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We will start with the discussion of various forms of Semidefinite
Programming (SDP) problems and some necessary background (no
previous background on SDPs is required).
Then, we will formulate various problems in combinatorial
optimization, graph theory, and discrete mathematics in general
either as SDP problems or as nonconvex optimization problems
with natural and useful SDP relaxations.
We will continue with some geometric representations of graphs as
they relate to SDP, more recent work on Lovász theta body and its
extensions, lift-and-project methods, and conclude with some of
the more recent work in these research areas and the research area
of lifted SDP-representations (or extended formulations) and some
open research problems.
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For some positive integer d , let F ⊆ {0, 1}d . Suppose c ∈ Rd is
given. Then, the problem

max c>x subject to: x ∈ F

is a combinatorial optimization problem.
For the purposes of this short course, the above is a definition of
combinatorial optimization problem.
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How do we solve such problems?
Of course, if F is given as a list (as part of the input), this is trivial
(we evaluate c>x for each x in the list, ...).
What if F is given implicitly? I.e., let G = (V ,E ) be a simple
undirected graph, then S ⊆ V is a stable set in G if for every
i , j ∈ S , {i , j} /∈ E . (No two elements in S are joined by an edge in
G .) Then we define F in terms of the input graph G :

F :=
{
x ∈ {0, 1}V : x is the incidence vector of a stable set in G

}
.

How hard is this problem? Stability number of G

α(G ) := max {|S | : S is a stable set in G}

Computing α(G ) is NP-hard! So, our original problem is
NP-hard even if c := ē.
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We can consider a convex optimization approach.
Line segment joining u and v in Rn:

{λu + (1− λ)v : λ ∈ [0, 1]} .

Convex sets: F ⊆ Rn is convex if for every pair of points u, v ∈ F ,
the line segment joining u and v lies entirely in F .
Fact: Intersection of an arbitrary collection of convex sets is
convex.
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Externally: Convex Hulls:
Let F ⊆ Rn. The intersection of all convex sets containing F is
called the convex hull of F and is denoted by conv(F ).
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Internally: Convex combinations of x (1), x (2), . . . , x (k):

k∑
i=1

λix
(i),

for some λ ∈ Rk
+ such that

∑k
i=1 λi = 1.

Extreme points of convex sets: Let F ⊆ Rn be a convex set. x ∈ F
is called an extreme point of F if 6 ∃u, v ∈ F \ {x} such that
x = 1

2u + 1
2v .
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Let F ⊂ Rd be a compact set. Let f : Rd → R be a continuous
function. Then the optimization problem

max {f (x) : x ∈ F}

is equivalent to (by adding a new variable xd+1),

max {xd+1 : f (x) ≥ xd+1, x ∈ F , `d+1 ≤ xd+1 ≤ ud+1} ,

where `d+1 ∈ R is a lower bound on the minimum value of f over
F and ud+1 ∈ R is an upper bound on the maximum value of f
over F .
We used:

Theorem

(Bolzano [1830], Weierstrass [1860]) Let F ⊂ Rd be a nonempty
compact set and f : F → R be a continuous function on F . Then
f attains its minimum and maximum values on F .
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So, without loss of generality, we may assume that the objective
function is linear. By redefining, d , c and F , our problem becomes

max
{
c>x : x ∈ F

}
,

for a given vector c ∈ Rd , and for a given compact set F ⊂ Rd .
Now, we have

max
{
c>x : x ∈ F

}
= max

{
c>x : x ∈ conv(F)

}
.
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We denote by H the d-dimensional unit hypersphere (in the
context of the next theorem this is the set of all nontrivial
objective functions).

Theorem

The set of all c ∈ H for which the optimal solution of

max
{
c>x : x ∈ conv(F)

}
is not unique has zero, (d − 1)-dimensional Hausdorff measure.

An implication is that, if we were to pick the objective function c
from the hypersphere H, each point in H having the “same”
chance of being picked, probability of picking a c for which the
optimal solution is not unique, would be zero.
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In case F is a finite set (as in combinatorial optimization),
conv(F) is a polytope (convex hull of finitely many points,
equivalently, intersection of finitely many closed half spaces, that is
bounded). Then, the situation is particularly nice.
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Picture on the board...
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If we are able to get our hands on a convex compact set F which is
tractable (that is, we can optimize a linear function over it in
polynomial time) and F = conv(F), then for almost all objective
function vectors c , the problem

max
{
c>x : x ∈ F

}
will have a unique minimizer x̂ . Thus, x̂ ∈ ext(F ) ⊆ F . Therefore,
x̂ will also be an optimal solution of our original (non-convex)
problem

max
{
c>x : x ∈ F

}
.
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How do we “compute” or approximate the convex hull?
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Linear Optimization

Let A ∈ Rm×n, given.

(LP1) Maximize c>x
Ax ≤ b,
(x ∈ Rn).

All vectors are column vectors.

u, v ∈ Rm, u ≤ v means ui ≤ vi ,∀i ∈ {1, 2, . . . ,m}.
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Let us use another form for our linear optimization problem:
Let A ∈ Rm×n, b ∈ Rm and c ∈ Rn be given. Then, we have the
LP problem

(LP) Max c>x
Ax = b,
x ≥ 0.

x ≥ 0 or x ∈ Rn
+ (x must lie in the nonnegative orthant—a convex

cone).
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K ⊆ Rn is a convex cone if ∀x , v ∈ K and α ∈ R++, we have
αx ∈ K and (x + v) ∈ K .
Replace Rn

+ by an arbitrary convex cone, to get a more general
convex optimization problem.
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Semidefinite Optimization

Let Sn denote the space of n-by-n symmetric matrices with entries
in R.

Definition

Let X ∈ Sn.
X is positive semidefinite if

h>Xh ≥ 0, ∀h ∈ Rn.

X is positive definite if

h>Xh > 0, ∀h ∈ Rn \ {0}.
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The set of n-by-n, symmetric positive semidefinite matrices form a
closed convex cone in Sn. We denote it by Sn+.
The set of n-by-n, symmetric positive definite matrices form an
open convex cone in Sn. We denote it by Sn++.
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For A,B ∈ Sn, we use the trace inner-product:

〈A,B〉 := Tr(A>B) =
n∑

i=1

n∑
j=1

AijBij ,

we write
A � B

to mean (A− B) is positive semidefinite;

A � B

to mean (A− B) is positive definite.
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Note that for X ∈ Sn all eigenvalues λj(X ) are real. Also,

X � 0 ⇐⇒ λ(X ) ≥ 0

and
X � 0 ⇐⇒ λ(X ) > 0.
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Theorem

For every X ∈ Sn, there exists Q ∈ Rn×n, orthogonal (Q>Q = I )
such that

X = QDiag(λ(X ))Q>.

Let us denote by q(1), q(2), . . . , q(n) the columns of Q and denote
by ej the jth unit vector. Then,

Xq(j) = QDiag(λ(X ))ej = λj(X )Qej = λj(X )q(j),

that is, q(j) is an eigenvector of X associated with the eigenvalue
λj(X ).
By the above observations

Tr (X ) =
n∑

j=1

λj(X ).
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Some commonly used norms on Sn.
For every h ∈ Rn, p ∈ [1,+∞],

‖h‖p :=

 n∑
j=1

|hj |p
 1

p

.

In the matrix space, we have Frobenius norm:

‖X‖F := 〈X ,X 〉1/2 = ‖λ(X )‖2 =

√√√√ n∑
j=1

(λj(X ))2.

Operator p-norm (for every p ∈ [1,+∞]):

‖X‖p := max {‖Xh‖p : h ∈ Rn, ‖h‖p = 1} .

Note that
‖X‖2 = max

j
{|λj(X )|}.
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For X ∈ Sn++, we can define its unique symmetric positive
semidefinite square root as

X 1/2 := Q [Diag(λ(X ))]1/2 Q>.

We extend this definition to X ∈ Sn+.
Another notion of “square-root:”

Theorem

(Cholesky Decomposition) Let X ∈ Sn. Then X ∈ Sn+ iff there
exists B ∈ Rn×n lower-triangular such that X = BB>.
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Theorem

Let X ∈ Sn. Then, TFAE

(a) X is positive semidefinite;

(b) λj(X ) ≥ 0, for every j ∈ {1, 2, . . . , n};
(c) there exist µ ∈ Rn

+ and h(i) ∈ Rn, for every i ∈ {1, 2, . . . , n}
such that

X =
n∑

i=1

µih
(i)h(i)>;

(d) there exists B ∈ Rn×n such that X = BB> (here, B can be
chosen as a lower triangular matrix—the Cholesky
decomposition of X);

(e) for every nonempty J ⊆ {1, 2, . . . , n}, det(XJ) ≥ 0,
where XJ := {[Xij ] : i , j ∈ J};

(f) for every S ∈ Sn+, 〈X , S〉 ≥ 0.
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Lemma

(Schur Complement Lemma) Let X ∈ Sn and T ∈ Sm++. Then

M :=

(
T U>

U X

)
� 0 ⇐⇒ X − UT−1U> � 0.

Moreover, M � 0 iff X − UT−1U> � 0.
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Proof.

(
I 0

UT−1 I

)(
T 0
0 X − UT−1U>

)(
I T−1U>

0 I

)
= M.

Note that we wrote

M = L

(
T 0
0 X − UT−1U>

)
L>,

where L is nonsingular (in our case det(L) = 1). Therefore,

M � 0 ⇐⇒ X − UT−1U> � 0.

Also,
M � 0 ⇐⇒ X − UT−1U> � 0.

(X − UT−1U>) is called the Schur complement of T in M.
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One interesting special case is

(
1 x>

x X

)
.

We have (
1 x>

x X

)
� 0 ⇐⇒ X − xx> � 0

and (
1 x>

x X

)
� 0 ⇐⇒ X − xx> � 0.
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Theorem

(1) Sn++ = int
(
Sn+
)
.

(2) Let X ∈ Sn. Then, TFAE

(a) X is positive definite;
(b) λj(X ) > 0, for every j ∈ {1, 2, . . . , n};
(c) there exist µ ∈ Rn

++ and h(i) ∈ Rn, for every i ∈ {1, 2, . . . , n}
linearly independent such that

X =
n∑

i=1

µih
(i)h(i)>;

(d) there exists B ∈ Rn×n nonsingular such that X = BB> (here,
B can be chosen as a lower triangular matrix—the Cholesky
decomposition of X);

(e) for every Jk := {1, 2, . . . , k}, k ∈ {1, 2, . . . , n}, det(XJk ) > 0;
(f) for every S ∈ Sn+\{0}, 〈X ,S〉 > 0;
(g) X � 0 and rank(X ) = n.
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Given C ,A1,A2, . . . ,Am ∈ Sn, b ∈ Rm we have

(P) inf 〈C ,X 〉
〈Ai ,X 〉 = bi , ∀i ∈ {1, 2, . . . ,m}

X � 0,

(D) sup b>y
m∑
i=1

yiAi � C .
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For SDP: Slater point ȳ ∈ Rm such that

m∑
i=1

ȳiAi ≺ C .

Theorem

(A Strong Duality Theorem) Suppose (D) has a Slater point. If the
objective value of (D) is bounded from above then (P) attains its
optimum value and the optimum values of (P) and (D) coincide.
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Why do we need extra assumptions for the duality theorem of
SDP?
Consider the examples (with parameter γ > 0):

C :=

 γ 0 0
0 0 0
0 0 0

 , b :=

(
0
1

)
,

A1 :=

 0 0 0
0 1 0
0 0 0

 ,A2 :=

 1 0 0
0 0 1
0 1 0

 .
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Then for every feasible solution of (D), we have y2 = 0 and
y1 ≤ 0. So, the set of feasible solutions of (D) (in the S-space,
S := C −

∑m
i=1 Aiyi ) is

 γ 0 0
0 S22 0
0 0 0

 : S22 ≥ 0

 .

Moreover, every feasible solution of (D) is optimal in (D).
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For the primal, it is also true that the set of feasible solutions and
the set of optimal solutions coincide, which is (in the X -space):

 1 0 X31

0 0 0
X31 0 X33

 : X33 ≥ X 2
31

 .

Even though both (P) and (D) have finite optimal objective values,
both of these values are attained, there is a duality gap of γ.
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In the domain of (LP): Let v∗ denote the optimal objective value...
Suppose we have a feasible solution x̄ for (P) and a feasible
solution ȳ of (D). Then

c>x̄ ≤ v∗ ≤ b>ȳ .

Moreover, using an optimal x̄ for (P) and an optimal ȳ of (D), we
have

c>x̄ = v∗ = b>ȳ .
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In the domain of (SDP): Let v∗ denote the optimal objective
value...
Suppose we have a feasible solution X̄ for (P) and a feasible
solution ȳ of (D). Then

〈C , X̄ 〉 ≥ v∗ ≥ b>ȳ .

Moreover, using an optimal X̄ for (P) and an optimal ȳ of (D) (for
a suitably defined (D), or under a Slater type assumption), we have

〈C , X̄ 〉 = v∗ = b>ȳ .
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In the domain of Combinatorial Optimization problems (e.g., 0,1
Integer Programming Problems): Suppose we have an integer
feasible solution x̄ of the LP or SDP relaxation, and a feasible
solution ȳ of the dual of the convex relaxation Ck . Then

c>x̄ ≤ v∗ ≤ b>ȳ .

Moreover, using an optimal x̄ for the original Integer Programming
Problem and an optimal solution ȳ of the dual of the convex
relaxation Cd = conv(F), we have

c>x̄ = v∗ = b>ȳ .
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We can solve such semidefinite optimization problems
efficiently
both in terms of

computational complexity theory and

practical computation.

However, in terms of both computational complexity theory and
practical computation the situation in SDP is much worse than
that of LP. (That is, there are very many deep, open problems.)
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We can consider complexity analyses based on the ellipsoid
method. Which typically assumes the existence balls with radii R
and r (the former for a ball containing some optimal solutions and
the latter for a ball contained in the set of feasible solutions
intersected with the first ball). It is also possible to analyze the
algorithms for convex optimization in the case of unknown R, r ,
and to express the computational complexity of the algorithms in
terms of R and r . For example, Freund and Vera [2009] prove that
if a convex set F ⊆ Rd is given by a separation oracle, the problem
of computing x̄ ∈ F can be solved in

O

(
d

(
ln(d) + d ln

(
1

r
+

R

r

)
+ ln(R + 1)

))
iterations,

where each iteration makes one call to the separation oracle (and
all the constants hidden by O(·) are at most 2).

Levent Tunçel SDP Techniques in Comb. Opt.



Introduction
Semidefinite Programming (SDP) Fundamentals:

SDP Relaxations/Formulations
Geometric Representations of Graphs

Lift-and-Project Methods, Lifted Representability

Many interior-point algorithms lead to similar polynomial iteration
complexity bounds, under similar (but not the same) assumptions.
See for instance, Nesterov and Nemirovskii [1994], Alizadeh [1995],
Nesterov and Todd [1997,1998], Nesterov, Todd and Ye [1999],
Nemirovksii and T. [2005,2010].
For a bit complexity analysis of the SDP feasibility problem (which
admits an exponential bound in the size of the input), see Porkolab
and Khachiyan [1997].
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Given A1,A2, . . . ,Am ∈ Sn ∩ Zn×n and b ∈ Zm, the
SDP-Feasibility Problem is to decide whether there exists X ∈ Sn+
such that 〈Ai ,X 〉 = bi , for every i ∈ {1, 2, . . . ,m}.
Open Problem: Is SDP-feasibility in P?
In fact,
Open Problem: Is SDP-feasibility in NP?

Theorem

(Ramana [1997]) In the real number computational model, the
problem of deciding SDP feasibility is in NP ∩ co-NP.

Theorem

(Ramana [1997]) In the Turing machine model, if SDP feasibility is
in NP then it is in NP ∩ co-NP.
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We can start with a possibly nonlinear algebraic representation of
the constraint

x ∈ F .
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(I) Homogeneous Lifting to the matrix space Sd+1: To enforce the
constraint x ∈ {0, 1}d , it suffices to write

x2
j − xj = 0 ∀j ∈ {1, 2, · · · , d}.

Consider representing x in the space Sd+1 by the matrix(
1 x>

x xx>

)
=: Y .

Then, the linear constraints on Y ,

Y00 = 1, diag(Y ) = Ye0,

together with the requirements that Y � 0 and

rank(Y ) = 1,

allows us to transform any 0,1 integer programming formulation to
an SDP formulation with an additional rank constraint.
Removing the rank constraint, leads to an SDP relaxation.
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(II) Non-homogeneous Lifting to the matrix space Sd : To enforce
the constraint x ∈ {−1, 1}d , it suffices to write

x2
j = 1 ∀j ∈ {1, 2, · · · , d}.

Consider representing x in the space Sd by the matrix

xx> =: X .

Then, the linear constraints on X ,

diag(X ) = ē,X � 0,

together with the requirement that

rank(X ) = 1,

allows us to transform any -1,1 pure quadratic programming
formulation to an SDP formulation with an additional rank
constraint.
Removing the rank constraint, leads to an SDP relaxation.
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Goemans and Williamson [1995] used the following SDP relaxation
of MaxCut

max −1
4〈W ,X 〉

(
+ 1

4〈W , ē ē>〉
)

subject to: diag (X ) = ē,
X � 0,

where Wij is either zero (if {i , j} /∈ E ) or is equal to the given
nonnegative weight of the edge {i , j}, in proving their theorem:

Theorem

(Goemans and Williamson [1995]) Let G = (V ,E ) with w ∈ QE
+

be given. Then a cut in G of value at least 0.87856.(weight of the
max. cut) can be computed in polynomial-time.
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(III) Vector representation of variables: Another approach is to
start with a formulation that is based on polynomial equations and
inequalities. Suppose we are using x ∈ {−1, 1}d formulation.
Beat all the higher degree monomials down to quadratics by
adding new equations and new variables.
E.g., consider the system

x4
1x

2
2 + x3

2x3 + x5
1 − 1 ≥ 0,

2x3
1 − x4

2 ≥ 0
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x4
1x

2
2 + x3

2x3 + x5
1 − 1 ≥ 0,

2x3
1 − x4

2 ≥ 0

which is equivalent to the quadratic system:

x5x6 + x6x7 + x1x5 − 1 ≥ 0,

2x1x4 − x2
6 ≥ 0,

x4 = x2
1 ,

x5 = x2
4 ,

x6 = x2
2 ,

x7 = x2x3,

...
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Say we have a quadratic inequality

x2
1 + 12x1x2 + 23x2x3 + x2

4 ≤ 32.

Let us represent each variable xj , by a vector v (j) ∈ Rd . Then our
quadratic inequality becomes〈
v (1), v (1)

〉
+ 12

〈
v (1), v (2)

〉
+ 23

〈
v (2), v (3)

〉
+
〈
v (4), v (4)

〉
≤ 32.

The quadratic equations x2
j = 1 ∀j become〈
v (j), v (j)

〉
= 1 ∀j .
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Recall that
X ∈ Sd+ iff X = BB>

for some B ∈ Rd×d .
Define

B> =:
[
v (1)v (2) . . . v (d)

]
.

Then
Xij = 〈v (i), v (j)〉 ∀i , j .

I.e., Semidefinite Optimization allows us to express a problem by
enforcing linear constraints on the variables: 〈v (i), v (j)〉.
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For example,
diag (X ) = ē

is equivalent to: 〈
v (j), v (j)

〉
= 1 ∀j .

Similarly,
X11 + 12X12 + 23X23 + X44 ≤ 32

is equivalent to:〈
v (1), v (1)

〉
+ 12

〈
v (1), v (2)

〉
+ 23

〈
v (2), v (3)

〉
+
〈
v (4), v (4)

〉
≤ 32.

If there are no additional restrictions on the dimension of v (j), and
all the constraints are as above, then the SDP formulation is an
exact formulation (we will see and example of this next); otherwise
(if there is a restriction that say v (j) ∈ R3), this leads to an SDP
relaxation (for d ≥ 4).
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For example, Arora, Rao and Vazirani [2004] use an approach as
above to derive an SDP relaxation for the sparsest cut problem.
de Carli Silva, Harvey and Sato [2016] utilize SDP techniques to
derive polynomial time algorithms that approximate sums of
symmetric positive semidefinite matrices. Such algorithms have
applications in finding sparsifiers of hypergraphs, sparse solutions
to semidefinite programs, sparsifiers of unique games etc.
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(IV) SoS Relaxations of prescribed degree:
Since any system of polynomial inequalities can be reformulated as
a system of quadratic inequalities, the above results can be
translated to the setting of polynomial optimization problems
(POP):

min p0(x)
pi (x) ≥ 0, i ∈ {1, 2, . . . ,m},

where p0, p1, . . . , pm : Rn → R are polynomials.
Before going forward, let’s take a break and consider a question
about a single multivariate polynomial.
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Just a question... How can I convince you that

f (x) := 83− 108x1 + 216x2 + x2
3x

2
1 − 2x3

3x1 − 32x1x
3
2

+24x2
1x

2
2 − 8x3

1x2 − 144x1x
2
2 + 72x2

1x2

−216x1x2 + x2
3 + 54x2

1 + 216x2
2 + 432x5

1x
2
2x4

−432x4
1x

3
2x4 + 144x3

1x
4
2x4 − 576x3

1x
3
2x

2
4

+256x2
1x

2
2x

4
4 + 864x4

1x
2
2x

2
4 + 768x3

1x
2
2x

3
4

−16x2
1x

5
2x4 − 12x3

1 + 96x3
2 + x4

1 + 16x4
2 + x4

3

+96x2
1x

4
2x

2
4 − 256x2

1x
3
2x

3
4 − 12x3

1x
5
2

+54x4
1x

4
2 − 108x5

1x
3
2 + 81x6

1x
2
2 + x2

1x
6
2

+2x2
3x1 − 2x3

3 ≥ 2, ∀x ∈ R4?
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What if I claim ...

f (x) = (x1 − 2 x2 − 3)4 + x2
3 (x3 − x1 − 1)2

+x2
1x

2
2 (3 x1 − x2 + 4 x4)4 + 2

≥ 2, ∀x ∈ R4?

That is, f (x) = Sum-of-Squares + 2, ∀x ∈ R4.
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There is a lot of work in the area of solving (POP) by utilizing
Linear Optimization, Semidefinite Optimization and Convex
Optimization techniques. See Lasserre [2001-...], Parrilo [2003-...],
Laurent [2003-...], Gouveia, Parrilo, Thomas [2009].
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Lasserre uses the connections to Putinar’s Theorem [1993]:

Theorem

Suppose F := {x ∈ Rn : pi (x) ≥ 0, i ∈ {1, 2, . . . ,m}} is compact,
the polynomials pi have even degree, and their highest degree
homogeneous parts do not have common zeroes in Rn except 0.
Then every polynomial that is positive on F can be written as a
nonnegative combination of polynomials of the form

[h0(x)]2 +
m∑
i=1

[hi (x)]2 pi (x).
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Perhaps one of the most fundamental problems here is the
K-moment problem which is, given K ⊂ Rn to decide when a real
valued function f of set of monomials in n variables is a moment
function

∫
K xmdµ for some nonnegative Borel measure µ on K .

Schmüdgen [1991] characterized the solutions to the K -moment
problem (called K-moment sequences) for all compact
semi-algebraic sets K in terms of the positive definiteness of
matrices arising from the moment functions. Schmüdgen’s proof
utilizes Positivstellensatz in proving the above-mentioned algebraic
fact. The result also generalizes many other preexisting beautiful
results such as Handelman’s Theorem [1988]; some of these
connections are old and they generalize results some of which go
all the way back to Minkowski in late 1800’s.
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Positivstellensatz (Stengle [1974]):
F := {x ∈ Rn : pi (x) ≥ 0, i ∈ {1, 2, . . . ,m}} = ∅ iff that there
exists g ∈ cone (p1, p2, . . . , pm) such that g(x) = −1.
That is, iff there exist s0, sJ , . . . ∈ SoS(n, ∗) such that

g =
∑

J⊆{1,2,...,m}

sJ
∏
i∈J

pi = −1.

Levent Tunçel SDP Techniques in Comb. Opt.



Introduction
Semidefinite Programming (SDP) Fundamentals:

SDP Relaxations/Formulations
Geometric Representations of Graphs

Lift-and-Project Methods, Lifted Representability

Positivstellensatz is a “common” generalization of Farkas’ Lemma

Lemma

(Farkas’ Lemma) Let A ∈ Rm×n, b ∈ Rm be given. Then exactly
one of the following systems has a solution:

(I) Ax = b, x ≥ 0;

(II) A>y ≥ 0, b>y < 0.

and Hilbert’s Nullstellensatz [1901] (characterizing when a system
of polynomial equations has no solution over Cn): Only for this
slide, let pi be polynomials in complex variables (x ∈ Cn). Then
exactly one of the following systems has a solution:

(I) pi (x) = 0,∀i ∈ {1, 2, . . . ,m};
(II) ∃ polynomials hi such that

∑m
i=1 hi (x)pi (x) = −1.
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Parrilo uses the Positivstellensatz and gets SoS certificates!
Given x ∈ Rn and polynomial f : Rn → R of degree 2d , let

h(x) := [1, x1, x2, . . . , xn, x
2
1 , x1x2, x1x3, . . . , x

2
2 , . . . , x

d
n ]> ∈ RN ,

where N :=
(n+d

d

)
. We are interested in

F (f ) :=
{
X ∈ SN : [h(x)]> Xh(x) = f (x)

}
.

The following well-known fact connects SoS and semidefinite
optimization.

Theorem

Let z̄ ∈ R. Then [f (x)− z̄ ] is SoS iff{
X ∈ F (f ) : X � z̄e1e

>
1

}
6= ∅.

Levent Tunçel SDP Techniques in Comb. Opt.



Introduction
Semidefinite Programming (SDP) Fundamentals:

SDP Relaxations/Formulations
Geometric Representations of Graphs

Lift-and-Project Methods, Lifted Representability

Let G = (V ,E ) be given. A unit distance representation of G is
v : V → Rd for some d ≥ 1 such that

‖v (i) − v (j)‖2 = 1, ∀{i , j} ∈ E .

Theorem

(Lovász [2003]) Let G = (V ,E ) be a given graph. Then, the
optimal objective value of the following semidefinite optimization
problem is finite, it is attained and is equal to the square of the
radius of the smallest ball containing a unit distance representation
of G:

t(G ) := min t
subject to: diag (X )− tē ≤ 0,

Xii − 2Xij + Xjj = 1, ∀{i , j} ∈ E ,
X ∈ SV+.
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Theorem

(Lovász [2003]) Let G = (V ,E ) be a given graph. Then, the
optimal objective value of the following semidefinite optimization
problem is finite, it is attained and is equal to the square of the
radius of the smallest ball containing a smallest hypersphere
representation of G:

min t
subject to: diag (X )− tē = 0,

Xii − 2Xij + Xjj = 1, ∀{i , j} ∈ E ,
X ∈ SV+.
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We can consider generalization of such representations to
ellipsoids. Find a unit distance representation of a given graph G
which lies in the “smallest” ellipsoid. See, de Carli Silva [2013], de
Carli Silva and T. [2013]. Many of these problems are hard, and
there are many open problems related to such ellipsoidal
representation problems.
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Unit representations of graphs in a ball and unit representations of
graphs on hyperspheres are closely connected to orthonormal
representations of graphs:

{u(i) ∈ Rd : i ∈ V }

is called an orthonormal representation of G if

‖u(i)‖2 = 1, ∀i ∈ V , and

〈u(i), u(j)〉 = 0, ∀{i , j} ∈ Ē .

We will cover the connections of such representations to the stable
set problem in the next section.
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We have A and b given, describing a nonempty polytope

P :=
{
x ∈ Rd : Ax ≤ b, 0 ≤ x ≤ ē

}
.

We are interested in 0, 1 vectors in P:

PI := conv
(
P ∩ {0, 1}d

)
.
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We will consider operators Γ that take a compact convex set
Ck ⊆ [0, 1]d and return a compact convex set Ck+1 such that

Ck ∩ {0, 1}d ⊆ Ck+1 := Γ(Ck) ⊆ Ck ,

Ck+1 6= Ck unless Ck = conv
(
Ck ∩ {0, 1}d

)
.
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Note that the given system of equations and inequalities is:

Ax ≤ b, 0 ≤ x ≤ ē,

x2
j − xj = 0, ∀j ∈ {1, 2, . . . , d}.
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P :=
{
x ∈ Rd : Ax ≤ b, 0 ≤ x ≤ ē

}
.

We are interested in 0, 1 vectors in P:

PI := conv
(
P ∩ {0, 1}d

)
.

BCC(j)(P) := conv {(P ∩ {x : xj = 0}) ∪ (P ∩ {x : xj = 1})} ,

where j ∈ {1, 2, . . . , d}. Since the inclusions

PI ⊆ BCC(j)(P) ⊆ P

are clear for every j , it makes sense to consider applying this
operator iteratively, each time for a new index j .
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Let us define

J := {j1, j2, . . . , jk} ⊆ {1, 2, . . . , d}.

Let us denote

BCC(J)(P) := BCC(jk )

(
BCC(jk−1)

(
· · ·BCC(j1)(P) · · ·

))
.

It is easy to check that in the above context, the operators BCC(j)

commute with each other.
Therefore, the notation BCC(J)(·) is justified.
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A beautiful, fundamental property of these operators is:

Lemma

For every J ⊆ {1, 2, . . . , d}, we have

BCC(J)(P) = conv (P ∩ {x : xj ∈ {0, 1}, ∀j ∈ J}) .

The lemma directly leads to the convergence theorem.

Theorem

(Balas [1974]) Let P be as above. Then

BCC({1,2,...,d})(P) = PI .
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BCC(j) LS0 LS SA SA′ BZ BZ′′ BZ′

LS+ SA+ SA′+ BZ+ BZ′′+ BZ′+

Las

PSD
Operators

Polyhedral
Operators

Tractable w/ weak separation oracle for P

Tractable w/ facet description of P

Figure: Various properties of lift-and-project operators (Au and T. [2011,
2015, 2016]).
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Lovász and Schrijver [1991] proposed:

M0(K ) :=
{
Y ∈ R(d+1)×(d+1) : Ye0 = Y>e0 = diag(Y ),

Yei ∈ K ,Y (e0 − ei ) ∈ K ,

∀i ∈ {1, 2, . . . , d}}

LS0(K ) := {Ye0 : Y ∈ M0(K )} .
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Tighter,

M(K ) := M0(K ) ∩ Sd+1,

LS(K ) := {Ye0 : Y ∈ M(K )} .
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and tighter,

M+(K ) := M0(K ) ∩ Sd+1
+ ,

LS+(K ) := {Ye0 : Y ∈ M+(K )} .
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Lemma

Let K be as above. Then

KI ⊆ LS+(K ) ⊆ LS(K ) ⊆ LS0(K ) ⊆ K .
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Theorem

(Lovász and Schrijver [1991]) Let P be as above. Then

P ⊇ LS0(P) ⊇ LS2
0(P) ⊇ · · · ⊇ LSd

0 (P) = PI .

Similarly for LS as well as LS+.
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Moreover, the relaxations obtained after a few iterations are still
tractable if the original relaxation P is.

Theorem

(Lovász and Schrijver [1991]) Let P be as above. If we have a
polynomial time weak separation oracle for P then we can optimize
any linear function over any of LSk

0 (P), LSk(P), LSk
+(P) in

polynomial time, provided k = O(1).

There is a wide spectrum of lift-and-project type operators: Balas
[1974], Sherali and Adams [1990], Lovász and Schrijver [1991],
Balas, Ceria and Cornuéjols [1993], Kojima and T. [2000], Lasserre
[2001], de Klerk and Pasechnik [2002], Parrilo [2003], Bienstock
and Zuckerberg [2004].
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Such a general method (it applies to every combinatorial
optimization problem)...
Can it be really good on any problem?
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Let G = (V ,E ) be an undirected graph.
We define the fractional stable set polytope as

FRAC(G ) :=
{
x ∈ [0, 1]V : xi + xj ≤ 1 for all {i , j} ∈ E

}
.

This polytope is used as the initial approximation to the convex
hull of incidence vectors of the stable sets of G , which is called the
stable set polytope:

STAB(G ) := conv
(

FRAC(G ) ∩ {0, 1}V
)
.
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Let us define the class of odd-cycle inequalities. Let H be the node
set of an odd-cycle in G then the inequality∑

i∈H
xi ≤

|H| − 1

2

is valid for STAB(G ). We define

OC(G ) := {x ∈ FRAC(G ) : x satisfies all odd-cycle constraints for G} .
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If H is an odd-anti-hole then the inequality∑
i∈H

xi ≤ 2

is valid for STAB(G ).
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If we have an odd-wheel in G with hub node represented by x2k+2

and the rim nodes represented by x1, x2, . . . , x2k+1, then the
odd-wheel inequality

kx2k+2 +
2k+1∑
i=1

xi ≤ k

is valid for STAB(G ).
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Based on these classes of inequalities we define the polytopes

OC(G ),ANTI-HOLE(G ),WHEEL(G ).
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Theorem

(Lovász and Schrijver [1991]) For every graph G,

LS0(G ) = LS(G ) = OC(G ).

Note that this theorem provides a compact lifted representations of
the odd-cycle polytope of G (in the spaces R({0}∪V )×({0}∪V ) and
S{0}∪V ). This polytope can have exponentially many facets in the
worst case.
However, M(G ) is represented by

|V |(|V |+ 1)/2 variables and O
(
|V |3

)
linear inequalities.
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What about LS2
0(G ), LS2(G )?
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What about LS2
0(G ), LS2(G )?

There exist graphs G for which

LS2
0(G ) 6= LS2(G ) Au and T. [2009].

Open Problem: Give good combinatorial characterizations for
LS2

0(G ) and LS2(G ).

Some partial results by Lipták [1999] and by Lipták and T. [2003].
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A clique in G is a subset of nodes in G so that every pair of them
are joined by an edge. The clique polytope of G is defined by

CLQ(G ) :=

x ∈ RV
+ :
∑
j∈C

xj ≤ 1 for every clique C in G

 .

Optimizing a linear function over FRAC(G ) is easy!
Linear optimization over CLQ(G ) (and STAB(G )) is NP-hard!
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Orthonormal Representations of Graphs and the Theta Body of
G := (V ,E )

u(1), u(2), . . . , u(|V |) ∈ Rd such that

〈u(i), u(j)〉 = 0, for all i 6= j , {i , j} /∈ E ,

and
〈u(i), u(i)〉 = 1, for all i ∈ V .
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TH(G ) :=

{
x ∈ RV

+ :
∑
i∈V

(
c>u(i)

)2
xi ≤ 1,

∀ ortho. representations and c ∈ Rd s.t. ‖c‖2 = 1
}

TH(G ) ⊇ STAB(G )

but infinitely many linear inequalities!
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Let χ(G ) denote the chromatic number of G .
Clique number:

ω(G ) := max {|C | : C is a clique in G}

G is perfect if for every node-induced subgraph H of G , we have

χ(H) = ω(H).
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Theorem

Let G = (V ,E ). Then TFAE

(i) G is perfect

(ii) TH(G ) is a polytope

(iii) TH(G ) = CLQ(G )

(iv) STAB(G ) = CLQ(G )

(v) G does not contain an odd-hole or odd anti-hole

(vi) the ideal generated by
{

(x2
v − xv ), ∀v ∈ V ; xuxv ,∀{u, v} ∈ E

}
is (1, 1)-SoS.

Follows from the work of Chudnovsky, Chvátal, Fulkerson,
Gouveia, Grötschel, Lovász, Parrilo, Robertson, Schrijver, Seymour,
Rekha Thomas, Robin Thomas.
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TH(·) behaves well under duality and graph complementation:

Theorem

For every graph G = (V ,E ),

[TH(G )]o ∩ RV
+ = TH(G ).

That is, the polar of TH(G ) when restricted to the nonnegative
orthant, coincides with the TH(·) set of the complement of G .
(Polar of a set intersected with the nonnegative orthant is called
the antiblocker of the set— another notion of duality.)
Convex sets that satisfy such a beautiful property have been
characterized (under mild assumptions). See, de Carli Silva [2013],
de Carli Silva and T. [2016]. This generalization covers a large
class of relaxations of the stable set polytope of graphs. It also
leads to various variants of the Lovász theta number.
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There is a strong connection between LS+(G ) and TH(G ):

Theorem

(Lovász and Schrijver [1991]) Let G = (V ,E ). Then

TH(G ) =

{
x ∈ RV :

(
1
x

)
= Ye0;Yij = 0,∀{i , j} ∈ E ;

Ye0 = diag (Y );Y � 0} .
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Theorem

(Lovász and Schrijver [1991]) For every graph G,

LS+(G ) ⊆ OC(G )∩ANTI-HOLE(G )∩WHEEL(G )∩CLQ(G )∩TH(G ).

Open Problem: Give full, elegant, combinatorial characterizations
for LS+(G ).
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Is LS+(G ) polyhedral for every G?

Let Gαβ be the graph in the following figure:

Figure: The graph Gαβ .

Levent Tunçel SDP Techniques in Comb. Opt.



Introduction
Semidefinite Programming (SDP) Fundamentals:

SDP Relaxations/Formulations
Geometric Representations of Graphs

Lift-and-Project Methods, Lifted Representability

A two dimensional cross-section of the compact convex relaxation
LS+(Gαβ) has a nonpolyhedral piece on its boundary.
We say that z ∈ R8 is an αβ-point, if α and β are both

nonnegative and zi :=

{
α if i ∈ {1, 2, 3, 4} ,
β if i ∈ {5, 6, 7, 8} .
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Theorem

(Bianchi, Escalante, Nasini, T. [2014]) An αβ-point with

1

4
≤ α ≤ 1

2

belongs to LS+(Gαβ) if and only if

β ≤
3−

√
1 + 8(−1 + 4α)2

8
.

Moreover, if an αβ-point is in the set with the maximum allowed
value for β, then it is an extreme point of the set.
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The SDP relaxation LS+(G ) of STAB(G ) is stronger than TH(G ).
By following the same line of reasoning used for perfect graphs,
MWSSP can be solved in polynomial time for the class of graphs
for which LS+(G ) = STAB(G ).

We call these LS+-perfect graphs.

Levent Tunçel SDP Techniques in Comb. Opt.



Introduction
Semidefinite Programming (SDP) Fundamentals:

SDP Relaxations/Formulations
Geometric Representations of Graphs

Lift-and-Project Methods, Lifted Representability

If G ′ is a node-induced subgraph of G (G ′ ⊆ G ), we consider every
point in STAB(G ′) as a set of points in STAB(G ), although they
do not belong to the same space
(for the missing nodes, we take direct sums with the interval [0, 1],
since originally STAB(G ) ⊆ STAB(G ′)⊕ [0, 1]V (G)\V (G ′)).
With this notation, given any family of graphs F and a graph G ,
we denote by F(G ) the relaxation of STAB(G ) defined by

F(G ) :=
⋂

G ′⊆G ;G ′∈F
STAB(G ′).
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A graph is called near-bipartite if after deleting the closed
neighborhood of any node, the resulting graph is bipartite. Let us
denote by NB the class of all near-bipartite graphs.
For every graph G ,

LS+(G ) ⊆ NB(G ) and

NB(G ) ⊆ CLQ(G ) ∩OC(G ) ∩ ANTI-HOLE(G ) ∩WHEEL(G ).
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If G ′ is a node-induced subgraph of G (G ′ ⊆ G ), we consider every
point in STAB(G ′) as a point in STAB(G ), although they do not
belong to the same space (for the missing nodes, we take direct
sums with the interval [0, 1], since originally
STAB(G ) ⊆ STAB(G ′)⊕ [0, 1]V (G)\V (G ′)). With this notation,
given any family of graphs F and a graph G , we denote by F(G )
the relaxation of STAB(G ) defined by

F(G ) :=
⋂

G ′⊆G ;G ′∈F
STAB(G ′).
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Open Problem: Find a combinatorial characterization of
LS+-perfect graphs.

Current best characterization (Bianchi, Escalante, Nasini, T.
[2014])

LS+(G ) ⊆ NB(G ) ∩ T̂H(G ).
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What is the smallest graph which is LS+-imperfect?

In a related context, Knuth (1993) asked what is the smallest
graph for which STAB(G ) 6= LS+(G )?
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Figure: Little graph that could! G2 with corresponding weights
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Proposition

(Lipták, T., 2003) G2 is the smallest graph for which
LS+(G ) 6= STAB(G ).
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The LS-rank of P is the smallest k for which LSk(P) = PI .
Analogously, LS0-rank of P, LS+-rank of PI relative to P ...
We denote these ranks by r(G ), r0(G ), and r+(G ), respectively.
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Theorem

(Lipták, T. [2003]) For every graph G = (V ,E ), r+(G ) ≤
⌊
|V |
3

⌋
.

n+(k) := min{|V (G )| : r+(G ) = k}.

Open Problem: What are the values of n+(k) for every k ∈ Z+? In
particular,
Conjecture (Lipták, T. [2003]): Is it true that n+(k) = 3k for all
k ∈ Z+?
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n+(k) := min{|V (G )| : r+(G ) = k}.

Open Problem: What are the values of n+(k) for every k ∈ Z+? In
particular,
Conjecture (Lipták, T. [2003]): Is it true that n+(k) = 3k for all
k ∈ Z+?
k = 1 (triangle is the answer);
k = 2 the above graph G2 is the answer;
k = 3, Escalante, Montelar, Nasini (2006);
k = 4?
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What about the polyhedral graph ranks?

Conjecture (Lipták, T. [2003]): r0(G ) = r(G ) ∀ graphs G .

True for:

bipartite graphs, series-parallel graphs, perfect graphs and
odd-star-subdivisions of graphs in B (which contains cliques and
wheels, among many other graphs), antiholes and graphs that have
LS0-rank ≤ 2. Also true for all 8-node graphs, and for 9-node
graphs that contain a 7-hole or a 7-antihole as an induced
subgraph Au [2008].
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Other lower bound results: Stephen and T. [1999], Cook and Dash
[2000], Goemans and T. [2001], Laurent [2002], Laurent [2003],
Aguilera, Bianchi and Nasini [2004], Escalante, Montelar and
Nasini [2006], Arora, Bollobás, Lovász and Tourlakis [2006],
Cheung [2007], Georgiou, Magen, Pitassi, Tourlakis [2007],
Schoeneback, Trevisan and Tulsiani [2007], Charikar, Makarychev
and Makarychev [2009], Mathieu and Sinclair [2009], Raghavendra
and Steurer [2009], Benabbas and Magen [2010], Karlin, Mathieu
and Thach Nguyen [2011], Chan, Lee, Raghavendra and Steurer
[2013], Thapper and Zivny [2016].
Many of the lower bound proofs have been unified/generalized:
Hong and T. [2008].
Other work on convex relaxation methods on the stable set
problem using cone of copositive matrices (and the cone of
completely positive matrices): de Klerk and Pasechnik [2002],
Peña, Vera and Zuluaga [2008], ...
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Stronger “lower bound” results via study of extended complexity.
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BCC(j) LS0 LS SA SA′ BZ BZ′′ BZ′

LS+ SA+ SA′+ BZ+ BZ′′+ BZ′+

Las

PSD
Operators

Polyhedral
Operators

Tractable w/ weak separation oracle for P

Tractable w/ facet description of P

Figure: Various properties of lift-and-project operators (Au and T. [2011,
2015, 2016]).
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Denote {0, 1}d by F . Define A := 2F . For each x ∈ F , we define
the vector xA ∈ RA such that

xAα =

{
1, if x ∈ α;
0, otherwise.
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For any given x ∈ F , if we define Y x
A := xA(xA)>, then, the

following must hold:

Y x
Ae0 = (Y x

A)>e0 = diag (Y x
A) = xA;

Y x
Aeα ∈

{
0, xA

}
, ∀α ∈ A;

Y x
A ∈ SA+;

Y x
A[α, β] = 1 ⇐⇒ x ∈ α ∩ β;

If α1 ∩ β1 = α2 ∩ β2, then Y x
A[α1, β1] = Y x

A[α2, β2].
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Given S ⊆ [d ] and t ∈ {0, 1}, we define

S |t := {x ∈ F : xi = t, ∀i ∈ S} .

For any integer i ∈ [0, d ], define

Ai := {S |1 ∩ T |0 : S ,T ⊆ [n], S ∩ T = ∅, |S |+ |T | ≤ i}

and
A+

i := {S |1 : S ⊆ [d ], |S | ≤ i} .
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Let S̃A
k

(P) denote the set of matrices Y ∈ RA
+
1 ×Ak that

satisfy all of the following conditions:

(SA 1) Y [F ,F ] = 1;
(SA 2) x̂(Yeα) ∈ K (P) for every α ∈ Ak ;
(SA 3) For each S |1 ∩ T |0 ∈ Ak−1, impose

YeS|1∩T |0 = YeS|1∩T |0∩j|1 + YeS|1∩T |0∩j|0 , ∀j ∈ [n] \ (S ∪ T ).

(SA 4) For each α ∈ A+
1 , β ∈ Ak such that α ∩ β = ∅, impose

Y [α, β] = 0;
(SA 5) For every α1, α2 ∈ A+

1 , β1, β2 ∈ Ak such that
α1 ∩ β1 = α2 ∩ β2, impose Y [α1, β1] = Y [α2, β2].
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Let S̃A
k
+(P) denote the set of matrices Y ∈ SAk

+ that satisfies
all of the following conditions:

(SA+ 1) (SA 1), (SA 2) and (SA 3);
(SA+ 2) For each α, β ∈ Ak such that conv(α) ∩ conv(β) ∩ P = ∅,

impose Y [α, β] = 0;
(SA+ 3) For any α1, α2, β1, β2 ∈ Ak such that α1 ∩ β1 = α2 ∩ β2,

impose Y [α1, β1] = Y [α2, β2].

Define

SAk(P) :=
{
x ∈ Rd : ∃Y ∈ S̃A

k
(P) : YeF = x̂

}
and

SAk
+(P) :=

{
x ∈ Rd : ∃Y ∈ S̃A

k
+(P) : x̂(YeF ) = x̂

}
.

The SAk
+ operator extends the lifted space of the SAk operator to

a set of square matrices, and imposes an additional positive
semidefiniteness constraint. Moreover, SAk

+ refines the operator
LSk

+.
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Given P :=
{
x ∈ [0, 1]d : Ax ≤ b

}
, and an integer k ∈ [d ],

1 Let L̃as
k
(P) denote the set of matrices Y ∈ SA

+
k+1

+ that satisfy all of
the following conditions:

(Las 1) Y [F ,F ] = 1;
(Las 2) For each j ∈ [m], let Aj be the j th row of A. Define the matrix

Y j ∈ SA+
k such that

Y j [S |1,S ′|1] := bjY [S |1,S ′|1]−
n∑

i=1

Aj
iY [(S∪{i})|1, (S ′∪{i})|1]

and impose Y j � 0.
(Las 3) For every α1, α2, β1, β2 ∈ A+

k such that α1 ∩ β1 = α2 ∩ β2,
impose Y [α1, β1] = Y [α2, β2].

2 Define

Lask(P) :=
{
x ∈ Rd : ∃Y ∈ L̃as

k
(P) : x̂(YeF ) = x̂

}
.
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In our setting, the Las-rank of a polytope P (the smallest k such
that Lask(P) = PI ) is equal to the Theta-rank, defined by
Gouveia, Parrilo, Thomas [2010].
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Consider the set

Pd ,α :=

{
x ∈ [0, 1]d :

d∑
i=1

xi ≤ d − α

}
.

Theorem

(Au and T. [2015]) Suppose an integer d ≥ 5 is not a perfect
square. Then there exists

α ∈
(⌊√

d
⌋
,
⌈√

d
⌉)

such that the BZ′+-rank of Pd ,α is at least
⌊√

d+1
2

⌋
.
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Theorem

(Au and T. [2015]) For every d ≥ 2, the SA+-rank of Pd ,α is d for
all α ∈ (0, 1).
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Theorem

(Cheung [2007])

1 For every even integer d ≥ 4, the Las-rank of Pd ,α is at most
d − 1 for all α ≥ 1

d ;

2 For every integer d ≥ 2, there exists α ∈
(
0, 1

d

)
such that the

Las-rank of Pd ,α is d.

Theorem

(Au and T. [2015]) Suppose d ≥ 2, and

0 < α ≤ d

(
3−
√

5

4d − 4

)d

.

Then Pd ,α has Las-rank d.
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Figure: Computational results and upper bounds for

g(d) := max
{
α : Lasd−1(Pd,α) 6= (Pd,α)I

}
(Au and T. [2015]).
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Figure: Computational results and upper bounds for

g(d) := max
{
α : Lasd−1(Pd,α) 6= (Pd,α)I

}
(Au and T. [2015]).
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Given α > 0, we define the set

Qd ,α :=

x ∈ [0, 1]d :
∑
i∈S

(1− xi ) +
∑
i 6∈S

xi ≥ α, ∀S ⊆ [d ]

 .

Theorem

(Au and T. [2015]) Suppose d ≥ 2, and

0 < α ≤

(
3−
√

5

4

)d

.

Then Qd ,α has Las-rank d.
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Figure: Computational results and possible ranges for

f (d) := max
{
α : Lasd−1(Qd,α) 6= ∅

}
(Au and T. [2015]).
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Figure: Computational results and possible ranges for

f (d) := max
{
α : Lasd−1(Qd,α) 6= ∅

}
(Au and T. [2015]).
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For the complete graph G := Kd , FRAC(G ) has rank 1 with
respect to LS+, SA+ and Las operators. However, the rank is
known to be Θ(d) for all other operators that yield only polyhedral
relaxations, such as SA and Lovász and Schrijver’s LS operator.
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For the complete graph G := Kd , FRAC(G ) has rank 1 with
respect to LS+, SA+ and Las operators. However, the rank is
known to be Θ(d) for all other operators that yield only polyhedral
relaxations, such as SA and Lovász and Schrijver’s LS operator.

Theorem

(Au [2014], Au and T. [2016]) Suppose G is the complete graph
on d ≥ 3 vertices. Then the BZ′-rank (and the BZ-rank) of
FRAC(G ) is between

⌈
d
2

⌉
− 2 or

⌈
d+1

2

⌉
.
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Stronger “lower bound” results via study of extended complexity.
Let C ⊂ Rd be a compact convex set with nonempty interior. We
may assume, 0 ∈ int(C ).
Let U ⊆ RN be an affine subspace and K ⊂ RN be a pointed
closed convex cone with nonempty interior. Let L : RN → Rd be a
linear map.
If

C = L(K ∩ U),

then K ∩ U is a lifted K-representation of C .

If in addition, int(K ) ∩ U 6= ∅, then K ∩ U is a proper lifted
K-representation of C .
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Define the slack function of C :

SC : ext(C )⊕ ext(C o)→ R, SC (x , s) := 1− 〈s, x〉 .

A slack function SC is factorizable if there exist maps
A : ext(C )→ K and Ã : ext(C o)→ K ∗ such that

SC (x , s) =
〈
Ã(s),A(x)

〉
∀(x , s) ∈ ext(C )⊕ ext(C o).
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Theorem

(Gouveia, Parrilo and Thomas [2013])

If C has a proper lifted K-representation then SC is
K-factorizable.

If SC is K-factorizable then C has a lifted K-representation.
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Let us focus on Linear Programming representations, next.

Extension complexity of a polytope P, is the minimum number of
linear inequalities required to describe K in a lifted
K -representation of P.
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Theorem

(Rothvoß [2014]) The matching polytope has exponential extended
complexity. In particular, the extension complexity of the perfect
matching polytope of a complete n-node graph is 2Ω(n).

A corollary of the above theorem is that the extension complexity
of the TSP polytope is 2Ω(n).
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There are many other exciting results in this direction, and many
open problems.
See, for instance, Fiorini, Massar, Pokutta, Tiwary and de Wolf
[2012], Goemans [2015], Kaibel [2011], Fiorini, Kaibel, Pashkovich
and Theis [2013], Kaibel and Weltke [2015], Braun and Pokutta
[2015], ...

Levent Tunçel SDP Techniques in Comb. Opt.



Introduction
Semidefinite Programming (SDP) Fundamentals:

SDP Relaxations/Formulations
Geometric Representations of Graphs

Lift-and-Project Methods, Lifted Representability

The convex relaxation methods I discussed can all be phrased
so that they are based on polynomial systems of inequalities.
This area which is a meeting place for combinatorial
optimization, convex optimization and real algebraic geometry
continues to be very exciting and vibrant.

There are many interesting open problems!
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