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Lecture 4.

The discrete volume we would like to develop is the solid angle sum

AP (t) :=
X

n2Zd

!tP (n),

where t is now extended to all real positive numbers.



Theorem (Ehrhart, Macdonald)

AP (t) = vol(P )td + ad�2t
d�2

+ ad�4t
d�4

+ · · ·+ a1t,

AP (t) = vol(P )td + ad�2t
d�2

+ ad�4t
d�4

+ · · ·+ a2t
2,

Suppose P ⇢ Rd
is a d-dimensional integer polytope.

Then the solid angle sum AP (t) is a polynomial for

positive integral values of t:

when d is odd, and

when d is even.

It was known from the 1960’s that we have a structure theorem for such

combinatorial-geometric polynomials.
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In lecture 3, we had the following:
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In lecture 3, we had the following:

AP (t) = tdvol(P ) + td lim
✏!0

X

⇠2Zd�{0}

ˆ

1P (t⇠)e
�✏||⇠||2 .

This representation is valid for any positive real t > 0.
Our job now is to continue to develop the theory of 1̂P (t⇠).

Next, we’ll use Stoke’s formula to do so.
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= td lim
✏!0

X

⇠2Zd

 
vol(P )ei�⇠

1{0}(⇠) +
�1

2⇡i

X

G2@P

ht⇠, NP (G)i
kt⇠k2

ˆG(t⇠) 1Rd�{0}(⇠)

!

Applying Stokes’ formula to

ˆ

1P , we get:

More details of the analysis

AP (t) = tdvol(P ) + td lim
✏!0

X

⇠2Zd�{0}

ˆ

1P (t⇠)e
�✏||⇠||2
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= td lim
✏!0

X

⇠2Zd

 
vol(P )ei�⇠

1{0}(⇠) +
�1

2⇡i

X

G2@P

ht⇠, NP (G)i
kt⇠k2

ˆG(t⇠) 1Rd�{0}(⇠)

!

= tdvol(P ) +

✓
�1

2⇡i

◆
td�1

X

G2@P

lim

✏!0

X

⇠2Zd\{0}

h⇠, NP (G)i
k⇠k2

ˆG(t⇠).

Applying Stokes’ formula to

ˆ

1P , we get:

More details of the analysis

AP (t) = tdvol(P ) + td lim
✏!0

X

⇠2Zd�{0}

ˆ

1P (t⇠)e
�✏||⇠||2

Ok, so where do these steps come from?
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If projF (⇠) = 0, then

ˆ

1F (⇠) = vol(F )ei�⇠ ,

and �⇠(x) := �2⇡h⇠, xi := �⇠ is constant on F .

Theorem.  Combinatorial Stoke’s Formula

(1)
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If projF (⇠) = 0, then

ˆ

1F (⇠) = vol(F )ei�⇠ ,

and �⇠(x) := �2⇡h⇠, xi := �⇠ is constant on F .

If projF (⇠) 6= 0, then

ˆ

1F (⇠) =
�1

2⇡i

X

G2@F

hprojF (⇠), NF (G)i
kprojF (⇠)k2

ˆ

1G(⇠).

Theorem.  Combinatorial Stoke’s Formula

(1)

(2)
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We denote by projF (⇠) the orthogonal projection of ⇠,
considered as a vector in Rd

, onto F .
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We denote by projF (⇠) the orthogonal projection of ⇠,
considered as a vector in Rd

, onto F .

Let F be a polytope in Rd
whose dimension satisfies 1  dim(F )  n.
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We denote by projF (⇠) the orthogonal projection of ⇠,
considered as a vector in Rd

, onto F .

Let F be a polytope in Rd
whose dimension satisfies 1  dim(F )  n.

For each (codimension-one) facet G ⇢ F let NF (G) be the

unit normal vector to G that points out of F .

Let �⇠(x) := �2⇡h⇠, xi denote the real linear phase function

in the integral formula of the definition of

ˆ

1F .
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Historical notes

Skriganov’s analysis involves ergodicity over the space of all d-dim’l lattices:

SLd(R)/SLd(Z).

This combinatorial version of Stokes’ formula was used by Burton Randol

in the mid 1960’s, in the context of (asymptotic) lattice point enumeration for

irrational polytopes.

This same formula was used by Alexander Barvinok, in the 1990’s (and

again in 2006), for lattice point enumeration, in particular to obtain complexity

results.

The same formula was also used by Skriganov in the late 1990’s to obtain

lattice point enumeration results in polytopes, together with ergodic techniques,

for the purposes of average-case discrepancy results over polytopes.
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(a, 0, 0)

(0, b, 0)

(0, 0, c)

Facet F

NP (F )

NF (G)

Edge G
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(0, 0, c)

Facet F

NP (F )
NF (G)

Edge G

V1 = (a, 0, 0)

V2 = (0, b, 0)

NE(V2)

NP (F )

NF (G)

NE(V2)

NP (F )

NF (G)

An orthogonal frame formed

by normals to faces of P
after 3 iterations of the

discrete Stoke formula

An orthogonal frame formed

by normals to faces of P
after 2 iterations of the

discrete Stoke formula
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Monday, February 22, 16
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This visual gives a symbolic depiction of the face poset of 
P, here drawn as a suggestive directed graph.  We can see 
all  the (rooted) flags, beginning from a symbolic vertex in 
the center, marked with the color purple.   

Here the flags that terminate with the yellow vertices have 
length 1, those that terminate with the green vertices have 
length 2, and those that terminate with the blue vertices 
have length 3. 
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AP (t) :=
X

n2Zd

!tP (n),

We recall our goal here: To find explicit formulations for all of

the coe�cients of the solid angle polynomial (in t):

in terms of the geometry of P .
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AP (t) :=
X

n2Zd

!tP (n),

We recall our goal here: To find explicit formulations for all of

the coe�cients of the solid angle polynomial (in t):

in terms of the geometry of P .

AP (t) = vol(P )td + ad�1(t)t
d
+ · · ·+ a0(t),

where each coe�cient is a periodic function of t, admitting a period of 1.

Theorem. Let P be a rational polytope.

Then for all positive real numbers t,
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Let P be any real polytope. Then the codimension-1 quasi-coe�cient

of the solid angle sum AP (t) has the following closed form:

ad�1

(t) = �
X

F a facet of P
with vF 6=0

vol(F )

kvF k
¯

B

1

(hvF , xF it),

Theorem (2016, Diaz, Le Quang, R)



sinai.robins@gmail.com

Let P be any real polytope. Then the codimension-1 quasi-coe�cient

of the solid angle sum AP (t) has the following closed form:

ad�1

(t) = �
X

F a facet of P
with vF 6=0

vol(F )

kvF k
¯

B

1

(hvF , xF it),

where vF is the primitive integer vector which is an outward-pointing

normal vector to F , xF is any point lying in the a�ne span

of F , and t is any positive real number.

Theorem (2016, Diaz, Le Quang, R)
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Let P be any real polytope. Then the codimension-1 quasi-coe�cient

of the solid angle sum AP (t) has the following closed form:

ad�1

(t) = �
X

F a facet of P
with vF 6=0

vol(F )

kvF k
¯

B

1

(hvF , xF it),

where vF is the primitive integer vector which is an outward-pointing

normal vector to F , xF is any point lying in the a�ne span

of F , and t is any positive real number.

Theorem (2016, Diaz, Le Quang, R)

The first periodic Bernoulli polynomial is defined by:

B̄1(x) :=

⇢
x� [x]� 1

2 if x /2 Z,
0 if x 2 Z.
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(If there does not exist a primitive integer vector that is normal to F ,

then by convention F contributes 0 to this sum)
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(If there does not exist a primitive integer vector that is normal to F ,

then by convention F contributes 0 to this sum)

Incidentally, the Fourier series for the first periodic

Bernoulli polynomial

¯

B1(x) is quite useful:
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B̄1(x) =
1

2⇡i

X

n2Z

e

2⇡in

n

.

(If there does not exist a primitive integer vector that is normal to F ,

then by convention F contributes 0 to this sum)

Incidentally, the Fourier series for the first periodic

Bernoulli polynomial

¯

B1(x) is quite useful:

(Exercise 2) 

(Exercise 1) Show that

¯

B(hvF , xF it) is independent of the choice

of xF lying in the a�ne span of F .
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Theorem (2016, Diaz, Le Quang, R)

Let P be a d-dimensional real polytope in Rd
, and let

t be a positive real number. Then we have

AP (t) =
dX

i=0

ai(t)t
i,
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Theorem (2016, Diaz, Le Quang, R)

Let P be a d-dimensional real polytope in Rd
, and let

t be a positive real number. Then we have

AP (t) =
dX

i=0

ai(t)t
i,

where

ai(t) := lim
✏!0

X

l(T )=d�i

X

⇠2Zd\S(T )

RT (⇠)ET (t⇠) e
�⇡✏k⇠k2

.
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Theorem (2016, Diaz, Le Quang, R)

Let P be a d-dimensional real polytope in Rd
, and let

t be a positive real number. Then we have

AP (t) =
dX

i=0

ai(t)t
i,

where

Let’s describe the notation carefully.

ai(t) := lim
✏!0

X

l(T )=d�i

X

⇠2Zd\S(T )

RT (⇠)ET (t⇠) e
�⇡✏k⇠k2

.
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Let T be any flag in the face poset of P , given by

T := (P ! F1 ! F2, . . . ,! Fk�1 ! Fk),

so that by definition dim(Fj) = d� j.

We define the admissible set S(T ) of the flag T to be the set of all vectors

⇠ 2 Rd
that are orthogonal to the tangent space of Fk but not orthogonal to

the tangent space of Fk�1.

The notation

What is the admissible set S(T)?



sinai.robins@gmail.com

Monday, February 22, 16

The face poset of P , where P is a tetrahedron, showing our

flags T as directed paths.
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W(F,G)(⇠) :=
�1

2⇡i

hprojF (⇠), NF (G)i
kprojF (⇠)k2

.

We notice that these weights are rational functions of ⇠, and
homogeneous of degree �1.

We attach a weight to each edge of the face poset of P :

What is the rational function weight R(T)?

We define the rational weight RT(⇠) := R(P!...!Fk�1!Fk)(⇠) to be
the product of weights associated to all the flags T of length one,
times the Hausdor↵ volume of Fk (the last node of the flag T).
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What is the exponential function E(T)?

The exponential weight ET(⇠) = E(P!...!Fk�1!Fk)(⇠) is defined

to be the evaluation of e

�2⇡ih⇠,xi
at any point x on the face F

k

:

ET(⇠) := e�2⇡ih⇠,x0i,

for any x0 2 Fk. We note that the inner product h⇠, x0i
does not depend on the position of x0 2 Fk.



Exercises.

Exercise 1.  

B̄1(x) =
1

2⇡i

X

n2Z

e

2⇡in

n

.

Exercise 2. 

Show that

¯

B(hvF , xF it) is independent of the choice

of xF lying in the a�ne span of F .

Show that
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Exercises.

Exercise 3. 

Let P be a full-dimensional real polytope in Rd
.

Then the solid angle sum AP (t) satisfies the functional identity:

AP (�t) = (�1)

dim(P )AP (t),

valid for all nonzero real numbers t.

(so in particular we can extend the solid angle polynomial

to all real numbers t)
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Exercises.

Exercise 4.  
Work out the full solid angle sum (which is a quasi-polynomial of the real

parameter t) for the triangle whose vertices are (0, 0), (1, 0), and (0, 1).

Exercise 5.  
Work out the full solid angle sum for the Octahedron whose vertices are
(1, 0, 0), (�1, 0, 0), (0, 1, 0), (0,�1, 0),(0, 0, 1), (0, 0,�1).

Exercise 6.  
Compute the solid angle sum, valid for all real t, for the cross polytope

⇧ := {x 2 Rd | |x1|+ · · ·+ |xd|  1}.
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Reference:   www.mathematicaguidebooks.org/soccer/

Thank You

http://www.mathematicaguidebooks.org/soccer/

