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Abstract
Many important theorems and conjectures in combinatorics can be rephrased as problems about counting inde-

pendent sets in some specific graphs and hypergraphs. The Container Method, whose basic idea can be traced back
to Kleitman-Winston, and has recently been further developed by Balogh-Morris-Samotij and Saxton-Thomason,
essentially states that hypergraphs satisfying some natural conditions have very few independent sets. Here I show
some recent applications of the method, and try to give an easy recipe containing all the key ideas one needs to
know to prove similar results.

The basic problem type
Suppose we have a property P that can be easily characterized by describing a list of forbidden struc-
tures, and we are interested in the number of families A ⊂ P(n) satisfying this property. If this is
your set-up, the Container Method was made for you!

Examples
•Dedekinds problem: How many antichains are there in P(n)? The property of being an antichain

is monotone, and can be easily described by a list of forbidden structures (pairs A,B with A ⊂ B).
Hence it is a good idea to try to apply the Container Method to this problem.

•How many t-intersecting families are there in P(n)? The forbidden structures are pairs of sets with
intersection size less than t, hence it is likely that the Container Method can be successfully applied
to this problem.

•How many (p, q)-tilted Sperner families (forbid A,B ∈ F with p|A\B|=q|B\A|)? How many t-
error correcting codes (Sapozhenko’s question)? How many cancellative codes (forbid A,B,C ∈
F with A ∪ B = A ∪ C)? How many union-free families (forbid A1 ∪ A2 = B)? How many
families without containing a set with two of its supersets? How many families with |A∆B| ≤ t?
How many families without containing a set with 17 of its supersets AND a set with 6 log n of its
subsets?

• Sparse random analogues of all the above, thresholds etc. Random analogues of extremal results
often reduce to counting questions, which can be attacked by containers.

Statement of the Container Theorem

IF a (hyper-)graph supersaturates and has balanced codegrees THEN it
contains very few independent sets.

Explanation:
A hypergraph supersaturates if every subset of its vertex set, that is just slightly larger than the

maximal independent set, contains *many* hyperedges.
A hypergraph has balanced codegrees if every vertex is contained in rougly the same number of

edges, every pair of vertices is contained in roughly the same number of edges, every triple ....
See more examples below.

A step-by-step guide to solve such basic problems
Step one: Prove an upper bound on the size of your families.

Step two: Prove a supersaturation result. That is, prove that if the size of a family is slightly bigger
than the upper bound given in step one, then it contains many forbidden structures.

Step three: Apply the Container Method to get a counting theorem.

How to think of the Container Method

Figure 1: The Container Machine

In cooking, if one uses better ingredients then one obtains better food.
For container enthusiasts this translates to: the stronger the upper bound and supersat, the better

the counting theorem will be that the machine spits out.

A worked example

Dedekind’s problem: How many antichains are there in P(n)?

Step one (upper bound): An antichain has size at most
(

n
n/2

)
.

Step two (supersaturation): If F ⊂ P(n) is a family of size
(

n
n/2

)
+x then it con-

tains at least n
2 · x comparable pairs. – Proving this is highly non-trivial. Luckily

for us Kleitman proved this five decades ago!
Step three (apply containers): We obtain containers C1, C2, . . . ⊂ P(\), so that
every antichain is contained in at least one of them. The number of containers if(

2n

2n/(n/2)

)
= 2o((

n
n/2)), each container has size (1 + o(1))

(
n
n/2

)
. Hence the number of

antichains is 2(1+o(1))( n
n/2).

Some other results proved using similar methods

Original theorem Counting analog

If p < q coprime then a (p, q)-tilted
Sperner family (forbidding solutions
to p|A\B| = q|B\A|) has size at
most (q − p + o(1))

(
n
n/2

)
. (Leader-

Long, 2014)

If p < q coprime then the num-
ber of (p, q)-tilted Sperner families is
2(q−p+o(1))( n

n/2). (Balogh-Treglown-W,
2016)

Let A ⊂ P(n), and let R ∪ W be
a two-coloring of [n]. If A does not
contain a pair of sets which are com-
parable with monochromatic differ-
ence then |A| ≤

(
n
n/2

)
.

The number of families A for which
there exists a colouring R ∪ W =
[n] such that there is no comparable
pair A,B ∈ A with monochromatic
difference is 2(1+o(1))( n

n/2). (Balogh-
Treglown-W, 2016)

The maximum size of a t-error cor-
recting code is H(n, t) := 2n/

(
n
≤t
)
.

(Hamming bound)

The number of t-error correcting
codes, if t ≤ n1/3, is 2(1+o(1))H(n,t).
(Balogh-Treglown-W, 2016, partial
answer to Sapozhenko’s question)

Sperner’s theorem Random analog: If p � 1/n then
whp the size of the largest antichain
in P(n, p) (i.e. keeping elements
with probability p) is (1+o(1))p

(
n
n/2

)
(Balogh-Mycroft-Treglown, 2014)

What if there is no supersaturation?

With some additional ideas the container method can sometimes be made to work!
E.g. the number of C4-free graphs is between 20.5n3/2

and 21.09n3/2

(Kleitman-Winston
(1982), Balogh-W (2015)).

What if the codegrees are not balanced?

One needs even more ideas.
Option 1: find a nice subhypergraph with balanced codegrees (e.g. Morris-Saxton,

2015).
Option 2: adapt the proof of the Container Theorem to your problem.
E.g. a family is union-free if it does not contain solution to A ∪ B = C. Kleitman

proved that the largest union-free family in P(n) has size (1 + o(1))
(

n
n/2

)
. Burosch-

Demetrovics-Katona-Kleitman-Sapozhenko showed that the number of union-free
families is at most 22

√
2( n

n/2)(1+o(1)) and conjectured that one can get rid of the 2
√

2
factor. Define the 3-uniform hypergraph H on vertex set P(n), edges corresponding
to solutions of A ∪ B = C. Given B and C there can be few or many solutions to
A ∪B = C, depending on B and C! So codegrees are not balanced. Bad news.

The crucial (albeit trivial) observation is that given A and B there is only one solu-
tion to A ∪B = C! Hence in one direction the codegrees are equal. By proving a
directed version of the container theorem, and a different kind of supersaturation we
managed to show that the number of union-free families is 2(1+o(1))( n

n/2). (Balogh-W,
2016)

Conclusions

•When dealing with nice hypergraphs the hardest part of container proofs is to ob-
tain a strong supersaturation.
•Applying the container method to nice hypergraphs has become a standard tech-

nique in combinatorics. We are only starting to explore extensions of the method
to other hypergraphs.


