Faster bottleneck non-crossing matchings of points in convex position

Marko Savić and Miloš Stojaković

Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad

Geometric perfect matchings

Vertices?

Various planar objects

Points

Configuration?

- General position
- Special cases (Convex position, ...)

Extremal?

Minimize total sum of lengths

Connections?

- Curves
- Straight-line segments

Crossings?

- Allowed
- Not allowed

How to find a bottleneck matching?

- ► No cascades Only two possible cases.
- ► Single cascade A solution to one of the subproblems.
- ► Two cascades Impossible.
- ► Three cascades
- ▷ For all triples (i, j, k) of vertices, combine the three subproblems defined by them. $O(n^3)$ time not an improvement.
- ▷ Choose (i, j) only from a set of at most linear size. $O(n^2)$ time!

- Maximize total sum of lengths
- Bottleneck (minimize the longest segment)

Bottleneck non-crossing matchings, convex position

Inner diagonals

- Lemma: There is a bottleneck matching whose every inner diagonal is necessary.
- Lemma: There is a bottleneck matching with at least one inner diagonal being a candidate diagonal.

▷ Candidate diagonal := necessary diagonal \land (turning angle $\leq 2\pi/3$)

Polarity

For a candidate diagonal (i, j), we look at the points $\{i + 1, ..., j - 1\}$. **Lemma:** They all must lie either in Π^+ or Π^- .

Bottleneck non-crossing matchings - results

- ► (2010 Carlsson, Armbruster)
 - General position for bichromatic point set is NP-hard
- ► (2014 Abu-Affash, Carmi, Katz, Trablesi)
- General position for monochromatic point set is NP-hard, no PTAS
- \triangleright Factor $2\sqrt{10}$ approximation algorithm
- ▷ Convex position in $O(n^3)$
- (2016+ Savić, Stojaković)
 - ▷ Convex position in $O(n^2)$

Edges, Diagonals, Cascades

Edge – neighbouring match.

- ► Diagonal any other match.
- Cascade sequence of "parallel" diagonals.
- **Lemma:** There is a bottleneck matching with at most three

(i, j) has positive polarity, and j is pole.

- Lemma: No two candidate diagonals of the same polarity can have the same point as a pole.
- **Corollary:** There are O(n) candidate diagonals.

Algorithm

We search only through matchings in which one of the inner diagonals is a candidate diagonal.

Solve subproblems

▷ While doing so, find necessary and candidate diagonals.

- For each candidate diagonal (i, j)
 - ▷ For each point k not in {i,...,j}
 ▷ check if MATCHING(i,j) ∪ MATCHING(j + 1, k) ∪ MATCHING(k + 1, i - 1) is best so far.

cascades.

Lemma: All subproblems can be solved in O(n²) total time.
 (i, j) is necessary if it is contained in all solutions to MATCHING(i, j).

Total running time is $O(n^2)$.

