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Introduction

I A proper circular-arc (PCA) modelM is defined based on the endpoints
s(A) and t(A) of its arcs on a circle C.
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PCA model (24, 7)-CA model 7-IG model

I (c, `)-CA model: C has circumference c, arcs have length `.
I `-IG model: arcs have length `, no arc crosses 0.

Problem: Find the Minimal Model

I Given a PCA model, find an equivalent
“minimal” model.

I A (c, `)-CA modelM is weakly minimal when

1. `M ≤ `N and
2. cM ≤ cN .

For any equivalent model N . If also

3. sM(Ai) ≤ sN(Ai) for 1 ≤ i ≤ n,

thenM is strongly minimal.
I Remark: the existence of minimal models is not

obvious because 1–3 must hold simultaneously.

I Pirlot: every PIG model is equivalent to an
integer strongly minimal model.

I Soulignac: every UCA model is equivalent to a
weakly minimal model. Is it integer?

I Conjecture: c, ` ∈ N for every minimal
(c, `)-CA model.
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Figure 1: a PCA model and its

equivalent minimal model.

Synthetic Graphs (Pirlot, Soulignac)

I For a PCA modelM with arcs A1 < . . . < An:
. One vertex for each arc A1, . . . ,An.
. steps: Ai→ Ai+1 for 1 ≤ i ≤ n.
. noses: v(Ai)→ v(Aj) when t(Ai)s(Aj) are consecutive inM.
. hollows: v(Ai)→ v(Aj) when s(Ai)t(Aj) are consecutive inM.
. weights: separation of the endpoints in any equivalent (c, `)-CA model.

I Theorem: equivalent to (c, `)-CA iff no cycle has a positive weight.

Mitas’ plane drawing of the synthetic graph

I Vertices: positions in a circular
matrix (first column follows last
column).

I Internal edges (thick): advance to
the right and induce a plane
drawing.

I External edges (thin): escape
through the top and last rows.

I Consequently, every cycle has exactly one more hollow than nose.
I Hence, every cycleW has weight (` + 1) + |W|
. implying that the minimum feasible ` is integer.

I We exploit this drawing to settle Soulignac’s conjecture.

A new characterization of UCA models

I Intervalization I(M, k): copy k times the arcs ofM in a PIG model.
. Nose (hollow) path: contain no hollows (no noses).
. Nose-(hollow-)like: more ext. noses (hollows) than ext. hollows (noses).
. Greedy nose (hollow): prefer noses (hollows) to steps.

I Characterization of UCA models.
.M is equivalent to a UCA model.
. every nose-like circuit intersects every hollow-like circuit.
. any greedy nose cycle intersects any greedy hollow cycle.

I Proof. Take advantage of the plane drawing of S(I(M, k)).

Figure 2: Plane drawing of S(I(M, 3)) for the modelM in Figure 1.

I Simpler O(n) time recognition algorithm of UCA graphs.

Minimal UCA models are integer

I Let S be the synthetic graph of a minimal (c, `)-CA modelM.
I Fact. S has nose-likeWN and hollow-likeWH cycles with weight 0.
I From the common vertex ofWN andWH, we build a circuit of S with

weight 0 that corresponds to a cycle of S(I(M, k)).
. Hence, ` coincides with the minimal feasible length for I(M, k).
. Implying that ` is integer.

I Next, we build a nose-like circuit of S with one nose more than hollows.
. Implying that c is integer.

I The algorithm to findM runs in O(n3) time and O(n2) space.

Conclusions

I We define the intervalization I of a PCA modelM.
. Simpler characterization of UCA models.
. Different properties about S(M) are found by studying S(I).

I We prove that ` and c are integer for minimal (c, `)-CA models.
I We devise an O(n3) time algorithm to compute a minimal (c, `)-CA model

equivalent to an input UCA model.
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