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The traveling salesman problem

Traveling Salesman Problem (TSP)
Input:

• A complete, undirected graph G = (V ,E );
• Edge costs c(e) ≡ c(i , j) ≥ 0 for all e = (i , j) ∈ E .

Goal: Find the min-cost tour that visits each city exactly once.

Costs are symmetric (c(i , j) = c(j , i)) and obey the triangle
inequality (c(i , k) ≤ c(i , j) + c(j , k)).

Asymmetric TSP (ATSP) input has complete directed graph, and
c(i , j) may not equal c(j , i).
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ATSP example

Example due to Ola Svensson (EPFL)
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The traveling salesman problem

From Bill Cook, tour of 647 US colleges
(www.math.uwaterloo.ca/tsp/college)
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Approximation Algorithms

Definition
An α-approximation algorithm is a polynomial-time algorithm that
returns a solution of cost at most α times the cost of an optimal
solution.
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A simple approximation algorithm for TSP
• Compute a minimum spanning tree (MST) F on G.

• Double every edge in F . The result is an Eulerian graph: it is
connected, and every vertex has even degree.

• An Eulerian graph has an traversal that is easy to compute; it
starts at any vertex v , visits every edge, and returns to v .

• Compute the traversal, and follow it; if the next edge goes
back to a previously visited vertex, shortcut it, and go on to
the next vertex in the traversal.
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Theorem

Theorem
This algorithm is a 2-approximation algorithm for the TSP.

Let c(F ) be the cost of the edges in the MST. Let OPT be the
cost of the optimal tour.

Lemma

c(F ) ≤ OPT .

Proof.
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Proof of Theorem

Proof.
The cost of the tour given by the algorithm is at most
2c(F ) ≤ 2OPT .

Next: a better approximation algorithm due to Christofides (1976).
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Christofides’ algorithm
• Compute minimum spanning tree (MST) F on G

• Compute a minimum-cost perfect matching M on odd-degree
vertices of F

• “Shortcut” Eulerian traversal in resulting Eulerian graph of
F ∪M
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Theorem

Theorem
Christofides’ algorithm is a 3

2 -approximation algorithm for the TSP.

Let c(F ) be the cost of the edges in the MST, c(M) the cost of the
edges in the matching Let OPT be the cost of the optimal tour.

Lemma

c(F ) ≤ OPT .

Lemma

c(M) ≤ 1
2OPT .

Then the cost of the algorithm’s tour is at most

c(F ) + c(M) ≤ OPT + 1
2OPT = 3

2OPT .
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Proof of Lemma
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Linear programs

A tool we’ll start using frequently: integer and linear programming.
We want to devise an integer program for the traveling salesman
problem.

For each edge e ∈ E , we introduce a decision variable xe , in which
we want

x(e) =
{

1 if tour uses edge e
0 otherwise

Then our objective function is to

Minimize
∑
e∈E

c(e)x(e).
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Initial constraint
Let δ(i) represent the set of all edges e that have i ∈ V as one
endpoint. Then we want ∑

e∈δ(i)
x(e) = 2

for all i ∈ V .

An initial integer programming formulation of the problem is then:

Minimize
∑
e∈E

c(e)x(e)

subject to: ∑
e∈δ(i)

x(e) = 2 ∀i ∈ V ,

x(e) ∈ {0, 1} ∀e ∈ E .

What might be a problem with this formulation?
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Initial IP

Minimize
∑
e∈E

c(e)x(e)

subject to: ∑
e∈δ(i)

x(e) = 2 ∀i ∈ V

x(e) ∈ {0, 1} ∀e ∈ E .

The following solution is feasible:
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Subtour elimination constraints

For S ⊆ V , let δ(S) be the set of edges with one endpoint in S.

S

Then we want that ∑
e∈δ(S)

x(e) ≥ 2

for any set S.
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LP relaxation
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Subtour LP
Thus an initial integer programming formulation is

Minimize
∑
e∈E

c(e)x(e)

subject to: ∑
e∈δ(i)

x(e) = 2 ∀i ∈ V

∑
e∈δ(S)

x(e) ≥ 2 ∀S ⊂ V , S 6= ∅

x(e) ∈ {0, 1} ∀e ∈ E .

Replace x(e) ∈ {0, 1} by 0 ≤ x(e) ≤ 1 to obtain a linear
programming relaxation called the Subtour LP.
If OPTIP is value of IP optimal, OPTLP value of LP optimal, how
do they compare?

OPTLP ≤ OPTIP .
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Subtour LP

We’ll sometimes use the shorthand x(F ) =
∑

e∈F x(e), or
c(F ) =

∑
e∈F c(e). For example, rewrite LP as

Minimize
∑
e∈E

c(e)x(e)

subject to:
x(δ(i)) = 2 ∀i ∈ V
x(δ(S)) ≥ 2 ∀S ⊂ V ,S 6= ∅
0 ≤ x(e) ≤ 1 ∀e ∈ E .
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Equivalent constraints

An equivalent way to write the subtour elimination constraints is
via a constraint that says no cycles in any strict subset. Let E (S)
be the set of edges with both endpoints in S; then

x(E (S)) ≤ |S| − 1

for all S ⊂ V , |S| ≥ 2.

S
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Equivalent LP

So an LP that’s equivalent to the subtour LP is the following:

Minimize
∑
e∈E

c(e)x(e)

subject to:
x(δ(i)) = 2 ∀i ∈ V
x(E (S)) ≤ |S| − 1 ∀S ⊂ V , |S| ≥ 2
0 ≤ x(e) ≤ 1 ∀e ∈ E .
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Christofides’ again
Let OPTLP be the optimal value of the linear programming. We
can now (almost) prove the following.

Theorem (Wolsey (1980), Shmoys, W (1990))
Christofides’ algorithm returns a tour of cost at most 3

2OPTLP .

To prove this, we need to show that for MST F and matching M
on odd-degree vertices,

Lemma

c(F ) ≤ OPTLP

Lemma

c(M) ≤ 1
2OPTLP
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Proof of first lemma
The minimum spanning tree can be found as the solution to the
following LP (Edmonds 1971):

Minimize
∑
e∈E

c(e)z(e)

subject to:
z(E ) = |V | − 1
z(E (S)) ≤ |S| − 1 ∀S ⊂ V , |S| ≥ 2
z(e) ≥ 0 ∀e ∈ E .

S
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Proof of first lemma

c(F ) ≤ OPTLP

Min
∑
e∈E

c(e)x(e)

x(δ(i)) = 2 ∀i ∈ V
x(E(S)) ≤ |S| − 1 ∀S ⊂ V , |S| ≥ 2
0 ≤ x(e) ≤ 1 ∀e ∈ E .

Min
∑
e∈E

c(e)z(e)

z(E) = |V | − 1
z(E(S)) ≤ |S| − 1 ∀S ⊂ V , |S| ≥ 2

z(e) ≥ 0 ∀e ∈ E .
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Proof of second lemma
The minimum-cost perfect matching can be found as the solution
to the following LP (Edmonds 1965):

Minimize
∑
e∈E

c(e)z(e)

subject to:
z(δ(i)) = 1 ∀i ∈ V
z(δ(S)) ≥ 1 ∀S ⊂ V , |S| odd.

S
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Proof of second lemma

c(M) ≤ 1
2OPTLP

Min
∑
e∈E

c(e)x(e)

x(δ(i)) = 2 ∀i ∈ V
x(δ(S)) ≥ 2 ∀S ⊂ V , S 6= ∅

0 ≤ x(e) ≤ 1 ∀e ∈ E .

Min
∑
e∈E

c(e)z(e)

z(δ(i)) = 1 ∀i ∈ V
z(δ(S)) ≥ 1 ∀S ⊂ V , |S| odd

z(e) ≥ 0 ∀e ∈ E .
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Missing part

We also need that the value of the subtour LP can only go down
as we remove vertices from the instance (Shmoys, W 1990), so
that we can consider a matching only on the odd-degree vertices.

Theorem

c(F ) + c(M) ≤ 3
2OPTLP ,

so that Christofides’ algorithm returns a solution of cost at most
this much.
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Update

“But I thought you were going to talk about recent approximation
algorithms for the traveling salesman problem...”

For TSP, no better approximation algorithm known that
Christofides’ algorithm.
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Graph TSP

Progress made for two different special cases: graph TSP and the
s-t path TSP.

Graph TSP: Input is connected graph G = (V ,E ) and cost c(i , j)
is number of edges in shortest path from i to j in G .

Oveis Gharan, Saberi, Singh 2010 3/2− ε
Mömke, Svensson 2011 1.461
Mömke, Svensson 2011 4/3 if graph subcubic
Mucha 2011 13/9
Sebő and Vygen 2012 1.4
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s-t path TSP

The s-t path TSP:
Usual TSP input plus s, t ∈ V , find a min-cost path from s to t
visiting all other nodes in between (an s-t Hamiltonian path).

Hoogeveen (1991) shows that the natural variant of Christofides’
algorithm gives a 5

3 -approximation algorithm.

An, Kleinberg, Shmoys 2012 1.618
Sebő 2013 1.6
Vygen 2015 1.599
Gottschalk and Vygen 2015 1.56
Sebő and Van Zuylen 2016 1.52
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Agenda

For the rest of the week:

Wednesday: Graph TSP (4/3 for cubic, 2-vertex-connected graphs)
Thursday: s-t path TSP
Friday: s-t path TSP for graph TSP, open questions
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