# Minimum codegree threshold for covering k-uniform hypergraphs with tight cycles Nicolás Sanhueza-Matamala (nicolas@sanhueza.net) University of Birmingham, United Kingdom



A k-graph  $\mathcal{H} = (V, E)$  consists of a vertex set V and an edge set E, where each edge  $e \in E$  is a subset of V of size exactly k. Given a k-graph  $\mathcal{H} = (V, E)$  and  $S \subseteq V$ , let deg<sub> $\mathcal{H}</sub>(S)$  denote the number of</sub> edges of  $\mathcal{H}$  containing the set S. We define the **minimum codegree**  $\delta_{k-1}(\mathcal{H})$  of  $\mathcal{H}$  to be the minimum of deg<sub> $\mathcal{H}</sub>(S)$  over all (k-1)-element</sub> sets S.



### **Proof sketch for** $s \equiv 0 \mod k$

*k*-partite *k*-graph, that is, the *k*-graph with vertex sult for complete *k*-partite *k*-graphs. If *k* divides *s*,  $1 \le i \le k$ , the sets  $\{V_1, \ldots, V_k\}$  are pairwise disjoint covering threshold for  $C_s^k$  follows as a corollary. and  $E(K^k(t)) = \{e \subseteq V(K^k(t)) : |e \cap V_i| = 1 \text{ for all } 1 \leq i\}$  $i \leq k$ .

#### Theorem (Erdős, [1])

For every  $k \ge 2$  and  $t \ge 1$ , any k-graph on n vertices with at least  $\Omega(n^k)$  edges has a copy of  $K^{R}(t)$ .

Given  $k \ge 2$  and  $t \ge 1$ , let  $K^{k}(t)$  be the **complete** We use this result of Erdős to prove a covering reset  $V(K^k(t)) = V_1 \cup \cdots \cup V_k$  such that  $|V_i| = t$  for all then  $C_s^k$  is a spanning subgraph of  $K^k(s/k)$ , so the

BIRMINGHAN

#### **Proposition 1**

For every  $k \ge 2$  and  $t \ge 1$ ,  $c(n, K^k(t)) = o(n)$ . Moreover,  $c(n, C_s^k) = o(n)$  if  $s \equiv 0 \mod k$ .

 $C_{10}^3$ , a tight cycle on 10 vertices.

Given  $k \le s$ , we say that a k-graph  $C_s^k$  is a **tight cycle** on s vertices if there is a cyclic ordering of its vertices such that every k consecutive vertices under this ordering form an edge, and no other edges are present.

### **Covering problem**

Given hypergraphs  $\mathcal{H}$  and  $\mathcal{F}$ , we say that  $\mathcal{H}$  has an  $\mathcal{F}$ -covering if every vertex in  $\mathcal{H}$  is contained in a copy of  $\mathcal{F}$ . Define

### **Proof sketch for** $s \not\equiv 0 \mod k$

We give a sketch for k = 3. Let  $\mathcal{H}$  be a 3-graph By adding these two gadgets we find a tight cycle on *n* vertices with  $\delta_2(\mathcal{H}) \ge (1/2 + o(1))n$ , and let covering v of any length  $3m + 1 \ge 2k^2 + 1 = 19$ , by  $v \in V(\mathcal{H})$  be any vertex. By Proposition 1, v is con-following the vertices in the order shown in the ditained in a copy of  $K^{k}(t)$  with vertex sets  $V_1, V_2$  and  $V_3$ , for some fixed t to be defined later. Suppose  $v \in V_1$ .

agram below.



#### Definition

A {1,2}-gadget is W<sub>1,2</sub> = {x,y,z,z',w} such that  $x \in V_1$ ,  $y \in V_2$ , and  $z, z' \in V_3$  and  $w \in V(\mathcal{H}) \setminus (V_1 \cup V_2 \cup V_3)$  and yzwxz' is a tight path in  $\mathcal{H}$ . Similarly, a {2, 3}-gadget is  $W_{2,3} = \{a, b, c, c', d\}$  such that  $a \in V_2, b \in V_3$ ,  $c, c' \in V_1, d \in V(\mathcal{H}) \setminus (V_1 \cup V_2 \cup V_3)$  and acdc'bis a tight path in  $\mathcal{H}$ .

 $c(n, \mathcal{F}) = \max\{\delta_{k-1}(\mathcal{H}) : |V(\mathcal{H})| = n \text{ and }$  $\mathcal{H}$  is a k-graph without an  $\mathcal{F}$ -covering}.

This value is called **minimum codegree covering threshold for**  $\mathcal{F}$ . It was introduced by Falgas-Ravry and Zhao [2], who studied  $c(n, C_4^3)$ and  $c(n, C_{5}^{3})$ .

**Question:** Can we determine  $c(n, C_s^k)$ ?

### **Theorem (Han–Lo–S., 2016<sup>+</sup>)**

For every  $s \ge 2k^2$  and  $k \ge 2$ ,  $c(n, C_{s}^{k}) \leq \begin{cases} o(n) & \text{if } s \equiv 0 \mod k, \\ \left(\frac{1}{2} + o(1)\right)n & \text{if } s \not\equiv 0 \mod k. \end{cases}$ 

Moreover, the bound is tight if  $s \equiv 0 \mod k$  or gcd(s, k) = 1.

# **Extremal example for** gcd(*s*, *k*) = 1

Let  $\mathcal{H}$  be a *k*-graph such that

By the codegree condition, every pair in  $V_1 \times V_3$ or  $V_2 \times V_3$  has at least (1/2 + o(1))n neighbours. By averaging, we find a vertex  $w \notin V_1 \cup V_2 \cup V_3$ such that N(w) contains at least  $(1 + o(1))t^2$  pairs in  $(V_1 \times V_3) \cup (V_2 \times V_3)$ . If t is large enough, we can find x, y, z, z' as in the definition of a  $\{1, 2\}$ -gadget. The existence of a {2, 3}-gadget is proved analogously.

# **Future work: tiling thresholds**

We say that  $\mathcal{H}$  has a  $C_s^k$ -factor if there are vertex-disjoint copies of  $C_s^k$  covering every vertex of  $\mathcal{H}$ . Define

 $t(n, C_s^k) = \max\{\delta_{k-1}(\mathcal{H}) : |V(\mathcal{H})| = n \text{ and } \mathcal{H} \text{ is a } k \text{-graph without a } C_s^k \text{-factor}\}.$ 

We call this value the **minimum codegree tiling threshold for**  $C_s^k$ .

When  $s \equiv 0 \mod k$ , the asymptotic value of  $t(n, C_s^k) = (1/2 + o(1))n$  follows from a result of Mycroft [3], who studied K-factors for complete k-partite k-graphs K. We give lower bounds for other cases.

#### **Proposition 2**

For  $3 \le k < s \le n$  with  $s|n, t(n, C_s^k) \ge (1/2 + o(1))n$ . Moreover, if gcd(s, k) = 1,  $t(n, C_s^k) \ge \begin{cases} \left\lfloor \left(\frac{1}{2} + \frac{1}{2s}\right)n \right\rfloor - k & \text{if } k \text{ is even,} \\ \left\lfloor \left(\frac{1}{2} + \frac{1}{2s}\right)n \right\rfloor - k & \text{if } k \text{ is even,} \end{cases}$ 

 $V(\mathcal{H}) = A \cup B$ , with  $|A| = \lfloor n/2 \rfloor$ ,  $|B| = \lceil n/2 \rceil$ ,  $E(\mathcal{H}) = \{ e \subseteq V(\mathcal{H}) : |e| = k, |e \cap A| \neq k \mod 2 \}.$ 

Note that  $\delta_{k-1}(\mathcal{H}) \geq \lfloor n/2 \rfloor - k + 1$ .



Note that if  $v_1 \ldots, v_\ell$  is a tight cycle in  $\mathcal{H}$ , then  $v_i \in A$  implies  $v_{i+k} \in \mathcal{H}$ A for all *i*. If  $v_1 \in A$ , then  $gcd(\ell, k) > 1$ . Therefore no vertex in A is contained in a  $C_s^k$ .

$$\left[ \left[ \left( \frac{1}{2} + \frac{k}{4s(k-1) + 2k} \right) n \right] - k \quad \text{if } k \text{ is odd.} \right]$$

As a work in progress, we think we can prove that for every  $s \neq 0 \mod k$ ,  $s \geq 2k^2$ ,  $n \equiv 0 \mod s$ ,  $t_{k-1}(n, C_{S}^{k}) \leq \left(\frac{1}{2} + \frac{1}{2s} + o(1)\right)n,$ 

which would be asymptotically tight for even k and gcd(s, k) = 1.

### References

[1] Paul Erdős. "On extremal problems of graphs and generalized graphs". In: Israel J. Math. 2.3 (1964), pp. 183–190. [2] Victor Falgas-Ravry and Yi Zhao. "Codegree thresholds for covering 3-uniform hypergraphs". In: arXiv preprint arXiv:1512.01144 (2015).

[3] Richard Mycroft. "Packing *k*-partite *k*-uniform hypergraphs". In: J. Combin. Theory Ser. A 138 (2016), pp. 60–132.