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The Hirschhorn tiling

(Michael Hirschhorn, 1976, UNSW)
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 1. We fix one object
2. Even more, we focus on translational tilings
3. Finally, we invoke the assumption that    
    our object is convex.

What kind of tilings do we study here?
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What kind of tilings?



So we consider translations by one convex object P (necessarily a polytope),

and we tile Euclidean space by a set of discrete translation vectors ⇤, so

that (almost) every point gets covered exactly once.

Example.

This Fedorov solid (also known as a Rhombic Dodecahedron) tiles R3



Indicator functions

Definition.

Given any set P ⇢ Rd
, we define

1P (x) :=

(
1 if x 2 P

0 if x /2 P.

We say that a polytope P is symmetric (about the origin) if for any x 2 P ,

we also have �x 2 P .

Definition.



So to be a bit more Bourbaki about it, we may write:

Definition.

We say that P tiles Rd
with the discrete multi set of

vectors ⇤ if

X

�2⇤

1P+�(v) = 1,

for all v /2 @P + ⇤.



Question 1. What is the structure of a polytope P that tiles all of

Euclidean space by translations, with some discrete set of vectors ⇤?

For example, when is it a zonotope? What do its facets look like?



Question 1. What is the structure of a polytope P that tiles all of

Euclidean space by translations, with some discrete set of vectors ⇤?

Question 2. What is the structure of the discrete set of vectors ⇤?

For example, when is it a zonotope? What do its facets look like?

For example, does ⇤ have to be a lattice? When? Why?

Can ⇤ be a finite union of lattices?



1-tilings in R3

Nikolai Fyodorovich Fedorov

Theorem. (Fedorov, 1885) There are 5 di↵erent combinatorial types of con-

vex bodies that tile R3
.



What about higher dimensions? Can we “classify” all polytopes that tile Rd

by translations?

1-tilings in Rd



Minkowski gave necessary conditions for a polytope to tile Rd.

The first results for tiling Euclidean space in general dimension were given
by Hermann Minkowski.

Minkowski gives a partial answer



Minkowski’s result

Theorem. (Minkowski, 1897)

If a convex polytope P tiles Rd
by translations, then:

1. P must be centrally symmetric

2. Each facet of P must be centrally symmetric



Corollary. Every polytope that tiles R1,R2
, or R3

by translations is a zonotope.
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Minkowski’s result

Theorem. (Minkowski, 1897)

If a convex polytope P tiles Rd
by translations, then:

1. P must be centrally symmetric

2. Each facet of P must be centrally symmetric

What’s that?



Zonotopes

Definition.

A Zonotope is a polytope P with the following equivalent properties:

1. All of the faces of P are centrally symmetric

2. P is the Minkowski sum of a finite number of line-segments

3. P is the a�ne image of some n-dimensional cube [0, 1]n.



A zonotope with 9 generatorsExample.

This is the projection of a 9-dimensional cube into R3



The 24-cell, a source of counterexamples

The 24-cell is a 4-dimensional polytope,

arising as the Voronoi cell of the

lattice D4 ⇢ R4
.
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The 24-cell, a source of counterexamples

The 24-cell is a 4-dimensional polytope,

arising as the Voronoi cell of the

lattice D4 ⇢ R4
.

It tiles R4
but it is not a zonotope.

Quiz. why not?

Answer. It has a face which is not centrally symmetric.

The lattice D4 is defined by:

D4 := {x 2 Zd |
Pd

k=1 xk ⌘ 0 mod 2}



Def. A Voronoi cell (at the origin) of any lattice

L is defined to be

{x 2 Rd | d(x,0)  d(x, l), for all l 2 L}

This region is, almost by definition, a polytope (why?).
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The Venkov-McMullen result, a converse to Minkowski

After 50 years passed, a converse to

Minkowski’s Theorem was found.

Theorem. (Minkowski, 1897; Venkov, 1954; McMullen, 1980)

A convex polytope P tiles Rd
by translations

if and only if:

1. P is centrally symmetric

2. Each of the facets of P is centrally symmetric.

3. Each belt of P contains either 4 or 6 codimension 2 faces.
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The Venkov-McMullen result, a converse to Minkowski

After 50 years passed, a converse to

Minkowski’s Theorem was found.

Theorem. (Minkowski, 1897; Venkov, 1954; McMullen, 1980)

A convex polytope P tiles Rd
by translations

if and only if:

1. P is centrally symmetric

2. Each of the facets of P is centrally symmetric.

3. Each belt of P contains either 4 or 6 codimension 2 faces.

In R4
: 52 distinct tiling polytopes

In R5
: a few thousand. . . .

What’s that?



Example.
The red belt for this zonotope consists of

8 faces (1-dimensional faces).
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Example.
The red belt for this zonotope consists of

8 faces (1-dimensional faces).

This polytope therefore does not tile R3
by translations,

since it violates condition (3) of the Venkov-McMullen Theorem.



Example.
Does this one tile by translations?



Example.

Yes!

Does this one tile by translations?



Example.

Another construction for this Fedorov solid

is obtained by truncating the octahedron.

Yet another construction for it is obtained by

considering it as a Permutahedron in R4

Yes!



Part II. Multi-tilings (k-tilings)



Tiling with multiplicities

A natural generalization of a tiling is a tiling with multiplicity k.
(also called a k-tiling, or a multi-tiling)

X

�2⇤

1P+�(v) = k,

Definition.

We say that a polytope P tiles Rd
with a discrete set of

translation vectors ⇤ if

for all v /2 @P + ⇤.



Example. The integer octagon

















2-dimensional results for k-tilings

1994: Bolle gave a nice combinatorial characterization of all lattice k-
tilings of R2

in terms of distances between vertices of a polygon.
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2-dimensional results for k-tilings

1994: Bolle gave a nice combinatorial characterization of all lattice k-
tilings of R2

in terms of distances between vertices of a polygon.

2000: Kolountzakis proved that for every k-tiling of R2

with a multiset ⇤, ⇤ must be a finite union of lattices.

2013: Dmitry Shiryaev has recently shown (Ph.d thesis) that in R2

every k-tiler must in fact tile with one lattice (i.e. must be periodic).

Exercise. Find an infinite collection of multi-tiling polygons with cardinality

equal to that of R.



A structure theorem for d-dimensional polytopes
that multi-tile

Theorem.(Gravin, R., Shiryaev, Combinatorica, 2012)

Suppose a polytope P multiply-tiles Rd with a discrete multiset L. Then P
is symmetric, and each facet of P is also symmetric.



A partial converse

Suppose that a polytope P enjoys the following properties:

1. P is symmetric

2. Each facet of P is also symmetric

3. P is a rational polytope (all vertices are rational points).

Then P multi-tiles with the integer lattice Zd.

Exercise. (Barvinok) If a polytope P is symmetric, and has symmetric

facets, then show that the sum of the solid angles at all integer points (rel-

ative to P ) equals its volume.



Suppose P k-tiles Rd
with the set of

translation vectors ⇤.

Then for every general position of -P , there are

exactly k points of ⇤ in the interior of -P .

Technique: counting ⇤-points inside P

(“standing at v and looking at �” versus

“standing at � and looking at v)

Easy proof:

X

�2⇤

1�P+v(�) =
X

�2⇤

1P+�(v) = k,

because � 2 �P + v if and only if v 2 P + �.



Solid angles (volumes of spherical polytopes)

play an equivalent role, too!

The previous simple observation has an interesting extension.

Let !P (x) be the proportion of P which intersects a small

sphere centered at x 2 Rd
. It’s also called a solid angle

at x, relative to P .

Theorem. (2013, Gravin, R, Shiryaev) A polytope P k-tiles Rd
with

the discrete set of translations ⇤ if and only if

P
�2⇤ !P+v(�) = k,

for all v 2 Rd
.

(k is necessarily equal to the volume of P )



Example. An integer octagon that 7-tiles R2
.Example. An integer octagon that 7-tiles R2
.



Part III. Harmonic analysis approach/ideas



A structure theorem for the 3-dimensional set of translation vectors

Theorem. (Gravin, Kolountzakis, R, Shiryaev, 2013)

Suppose that a polytope P multi-tiles with a discrete multiset L,
and suppose that P is not a two-flat zonotope.

Then L is a finite union of translated lattices.



A structure theorem for the 3-dimensional set of translation vectors

Theorem. (Gravin, Kolountzakis, R, Shiryaev, 2013)

Suppose that a polytope P multi-tiles with a discrete multiset L,
and suppose that P is not a two-flat zonotope.

Then L is a finite union of translated lattices.

(Proof uses the idempotent theorem in Fourier analysis, due to Meyer and
later developed by Paul Cohen.)



A two-flat zonotope with 9 generatorsExample.



A two-flat zonotope with 9 generatorsExample.

We discovered it by playing with the formulas

for the Fourier transform of polytopes.





More generally, Poisson summation (and its proof) is even better

stated as follows:

where x 2 Rd
, and L

⇤
is the dual lattice to L,

defined by L

⇤
:= {x 2 Rd | hx, ni 2 Z, for all n 2 L}.

X

n2L

f(n+ x) =
1

|detL|
X

m2L

⇤

f̂(n)e2⇡ihm,xi
,





So we have proved this (easy) Lemma, but it already shows a nice approach
using Harmonic analysis.





x cos(x) = y cos(y)

Example.
The real zero set of the Fourier transform of the square [0,1]^2 
(w.r.t. uniform measure)



Harmonic Analysis approach

Thus, we can study the vanishing of the Fourier transform of a polytope,
namely 1̂P (m) = 0.

The vanishing of Fourier transforms of convex bodies in general has been
studied, in the context of the Fuglede conjecture, by Alex Iosevich, Mihalis
Kolountzakis, Mate Matolci, Izabella Laba, Terry Tao, and others.



Harmonic Analysis approach

Some other open questions:

1. Give an analogue of the Venkov-McMullen converse for k-tilings.

2. Given k, describe all polytopes that k-tile. What is the smallest non-

trivial k that is possible in dimension d?



Harmonic Analysis approach

Some other open questions:

1. Give an analogue of the Venkov-McMullen converse for k-tilings.

2. Given k, describe all polytopes that k-tile. What is the smallest non-

trivial k that is possible in dimension d?

3. Find the number of vertices of a k-tiler.

4. Most importantly for us: Using the vanishing set (as a subset of Rd
)

of the Fourier transform

ˆ

1P (m), classify all k-tiling polytopes. Focus on d = 2

first.

5. Study the real zero set of

ˆ

1P (m), and develop a theory.



Harmonic Analysis approach

Something that we keep seeing is that it’s very fruitful to

simultaneously think about the Fourier analysis and the

Discrete/Combinatorial geometry.

Exercises.

1. Find an infinite collection of multi-tiling polygons with cardinality equal

to that of R.

2. (Barvinok) suppose that an integer polytope P is symmetric, and has

symmetric facets as well. Then the sum of all solid angles (a discrete volume)

at all integer points equals its volume.

3. Plot the zero set of the Fourier transform of a symmetric hexagon; find

patterns among the collection of curves that you see.



Nick Gravin, Mihail Kolountzakis, Sinai Robins, and Dmitry Shiryaev, Struc-
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