Minimal Unit Circular-Arc Models are Integer

Francisco J. Soulignac & Pablo Terlisky

CONICET, Universidad de Quilmes, Universidad de Buenos Aires

{fsoulign,terlisky}@dc.uba.ar

Introduction

A proper circular-arc (PCA) model *M* is defined based on the endpoints s(A) and t(A) of its arcs on a circle C.

 $s(A_1)$

A new characterization of UCA models

- ▶ Intervalization $\mathcal{I}(\mathcal{M}, \mathbf{k})$: copy **k** times the arcs of \mathcal{M} in a PIG model.
 - Nose (hollow) path: contain no hollows (no noses).
 - ▷ Nose-(hollow-)like: more ext. noses (hollows) than ext. hollows (noses).
 - ▷ **Greedy nose (hollow):** prefer noses (hollows) to steps.
- Characterization of UCA models.
 - $\triangleright \mathcal{M}$ is equivalent to a UCA model.
 - every nose-like circuit intersects every hollow-like circuit.
 - ▷ any greedy nose cycle intersects any greedy hollow cycle.

(c, ℓ)-CA model: C has circumference c, arcs have length ℓ.
 ℓ-IG model: arcs have length ℓ, no arc crosses 0.

Problem: Find the Minimal Model

A (c, ℓ)-CA model *M* is weakly minimal when

 ℓ_M ≤ ℓ_N and
 c_M ≤ c_N.

 For any equivalent model *N*. If also
 s_M(A_i) ≤ s_N(A_i) for 1 ≤ i ≤ n,
 then *M* is strongly minimal.

Remark: the existence of minimal models is not obvious because 1–3 must hold simultaneously.

▶ Proof. Take advantage of the plane drawing of $S(\mathcal{I}(\mathcal{M}, \mathbf{k}))$.

Figure 2: Plane drawing of $S(\mathcal{I}(\mathcal{M}, 3))$ for the model \mathcal{M} in Figure 1. Simpler O(n) time recognition algorithm of UCA graphs.

Minimal UCA models are integer

- Let S be the synthetic graph of a minimal (c, ℓ) -CA model \mathcal{M} .
- **Fact.** S has nose-like \mathcal{W}_N and hollow-like \mathcal{W}_H cycles with weight **0**.
- From the common vertex of W_N and W_H, we build a circuit of S with weight 0 that corresponds to a cycle of S(I(M, k)).
 ▷ Hence, ℓ coincides with the minimal feasible length for I(M, k).
 ▷ Implying that ℓ is integer.
 ▷ Next, we build a nose-like circuit of S with one nose more than hollows.
 ▷ Implying that c is integer.
 ▷ The algorithm to find M runs in O(n³) time and O(n²) space.

- Pirlot: every PIG model is equivalent to an integer strongly minimal model.
- Soulignac: every UCA model is equivalent to a weakly minimal model. Is it integer?
- ▶ Conjecture: $c, \ell \in \mathbb{N}$ for every minimal (c, ℓ) -CA model.

Figure 1: a PCA model and its equivalent minimal model.

Synthetic Graphs (Pirlot, Soulignac)

- For a PCA model \mathcal{M} with arcs $A_1 < \ldots < A_n$:
- \triangleright One vertex for each arc A_1, \ldots, A_n .
- $\triangleright \textit{ steps: } A_i \to A_{i+1} \textit{ for } 1 \leq i \leq n.$
- ▷ noses: $v(A_i) \rightarrow v(A_j)$ when $t(A_i)s(A_j)$ are consecutive in \mathcal{M} .
- \triangleright hollows: $v(A_i) \rightarrow v(A_j)$ when $s(A_i)t(A_j)$ are consecutive in \mathcal{M} .
- \triangleright weights: separation of the endpoints in any equivalent (c, ℓ) -CA model.
- **Theorem:** equivalent to (c, ℓ) -CA iff no cycle has a positive weight.

Mitas' plane drawing of the synthetic graph

Conclusions

- \blacktriangleright We define the intervalization ${\cal I}$ of a PCA model ${\cal M}.$
 - Simpler characterization of UCA models.
 - \triangleright Different properties about $\mathcal{S}(\mathcal{M})$ are found by studying $\mathcal{S}(\mathcal{I})$.
- We prove that ℓ and **c** are integer for minimal (c, ℓ) -CA models.
- ► We devise an O(n³) time algorithm to compute a minimal (c, ℓ)-CA model equivalent to an input UCA model.

References

[1] Jutta Mitas.

Minimal representation of semiorders with intervals of same length.

- Vertices: positions in a circular matrix (first column follows last column).
- Internal edges (thick): advance to the right and induce a plane drawing.
- External edges (thin): escape through the top and last rows.

Consequently, every cycle has exactly one more hollow than nose.
 Hence, every cycle 𝒱 has weight (ℓ + 1) + |𝒱|
 implying that the minimum feasible ℓ is integer.
 We exploit this drawing to settle Soulignac's conjecture.

In Orders, algorithms, and applications (Lyon, 1994), volume 831 of Lecture Notes in Comput. Sci., pages 162–175. Springer, Berlin, 1994.

[2] Francisco J. Soulignac.

Bounded, minimal, and short representations of unit interval and unit circular-arc graphs. *CoRR*, abs/1408.3443, 2014.

[3] Marc Pirlot.

Minimal representation of a semiorder. *Theory and Decision*, 28(2):109–141, 1990.

Acknowledgments

Supported by PICT ANPCyT grants 2013-2205 and 2015-2419, and by PUNQ Grant 1451/15.