈ V as one
endpoint. Then we want ∑

e∈δ(i)
x(e) = 2

for all i ∈ V .

An initial integer programming formulation of the problem is then:

Minimize
∑
e∈E

c(e)x(e)

subject to: ∑
e∈δ(i)

x(e) = 2 ∀i ∈ V ,

x(e) ∈ {0, 1} ∀e ∈ E .

What might be a problem with this formulation?

David P. Williamson Recent Progress for the TSP

Initial IP

Minimize
∑
e∈E

c(e)x(e)

subject to: ∑
e∈δ(i)

x(e) = 2 ∀i ∈ V

x(e) ∈ {0, 1} ∀e ∈ E .

The following solution is feasible:

David P. Williamson Recent Progress for the TSP

Subtour elimination constraints

For S ⊆ V , let δ(S) be the set of edges with one endpoint in S.

S

Then we want that ∑
e∈δ(S)

x(e) ≥ 2

for any set S.

David P. Williamson Recent Progress for the TSP

LP relaxation

David P. Williamson Recent Progress for the TSP

LP relaxation

David P. Williamson Recent Progress for the TSP

LP relaxation

David P. Williamson Recent Progress for the TSP

LP relaxation

David P. Williamson Recent Progress for the TSP

Subtour LP
Thus an initial integer programming formulation is

Minimize
∑
e∈E

c(e)x(e)

subject to: ∑
e∈δ(i)

x(e) = 2 ∀i ∈ V

∑
e∈δ(S)

x(e) ≥ 2 ∀S ⊂ V , S 6= ∅

x(e) ∈ {0, 1} ∀e ∈ E .

Replace x(e) ∈ {0, 1} by 0 ≤ x(e) ≤ 1 to obtain a linear
programming relaxation called the Subtour LP.
If OPTIP is value of IP optimal, OPTLP value of LP optimal, how
do they compare?

OPTLP ≤ OPTIP .

David P. Williamson Recent Progress for the TSP

Subtour LP
Thus an initial integer programming formulation is

Minimize
∑
e∈E

c(e)x(e)

subject to: ∑
e∈δ(i)

x(e) = 2 ∀i ∈ V

∑
e∈δ(S)

x(e) ≥ 2 ∀S ⊂ V , S 6= ∅

x(e) ∈ {0, 1} ∀e ∈ E .

Replace x(e) ∈ {0, 1} by 0 ≤ x(e) ≤ 1 to obtain a linear
programming relaxation called the Subtour LP.

If OPTIP is value of IP optimal, OPTLP value of LP optimal, how
do they compare?

OPTLP ≤ OPTIP .

David P. Williamson Recent Progress for the TSP

Subtour LP
Thus an initial integer programming formulation is

Minimize
∑
e∈E

c(e)x(e)

subject to: ∑
e∈δ(i)

x(e) = 2 ∀i ∈ V

∑
e∈δ(S)

x(e) ≥ 2 ∀S ⊂ V , S 6= ∅

x(e) ∈ {0, 1} ∀e ∈ E .

Replace x(e) ∈ {0, 1} by 0 ≤ x(e) ≤ 1 to obtain a linear
programming relaxation called the Subtour LP.
If OPTIP is value of IP optimal, OPTLP value of LP optimal, how
do they compare?

OPTLP ≤ OPTIP .

David P. Williamson Recent Progress for the TSP

Subtour LP
Thus an initial integer programming formulation is

Minimize
∑
e∈E

c(e)x(e)

subject to: ∑
e∈δ(i)

x(e) = 2 ∀i ∈ V

∑
e∈δ(S)

x(e) ≥ 2 ∀S ⊂ V , S 6= ∅

x(e) ∈ {0, 1} ∀e ∈ E .

Replace x(e) ∈ {0, 1} by 0 ≤ x(e) ≤ 1 to obtain a linear
programming relaxation called the Subtour LP.
If OPTIP is value of IP optimal, OPTLP value of LP optimal, how
do they compare?

OPTLP ≤ OPTIP .

David P. Williamson Recent Progress for the TSP

Subtour LP

We’ll sometimes use the shorthand x(F) =
∑

e∈F x(e), or
c(F) =

∑
e∈F c(e). For example, rewrite LP as

Minimize
∑
e∈E

c(e)x(e)

subject to:
x(δ(i)) = 2 ∀i ∈ V
x(δ(S)) ≥ 2 ∀S ⊂ V ,S 6= ∅
0 ≤ x(e) ≤ 1 ∀e ∈ E .

David P. Williamson Recent Progress for the TSP

Equivalent constraints

An equivalent way to write the subtour elimination constraints is
via a constraint that says no cycles in any strict subset. Let E (S)
be the set of edges with both endpoints in S; then

x(E (S)) ≤ |S| − 1

for all S ⊂ V , |S| ≥ 2.

S

David P. Williamson Recent Progress for the TSP

Equivalent LP

So an LP that’s equivalent to the subtour LP is the following:

Minimize
∑
e∈E

c(e)x(e)

subject to:
x(δ(i)) = 2 ∀i ∈ V
x(E (S)) ≤ |S| − 1 ∀S ⊂ V , |S| ≥ 2
0 ≤ x(e) ≤ 1 ∀e ∈ E .

David P. Williamson Recent Progress for the TSP

Christofides’ again
Let OPTLP be the optimal value of the linear programming. We
can now (almost) prove the following.

Theorem (Wolsey (1980), Shmoys, W (1990))
Christofides’ algorithm returns a tour of cost at most 3

2OPTLP .

To prove this, we need to show that for MST F and matching M
on odd-degree vertices,

Lemma

c(F) ≤ OPTLP

Lemma

c(M) ≤ 1
2OPTLP

David P. Williamson Recent Progress for the TSP

Christofides’ again
Let OPTLP be the optimal value of the linear programming. We
can now (almost) prove the following.

Theorem (Wolsey (1980), Shmoys, W (1990))
Christofides’ algorithm returns a tour of cost at most 3

2OPTLP .

To prove this, we need to show that for MST F and matching M
on odd-degree vertices,

Lemma

c(F) ≤ OPTLP

Lemma

c(M) ≤ 1
2OPTLP

David P. Williamson Recent Progress for the TSP

Proof of first lemma
The minimum spanning tree can be found as the solution to the
following LP (Edmonds 1971):

Minimize
∑
e∈E

c(e)z(e)

subject to:
z(E) = |V | − 1
z(E (S)) ≤ |S| − 1 ∀S ⊂ V , |S| ≥ 2
z(e) ≥ 0 ∀e ∈ E .

S

David P. Williamson Recent Progress for the TSP

Proof of first lemma

c(F) ≤ OPTLP

Min
∑
e∈E

c(e)x(e)

x(δ(i)) = 2 ∀i ∈ V
x(E(S)) ≤ |S| − 1 ∀S ⊂ V , |S| ≥ 2
0 ≤ x(e) ≤ 1 ∀e ∈ E .

Min
∑
e∈E

c(e)z(e)

z(E) = |V | − 1
z(E(S)) ≤ |S| − 1 ∀S ⊂ V , |S| ≥ 2

z(e) ≥ 0 ∀e ∈ E .

David P. Williamson Recent Progress for the TSP

Proof of second lemma
The minimum-cost perfect matching can be found as the solution
to the following LP (Edmonds 1965):

Minimize
∑
e∈E

c(e)z(e)

subject to:
z(δ(i)) = 1 ∀i ∈ V
z(δ(S)) ≥ 1 ∀S ⊂ V , |S| odd.

S

David P. Williamson Recent Progress for the TSP

Proof of second lemma

c(M) ≤ 1
2OPTLP

Min
∑
e∈E

c(e)x(e)

x(δ(i)) = 2 ∀i ∈ V
x(δ(S)) ≥ 2 ∀S ⊂ V , S 6= ∅

0 ≤ x(e) ≤ 1 ∀e ∈ E .

Min
∑
e∈E

c(e)z(e)

z(δ(i)) = 1 ∀i ∈ V
z(δ(S)) ≥ 1 ∀S ⊂ V , |S| odd

z(e) ≥ 0 ∀e ∈ E .

David P. Williamson Recent Progress for the TSP

Missing part

We also need that the value of the subtour LP can only go down
as we remove vertices from the instance (Shmoys, W 1990), so
that we can consider a matching only on the odd-degree vertices.

Theorem

c(F) + c(M) ≤ 3
2OPTLP ,

so that Christofides’ algorithm returns a solution of cost at most
this much.

David P. Williamson Recent Progress for the TSP

Missing part

We also need that the value of the subtour LP can only go down
as we remove vertices from the instance (Shmoys, W 1990), so
that we can consider a matching only on the odd-degree vertices.

Theorem

c(F) + c(M) ≤ 3
2OPTLP ,

so that Christofides’ algorithm returns a solution of cost at most
this much.

David P. Williamson Recent Progress for the TSP

Update

“But I thought you were going to talk about recent approximation
algorithms for the traveling salesman problem...”

For TSP, no better approximation algorithm known that
Christofides’ algorithm.

David P. Williamson Recent Progress for the TSP

Update

“But I thought you were going to talk about recent approximation
algorithms for the traveling salesman problem...”

For TSP, no better approximation algorithm known that
Christofides’ algorithm.

David P. Williamson Recent Progress for the TSP

Graph TSP

Progress made for two different special cases: graph TSP and the
s-t path TSP.

Graph TSP: Input is connected graph G = (V ,E) and cost c(i , j)
is number of edges in shortest path from i to j in G .

Oveis Gharan, Saberi, Singh 2010 3/2− ε
Mömke, Svensson 2011 1.461
Mömke, Svensson 2011 4/3 if graph subcubic
Mucha 2011 13/9
Sebő and Vygen 2012 1.4

David P. Williamson Recent Progress for the TSP

Graph TSP

Progress made for two different special cases: graph TSP and the
s-t path TSP.

Graph TSP: Input is connected graph G = (V ,E) and cost c(i , j)
is number of edges in shortest path from i to j in G .

Oveis Gharan, Saberi, Singh 2010 3/2− ε
Mömke, Svensson 2011 1.461
Mömke, Svensson 2011 4/3 if graph subcubic
Mucha 2011 13/9
Sebő and Vygen 2012 1.4

David P. Williamson Recent Progress for the TSP

s-t path TSP

The s-t path TSP:
Usual TSP input plus s, t ∈ V , find a min-cost path from s to t
visiting all other nodes in between (an s-t Hamiltonian path).

Hoogeveen (1991) shows that the natural variant of Christofides’
algorithm gives a 5

3 -approximation algorithm.

An, Kleinberg, Shmoys 2012 1.618
Sebő 2013 1.6
Vygen 2015 1.599
Gottschalk and Vygen 2015 1.56
Sebő and Van Zuylen 2016 1.52

David P. Williamson Recent Progress for the TSP

s-t path TSP

The s-t path TSP:
Usual TSP input plus s, t ∈ V , find a min-cost path from s to t
visiting all other nodes in between (an s-t Hamiltonian path).

Hoogeveen (1991) shows that the natural variant of Christofides’
algorithm gives a 5

3 -approximation algorithm.

An, Kleinberg, Shmoys 2012 1.618
Sebő 2013 1.6
Vygen 2015 1.599
Gottschalk and Vygen 2015 1.56
Sebő and Van Zuylen 2016 1.52

David P. Williamson Recent Progress for the TSP

Agenda

For the rest of the week:

Wednesday: Graph TSP (4/3 for cubic, 2-vertex-connected graphs)
Thursday: s-t path TSP
Friday: s-t path TSP for graph TSP, open questions

	Introduction

