
Semidefinite programming techniques in combinatorial optimization (L. Tunçel)

Exercises for July 25, 2016

1. Given C, Ai ∈ Sn for i ∈ {1, 2, . . . ,m} and b ∈ Rm, let

(P ) inf〈C,X〉, s.t. 〈Ai, X〉 = bi i ∈ {1, 2, . . . ,m}, X ∈ Sn+

and let (D) denote its dual. Assume that both (P ) and (D) have Slater points. Prove that for every
pair of optimal solutions X and S for (P ) and (D) respectively, we have

rank(X) + rank(S) ≤ n.

2. Let X ∈ Sn.

(a) Prove that X � 0 iff for every k ∈ {1, 2, . . . , n}, det (XJk) > 0, where Jk := {1, 2, . . . , k}.

(b) Prove that X � 0 iff for every nonempty J ⊆ {1, 2, . . . , n}, det (XJ) ≥ 0.

3. Let X,S ∈ Rn×n. The Hadamard product of X and S is defined as

(X � S)ij := XijSij , ∀i, j.

So, (X � S) is an n-by-n matrix which is the pointwise product of X and S. Prove that

X,S � 0⇒ (X � S) � 0.

4. Prove that the set of extreme rays of the cone of n-by-n symmetric positive semidefinite matrices
are as follows:

ext(Sn+) =
{
hh> : h ∈ Rn, ‖h‖2 = 1

}
.

5. Prove that
Sn+ =

{
S ∈ Sn : Tr(XS) ≥ 0 ∀X ∈ Sn+

}
.

I.e., the cone of symmetric positive semidefinite matrices is self-dual.

6. Prove that for every S̄ ∈ Sn++ and for every α ∈ R++ the sets

{X ∈ Sn+ : 〈S̄,X〉 ≤ α}

and
{X ∈ Sn+ : 〈S̄,X〉 = α}

are nonempty, convex and compact. Also, prove that the interior of the first set is nonempty.
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Exercises for July 26, 2016

7. Let X,S ∈ Sn such that S � X � 0. Prove that S1/2 � X1/2.
Then, prove or disprove:

S2 � X2.

8. Let X,S ∈ Sn+ be nonsingular matrices. Prove that

X � S ⇐⇒ S−1 � X−1.

That is, (·)−1 is order reversing.

9. Consider the maximum cardinality version of the Max Cut problem (when all the weights on all the
edges of the given graph G are one). Find an optimal solution for the SDP relaxation when G is the
5-cycle and when G is the 7-cycle. What are the ratios of the optimal MAX CUT objective values to
the optimal values of the SDP relaxations? Prove your claims without relying on any software.

10. Prove that the quadratic optimization problem

max
{
x>Wx : x ∈ {−1, 1}n

}
,

where W ∈ Sn+ includes the Max Cut problem on the graphs with n nodes (where every edge in G has
a nonnegative weight) as a special case.
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Exercises for July 27, 2016

11. Given a simple graph G = (V,E), define n := |V |. Let A ∈ Sn+, and p ∈ [1,+∞] are also given.
Recall the notion of smallest radius ellipsoid (with respect to A and the given p-norm) which contains
a unit distance representation of G:

Ep(G;A) := inf

{∥∥∥∥〈u(i), Au(i)〉i∈V (G)

∥∥∥∥
p

: u(1), u(2), . . . , u(n) form a unit distance repr. of G

}
.

In this context, the dimension of G, denoted dim(G), is the smallest integer k for which G has a
unit distance representation in Rk.

In this generality, prove that

Ep(G;A) = 0 iff dim(G) ≤ dim(Null(A)).

12. Recall the smallest radius Euclidean ball and smallest radius hypersphere unit distance represen-
tations of graphs (SDP formulations respectively given below).

tball(G) := min t
subject to: diag(X)− tē ≤ 0,

Xii − 2Xij +Xjj = 1, ∀{i, j} ∈ E,
X ∈ SV+;

tsphere(G) := min t

subject to: diag(X)− tē = 0,
Xii − 2Xij +Xjj = 1, ∀{i, j} ∈ E,

X ∈ SV+.

Prove that
tball(G) = tsphere(G) for every graph G.

Hint: If you get stuck, check out Theorem 3.5 in the paper: M. K. de Carli Silva and L. T., Op-
timization problems over unit distance representations of graphs, Electronic Journal of Combinatorics
20 (1) 2013, #P43.
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Exercises for July 28, 2016

13. Prove that for every graph G,

STAB(G) ⊆ TH(G) ⊆ CLQ(G) ⊆ FRAC(G).

14. A convex set S ⊂ Rd is called a convex corner if

• S ⊆ Rd
+ and

• for every x ∈ S, every y satisfying 0 ≤ y ≤ x is also in S.

Prove that for every graph G, STAB(G), LS+(G), TH(G), CLQ(G) and FRAC(G) are all convex
corners.
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