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       Lattice point enumeration in polytopes:

        Discrete Volumes

______________________________________

LP := #{Zd \ P}.

If we dilate P by a real number t first, and then count,

we get:

LP (t) := #{Zd \ tP}.

Lecture 3.

One definition of a discrete volume of a polytope P is given by
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Theorem (Ehrhart, 1950’s)

LP (t) = vol(P )td + cd�1t
d�1

+ · · ·+ c1t+ 1,

Suppose P is an integer polytope.

Then

a polynomial in the discrete positive integer variable t.
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Theorem (Ehrhart, 1950’s)

LP (t) = vol(P )td + cd�1t
d�1

+ · · ·+ c1t+ 1,

Suppose P is an integer polytope.

Then

a polynomial in the discrete positive integer variable t.

Ehrhart also showed that cd�1 =

1
2vol(@P ),

once we normalize the boundary of P with respect

to the appropriate integer sublattice passing through

the a�ne span of each facet of P .
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Theorem (Ehrhart, 1950’s)

Suppose P is a rational polytope. Then

LP (t) = vol(P )td + cd�1(t)t
d�1

+ · · ·+ c1(t)t+ c0(t),

where each coe�cient ck(t) is a periodic function of t 2 Z>0.
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Theorem (Ehrhart, 1950’s)

Suppose P is a rational polytope. Then

LP (t) = vol(P )td + cd�1(t)t
d�1

+ · · ·+ c1(t)t+ c0(t),

where each coe�cient ck(t) is a periodic function of t 2 Z>0.

A lot of current research is focused on these coe�cients.

Intuitively, each coe�cient ck(t) gives us information about

the k-skeleton of P .
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M. Beck and S. Robins, Computing the continuous discretely: integer point

enumeration in polytopes, Springer UTM series, 2’nd edition, 2015.

shameless plug:
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where S✏(x) is a small sphere of radius ✏, centered at x.

We recall again that the solid angle at any point x 2 Rd
, of

a d-dim’l polytope P ⇢ Rd
, is defined by:

!P (x) :=
vol(S✏(x) \ P )

vol(S✏(x))
,
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where S✏(x) is a small sphere of radius ✏, centered at x.

We recall again that the solid angle at any point x 2 Rd
, of

a d-dim’l polytope P ⇢ Rd
, is defined by:

v

!P (x) :=
vol(S✏(x) \ P )

vol(S✏(x))
,
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We’d like to formalize and develop these pictures:
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We’d like to formalize and develop these pictures:
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So today we lift the carpet.....and see what is underneath the carpet.



As before, we form the solid angle sum at all integer points:

AP (t) :=
X

n2Zd

!tP (n),

initially defined for all positive integer values of t.
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As before, we form the solid angle sum at all integer points:

AP (t) :=
X

n2Zd

!tP (n),

initially defined for all positive integer values of t.

Theorem (Ehrhart, Macdonald)

Suppose P ⇢ Rd
is a d-dimensional integer polytope.

Then the solid angle sum AP (t) is a polynomial for

positive integral values of t:
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As before, we form the solid angle sum at all integer points:

AP (t) :=
X

n2Zd

!tP (n),

initially defined for all positive integer values of t.

Theorem (Ehrhart, Macdonald)

AP (t) = vol(P )td + ad�2t
d�2

+ ad�4t
d�4

+ · · ·+ a1t,

AP (t) = vol(P )td + ad�2t
d�2

+ ad�4t
d�4

+ · · ·+ a2t
2,

Suppose P ⇢ Rd
is a d-dimensional integer polytope.

Then the solid angle sum AP (t) is a polynomial for

positive integral values of t:

when d is odd, and

when d is even.
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Next, we link solid angles to Harmonic analysis.

Consider the classical Gaussian:

G

✏

(x) :=
1

✏

d/2
e

1
✏ ||x||

2

,

defined for all x 2 Rd
and for any fixed ✏ > 0.
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Next, we link solid angles to Harmonic analysis.

Consider the classical Gaussian:

G

✏

(x) :=
1

✏

d/2
e

1
✏ ||x||

2

,

defined for all x 2 Rd
and for any fixed ✏ > 0.

(f ⇤ g)(x) :=
R
Rd f(u)g(x� u)du.

We use this sequence of functions to “smooth” the

indicator function of P . The idea is to use the convolution

of functions, defined by:
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Next, we link solid angles to Harmonic analysis.

lim
✏!0

(1P ⇤G✏)(n) = !P (n).

Consider the classical Gaussian:

G

✏

(x) :=
1

✏

d/2
e

1
✏ ||x||

2

,

defined for all x 2 Rd
and for any fixed ✏ > 0.

(f ⇤ g)(x) :=
R
Rd f(u)g(x� u)du.

We use this sequence of functions to “smooth” the

indicator function of P . The idea is to use the convolution

of functions, defined by:

Lemma.
For each n 2 Rd

, we have

(folklore)
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Next, we link solid angles to Harmonic analysis.

Lemma.

lim
✏!0

(1P ⇤G✏)(n) = !P (n).

For each n 2 Rd
, we have

Consider the classical Gaussian:

G

✏

(x) :=
1

✏

d/2
e

1
✏ ||x||

2

,

defined for all x 2 Rd
and for any fixed ✏ > 0.

(f ⇤ g)(x) :=
R
Rd f(u)g(x� u)du.

We use this sequence of functions to “smooth” the

indicator function of P . The idea is to use the convolution

of functions, defined by:

(folklore)
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Lemma.

lim
✏!0

(1P ⇤G✏)(n) = !P (n).

For each n 2 Rd
, we have

(folklore)

Now we use Poisson summation, applied to this smoothed

version of the indicator function of P :

X

n2Zd

(1P ⇤G✏)(n) =
X

m2Zd

\(1P ⇤G✏)(m)
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Lemma.

lim
✏!0

(1P ⇤G✏)(n) = !P (n).

For each n 2 Rd
, we have

(folklore)

Now we use Poisson summation, applied to this smoothed

version of the indicator function of P :

X

n2Zd

(1P ⇤G✏)(n) =
X

m2Zd

\(1P ⇤G✏)(m)

=
X

m2Zd

1̂P (m)Ĝ✏(m)
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Lemma.

lim
✏!0

(1P ⇤G✏)(n) = !P (n).

For each n 2 Rd
, we have

(folklore)

Now we use Poisson summation, applied to this smoothed

version of the indicator function of P :

X

n2Zd

(1P ⇤G✏)(n) =
X

m2Zd

\(1P ⇤G✏)(m)

=
X

m2Zd

1̂P (m)Ĝ✏(m)

=
X

m2Zd

1̂P (m)e�✏||m||2 ,
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Lemma.

lim
✏!0

(1P ⇤G✏)(n) = !P (n).

For each n 2 Rd
, we have

(folklore)

Now we use Poisson summation, applied to this smoothed

version of the indicator function of P :

X

n2Zd

(1P ⇤G✏)(n) =
X

m2Zd

\(1P ⇤G✏)(m)

=
X

m2Zd

1̂P (m)Ĝ✏(m)

=
X

m2Zd

1̂P (m)e�✏||m||2 ,
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Exercise 3. 
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So we see how the fun begins! The next step is to sift out the

“non-generic” frequencies m that are orthogonal to the

facets of P , and it turns out that these m’s will give the next

“error” term.

And so on....
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Note that we have now defined this solid angle sum for all real,

positive t.



Brion’s Theorem (the continuous version)



Theorem. (Brianchon-Gram)

1P =
�

F�P

(�1)dimF 1KF

where 1KF is the indicator function of the tangent
cone to F .

We recall again the Brianchon-Gram relations for any polytope:
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Theorem (Brion, 1988)

Given a convex, simple d-dim’l polytope P , with

vertex set V , and known local tangent cone data at each

vertex vj 2 V , we have:

Z

P

e

2⇡ihz,xi
dx =

X

v2V

Z

Kv

e

2⇡ihz,xi
dx,

where Kv is the vertex tangent cone at the vertex v 2 P .
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These integrals in Brion’s identity are to be thought of as

the meromorphic continuation of themeselves, which are

“rational-exponential” functions given below.
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Our goal: to find a “global” proof for Brion’s identity,
which means a global approach to the Fourier transform
of a polytope.

We use Gaussians and elementary Fourier methods.

These integrals in Brion’s identity are to be thought of as

the meromorphic continuation of themeselves, which are

“rational-exponential” functions given below.

The Goal
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e2⇡ihz,xi�✏||x||2 ,

Proof. (SR)

Step 1. Fix z 2 Cd
, multiply both sides of the

Brianchon-Gram identity by the function

and integrate in x, over Rd
.
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e2⇡ihz,xi�✏||x||2 ,

Step 1. Fix z 2 Cd
, multiply both sides of the

Brianchon-Gram identity by the function

and integrate in x, over Rd
.

The presence of a fixed ✏ > 0 now allows us to proceed

with a global analysis of all cones simultaneously,

avoiding the usual problems of the ‘magic’ of disjoint

domains of convergence.

Proof.
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1P (x) =
X

F⇢P

(�1)dimF 1KF (x)

Proof.
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1P (x) =
X

F⇢P

(�1)dimF 1KF (x)

e2⇡ihx,zi�✏||x||21P (x) =
X

F⇢P

(�1)dimF 1KF (x) e2⇡ihx,zi�✏||x||2

Proof.
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1P (x) =
X

F⇢P

(�1)dimF 1KF (x)

e2⇡ihx,zi�✏||x||21P (x) =
X

F⇢P

(�1)dimF 1KF (x) e2⇡ihx,zi�✏||x||2

e2⇡ihx,zi�✏||x||21P (x) =
X

F⇢P

(�1)dimF 1KF (x) e2⇡ihx,zi�✏||x||2
Z

Rd

Z

Rd
dx dx

Proof.
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1P (x) =
X

F⇢P

(�1)dimF 1KF (x)

e2⇡ihx,zi�✏||x||21P (x) =
X

F⇢P

(�1)dimF 1KF (x) e2⇡ihx,zi�✏||x||2

e2⇡ihx,zi�✏||x||21P (x) =
X

F⇢P

(�1)dimF 1KF (x) e2⇡ihx,zi�✏||x||2
Z

Rd

Z

Rd
dx dx

e2⇡ihx,zi�✏||x||2 =
X

F⇢P

(�1)dimF e2⇡ihx,zi�✏||x||2
dx

dx

Z

P

Z

KF

Proof.
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The left-hand side is easy, and we still have to contend

with the Right-hand side:

Proof. Step 2.

We need to compute the limit as ✏ ! 0:

e2⇡ihx,zi�✏||x||2 =
X

F⇢P

(�1)dimF e2⇡ihx,zi�✏||x||2
dx

dx

Z

P

Z

KF

sinai.robins@gmail.com



The left-hand side is easy, and we still have to contend

with the Right-hand side:

Proof. Step 2.

We need to compute the limit as ✏ ! 0:

e2⇡ihx,zi�✏||x||2 =
X

F⇢P

(�1)dimF e2⇡ihx,zi�✏||x||2
dx

dx

Z

P

Z

KF

lim
✏!0

lim
✏!0
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The left-hand side is easy, and we still have to contend

with the Right-hand side:

Proof. Step 2.

We need to compute the limit as ✏ ! 0:

e2⇡ihx,zi�✏||x||2 =
X

F⇢P

(�1)dimF e2⇡ihx,zi�✏||x||2
dx

dx

Z

P

Z

KF

lim
✏!0

lim
✏!0

=
X

F⇢P

(�1)dimF e2⇡ihx,zi�✏||x||2
dx

Z

P

Z

KF

lim
✏!0

e

2⇡ihx,zi
dx
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e2⇡ihx,zi�✏||x||2
dx

Z

KF

lim
✏!0

Proof. Step 3.

We now have to compute the limit for each tangent cone:

We analyze each tangent cone integral based on the following

distinction among tangent cones:
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e2⇡ihx,zi�✏||x||2
dx

Z

KF

lim
✏!0

Proof. Step 3.

We now have to compute the limit for each tangent cone:

We analyze each tangent cone integral based on the following

distinction among tangent cones:

If there exists a vector v 2 Rd such that

then we call KF a type I tangent cone.
Otherwise, we call KF a type II tangent cone.

KF + v = KF ,
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e2⇡ihx,zi�✏||x||2
dx

Z

KF

lim
✏!0

Proof. Step 3.

We now have to compute the limit for each tangent cone:

We analyze each tangent cone integral based on the following

distinction among tangent cones:

If there exists a vector v 2 Rd such that

then we call KF a type I tangent cone.
Otherwise, we call KF a type II tangent cone.

KF + v = KF ,

Note: A type I tangent cone is also called a “translation-invariant” cone.

sinai.robins@gmail.com



Z

P

e

2⇡ihx,zi
dx = lim

✏!0

X

F⇢P

(�1)dimF

Z

KF

e

2⇡ihx,zi�✏||x||2

From step 2, we must make a local computation

for each tangent cone KF , according to:

For the invariant tangent cones (type I), it is easy to show

that their Fourier-Laplace transform vanishes.

For the type II tangent cones, it is less straightforward to

compute the nontrivial limit, but not that bad

(we’ll use iterated integration by parts).

Proof. Step 3.
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(a) Let Kv be a d-dim’l simplicial pointed cone, (type II)

with vertex v and with edge vectors w1, . . . , wd 2 Rd
.

lim
✏!0

Z

Kv

e

2⇡ihx,zi�✏||x||2
dx =

✓
�1

2⇡i

◆
d

e

2⇡ihv,zi |detK
v

|
Q

d

k=1hwk

(v), zi
.

Then

Lemma.

Proof. Step 4.
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(b) For any type I cone KF , we have

lim
✏!0

Z

KF

e

2⇡ihx,zi�✏||x||2
dx = 0.

(a) Let Kv be a d-dim’l simplicial pointed cone, (type II)

with vertex v and with edge vectors w1, . . . , wd 2 Rd
.

lim
✏!0

Z

Kv

e

2⇡ihx,zi�✏||x||2
dx =

✓
�1

2⇡i

◆
d

e

2⇡ihv,zi |detK
v

|
Q

d

k=1hwk

(v), zi
.

Then

Lemma.

Proof. Step 4.
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Here we use integration by parts, (iterated d times).

Proof. Step 4.

Z 1

0
e

2⇡ixz�✏x

2

dx =

To see why part (a) of the Lemma is true, consider

the 1-dimensional case:
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Here we use integration by parts, (iterated d times).

Proof. Step 4.

Z 1

0
e

2⇡ixz�✏x

2

dx =
e

�✏x

2
e

2⇡ixz

2⇡iz

���
1

0
�

Z 1

0

e

2⇡ixz

2⇡iz
(�2✏x)e�✏x

2

dx

=
�1

2⇡iz
+

✏

⇡iz

Z 1

0
xe

2⇡ixz�✏x

2

dx

=
�1

2⇡iz
+

p
✏

⇡iz

Z 1

0
ue

2⇡i up
✏
z�u

2

du,

To see why part (a) of the Lemma is true, consider

the 1-dimensional case:
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Here we use integration by parts, (iterated d times).

Proof. Step 4.

Z 1

0
e

2⇡ixz�✏x

2

dx =
e

�✏x

2
e

2⇡ixz

2⇡iz

���
1

0
�

Z 1

0

e

2⇡ixz

2⇡iz
(�2✏x)e�✏x

2

dx

=
�1

2⇡iz
+

✏

⇡iz

Z 1

0
xe

2⇡ixz�✏x

2

dx

=
�1

2⇡iz
+

p
✏

⇡iz

Z 1

0
ue

2⇡i up
✏
z�u

2

du,

where we have used the substitution u :=

p
✏ x in the last step.

Therefore,

lim
✏!0

Z 1

0
e

2⇡ixz�✏x

2

dx = �1
2⇡iz . ⇤

To see why part (a) of the Lemma is true, consider

the 1-dimensional case:
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Summary

1. This proof of the (continuous) Brion identity uses a global

analytic approach, as opposed to all the previous local

approaches taken before.

2. Only one fixed value of z 2 Cd is needed to allow
all integrals to simultaneously converge, namely any value
of z for which hw,<(z)i 6= 0, or for which hw,=(z)i 6= 0,
for all edge vectors w of P .

In other words, if either the real or imaginary part of z
lies outside this finite union of hyperplanes, it su�ces.
Hence, no meromorphic continuation of any transforms is required.
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Exercises.

Exercise 2.  

lim
✏!0

Z

KF

e

2⇡ihx,zi�✏||x||2
dx = 0.

Prove part (b) of the Lemma, namely that if we have

a tangent cone KF which is translation invariant by some vector v,
then

Exercise 1.  
Consider the classical Gaussian:

G

✏

(x) :=
1

✏

d/2
e

1
✏ ||x||

2

,

defined for all x 2 Rd
and for any fixed ✏ > 0.

Prove that its Fourier transform equals

Ĝ
✏

(n) = e✏||x||
2

.
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Exercises.

Exercise 3. 

Exercise 4.  
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Exercises.

Exercise 5.  

Exercise 6.  

Show that if c is a constant, then

ˆ

f(x+ c) =

ˆ

f(x)e

2⇡ixc
.

Show that

\
(f ⇤ g)(x) = ˆ

f(x)ĝ(x).
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Reference:   www.mathematicaguidebooks.org/soccer/

Thank You
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