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§1. Notation

For x, y ∈ Rn, let x ·y = x1y1 + · · ·+xnyn denote the Euclidean inner product and
write ‖x‖ = (x · x)1/2 for the norm. By Sn−1 = {x ∈ Rn : ‖x‖ = 1 } we denote the
(n− 1)-dimensional unit sphere and by ω the surface measure on it. A spherical cap
is the intersection of the unit sphere with a half-space. By Bn = {x ∈ Rn : ‖x‖ ≤ 1 }
we denote the n-dimensional unit ball.

A lattice Λ ⊆ Rn is a discrete subgroup of Rn, i.e., it is the set of all integer
linear combinations of some vectors u1, . . . , un that form a basis of Rn. A nonzero
vector x ∈ Λ is a minimal vector if it has minimum length among all nonzero vectors
in Λ.

The Hamming cube is the set Hn = Zn2 of all n-bit words. The Hamming distance
between two words is the number of bits in which they differ. The weight of a word x is
the number of 1s in it and is denoted by |x|, so that the Hamming distance between x,
y ∈ Hn is |x+ y| = |x− y|.

§2. Packing problems

Below are described the three kinds of packing problems considered in these notes:
(i) packings of convex bodies in Euclidean space, (ii) packings of spherical caps on a
sphere, and (iii) packings of balls in the Hamming cube. While I have tried to provide
some historical background for each problem, it is hardly possible to be complete in
such short notes; the interested reader is referred to the excellent book by Conway
and Sloane [8] for further references.

Packing convex bodies in Euclidean space. Perhaps the most famous packing problem
is the sphere packing problem: what is the maximum fraction of Rn that can be covered
with pairwise-nonoverlapping equal balls? A union of nonoverlapping equal balls is
a sphere packing, and the fraction of space it covers is its density. (For the moment
this informal definition of density will suffice; a rigorous definition is given in §9.)

For n = 1 the solution is trivial: balls are simply intervals, and we can cover the
whole real line with them. For n = 2 the solution is also familiar; as Coxeter [10] put
it:

The problem of packing, as densely as possible, an unlimited number of equal nonover-
lapping circles in a plane was solved millions of years ago by the bees, who found that
the best arrangement consists of circles inscribed in the hexagons of the regular tes-
sellation {6, 3}.

What he means is that for n = 2 the optimal packing can be constructed as follows:
tile the plane like a honeycomb with regular hexagons and consider for each hexagon
its inscribed circle. Alternatively, consider the hexagonal lattice generated by the
vectors (1, 0) and (1/2,

√
3/2) and place centered on each lattice point a circle of

radius 1/2 (Figure 1).
This packing has density π/

√
12 = 0.9069 . . .. According to Fejes Tóth [13] (Chap-

ter III, §13), its optimality follows from a theorem of Thue presented in 1892; see also
the later paper by Thue [38]. Fejes Tóth also gives an elegant proof of this result
(ibid., Chapter III, §2).

The only other value of n for which the optimal packing density is known is n = 3.
The optimal packing was described by Johannes Kepler in his 1611 work De Nive
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Figure 1. The densest packing of circles in the Euclidean plane. The points
in the hexagonal lattice are marked, as well as the two vectors that generate
the lattice.

Sexangula (On the Six-Cornered Snowflake [20]). Kepler describes (ibid., p. 39) the
packing layer by layer. First, pack balls on a plane using a square lattice, so that
each ball touches four others. Then there are two ways (Kepler says orders) in which
to proceed so as to get a packing for the whole of space:

[. . .] the balls from the plane above can be placed on top of the balls from the plane
below [that is, shift up the square lattice packing] or instead each ball from the upper
plane can lie between four balls of the lower plane. In the first case each ball is
touched by four neighbors on the same plane and by one neighbor from the plane
above and one from the plane below, so that it lies in the neighborhood of six others
[. . .] This is however not the densest packing. In the second order each ball is not only
touched by its four neighbors on the same plane, but also by four neighbors on the
plane above and four on the plane below. There are in total then twelve neighbors
[. . .] This is the densest possible packing, and in no other order is it possible to put
more balls in a container.

The packing described by Kepler is called the cubic close-packing, which is most
often used to stack fruits in supermarkets. Another way to describe it is as follows.
Consider the lattice consisting of all vectors x ∈ Z3 whose coordinates sum to an
even number. This is the face-centered cubic (or fcc) lattice. The minimum distance
between two distinct vectors in this lattice is

√
2, so if we center on each lattice point

a ball of radius
√

2/2, then we obtain a sphere packing in which each ball touches
exactly 12 others (Figure 2). The density of this packing is π/

√
18 = 0.7405 . . ..

Kepler claimed this packing is optimal. A proof, however, was only found in 1998
by Hales [16] with heavy use of computers. (Strictly speaking, Kepler claimed that
no other packing inside a given container could have higher density, an assertion that
fails for many different containers; see Schürmann [32].)

Of course, we may pack any convex body K ⊆ Rn (a convex body is a compact
subset of Rn with nonempty interior), not only balls. Here two kinds of packings
can be considered: translational packings, when we want to fill as much of space with
pairwise nonoverlapping translated copies of K, and congruent packings, when we also
allow K to be rotated. So we consider the two parameters

∆T(n,K) = maximum density of a translational packing of K in Rn, and

∆C(n,K) = maximum density of a congruent packing of K in Rn.

The sphere packing problem asks for ∆T(n,Bn) = ∆C(n,Bn).

Problems like the sphere packing problem or the problem of deciding whether
space could be tiled by polyhedra were important driving forces in the development
of geometry. Hilbert mentioned such problems as part of his 18th problem [17]:
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Figure 2. On the left, the cubic lattice Z3 with the points whose coordinates
sum to an even number marked; these points form the face-centered cubic
lattice. On the right, a top view of two layers of the cubic-close packing.
Spheres on the upper layer, in white, are placed over the holes between spheres
on the bottom layer, in gray.

18. Building up of Space from Congruent Polyhedra.
(. . . ) I point out the following question, related to the preceding one, and important
to number theory and perhaps sometimes useful to physics and chemistry: How can
one arrange most densely in space an infinite number of equal solids of given form,
e.g., spheres with given radii or regular tetrahedra with given edges (or in prescribed
position), that is, how can one so fit them together that the ratio of the filled to the
unfilled space may be as great as possible?

The problem of packing congruent copies of a regular tetrahedron in R3, mentioned
by Hilbert above, is perhaps the earliest packing problem that was considered. Its
history goes back to Aristotle’s refutation of a theory of Plato that assigns different
Platonic solids to each of the four elements (so to earth one assigns the cube, to fire the
tetrahedron, etc.). Aristotle claimed that tetrahedra can tile space, just as cubes can.
The scene for the debate was set for the next several centuries; it is accepted that, only
in the fifteenth century, Johannes Müller von Königsberg, known as Regiomontanus,
proved that Aristotle’s claim was false. His manuscript was lost, but a contemporary
manuscript by Francesco Maurolico survives (see Oliveira and Vallentin [27] for a
more complete account and references; Struik [36] presents a detailed history of the
problem).

Chen, Engel, and Glotzer [6] hold the record for the densest congruent packing
of tetrahedra in R3, with a packing density of ≈ 0.8563 (compare with the packing
density for spheres). The best known upper bound for the packing density, of 1 −
2.6 . . . · 10−25, is due to Gravel, Elser, and Kallus [14].

Packing spherical caps on a sphere. The kissing number problem asks for the maximum
number of nonoverlapping unit balls in Rn that can simultaneously touch a central
ball. This maximum is denoted by τn. Clearly, τ1 = 2. It is easy to prove that τ2 = 6.
For n = 3, however, the problem becomes more interesting.

In the cubic close-packing of Kepler, each ball touches exactly 12 others, so τ3 ≥ 12.
Does equality hold? According to Coxeter [9]:

Among the unpublished papers of David Gregory, H.W. Turnbull found notes of a
conversation with Newton in 1694 about the distribution of stars of various mag-
nitudes. The question arose: Can a rigid material sphere be brought into contact
with 13 other such spheres of the same size? Gregory said “Yes”, and Newton said
“No”; but 180 years were to elapse before a conclusive answer was given.

(Coxeter credits Hoppe with proving Newton right in 1874. Conway and Sloane [8] say
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“some proofs appeared in the nineteenth century” and mention Hoppe. Schütte and
van der Waerden [33] gave a correct and detailed proof; they are usually mentioned
in connection with the problem.)

Was Gregory justified in thinking that τ3 = 13? How can we find an upper bound
for τ3, or for τn for that matter?

A spherical code with minimum angular distance θ is a set C ⊆ Sn−1 such that
the angle between any two distinct points in C is at least θ. The maximum size of a
spherical code in Sn−1 with minimum angular distance θ is denoted by A(n, θ).

If two unit balls touch a central one, then the angle between the contact points is at
least π/3. So a kissing configuration in Rn, i.e., an arrangement of nonoverlapping unit
balls that simultaneously touch a central one, corresponds to a spherical code in Sn−1

with minimum angular distance π/3, and vice versa. In other words, τn = A(n, π/3).
Now, given a spherical code with minimum angular distance θ, we may place

around each point in the code a spherical cap of angular radius θ/2, and these caps
will not overlap. So a spherical code corresponds naturally to a packing of spherical
caps on the sphere. Hence, if K(n, α) is a spherical cap in Sn−1 with angular radius α,
then

A(n, θ) ≤ bω(Sn−1)/ω(K(n, θ/2))c.

This simple bound is often called the volume bound. For the kissing number problem
(i.e., θ = π/3) and n = 2, the right-hand side is exactly 6, and this bound therefore
proves that the arrangement of six circles around a central one is optimal. For n = 3
we have ω(S2)/ω(K(3, π/6)) = 14.9282 . . ., and so τ3 ≤ 14 from the volume bound. It
seems then that there is almost enough space to place 15 balls around the central one!
Actually, there is so much space left in the cubic close-packing configuration of 12
balls that it is possible to achieve any permutation of the 12 balls by rolling them
around in such a way that they never overlap (see Conway and Sloane [8], Chapter 1).

So Gregory, while wrong, was not completely without reason. Aside from the
possible proofs that τ3 = 12 that appeared in the nineteenth century, bounds that
show that τ3 ≤ 13 appeared only in the the twentieth century and are not elementary
(we will see one such bound in §8).

The kissing number is only known in dimensions 1–4, 8, and 24. Musin [25] showed
that τ4 = 24. Odlyzko and Sloane [26] showed that τ8 = 240 and τ24 = 196560.

Packing balls in the Hamming cube. A binary code of length n and minimum dis-
tance d is a set C ⊆ Hn such that the Hamming distance between any two distinct
words in C is at least d. Let C be a binary code of minimum distance d. When trans-
mitting information, if sender and receiver agree that only words in C are transmitted,
then the minimum distance between words implies that words with up to b(d− 1)/2c
wrong bits can be corrected by the receiver; the correct word is, in this case, the word
in C closest to the received word.

Another way to look at this is as follows. If C is a binary code of length n and
minimum distance d, then for each word in C we may consider the ball of radius
b(d − 1)/2c centered on the word (this ball is the set of all words whose Hamming
distance from the center is at most b(d − 1)/2c). These balls are pairwise-disjoint.
So, a binary error-correcting code corresponds to a packing of balls in the Hamming
cube.

One of the main problems of coding theory is to find large error-correcting codes
with given length and minimum distance. In the introduction to his thesis, Del-
sarte [11] says:

Research in coding theory may be divided into three main parts. The first way,
opened by Shannon [34], consists in a study of the theoretical possibilities offered
by the principle of coding for correction of errors in certain communication systems
(. . . ). At this level there already arise some algebraic concepts, such as the minimum

4



distance between distinct codewords; among codes having the same length n and the
same minimum distance d, the best is the one containing the largest number of words.

It is therefore natural that many authors applied themselves to construct “good”
codes of fixed parameters n and d.

The maximum size of a binary error-correcting code of length n and minimum dis-
tance d is denoted by A(n, d). Determining A(n, d) is an important problem in coding
theory, open for most values of n and d (see Chapter 3 of Conway and Sloane [8]).

∗ ∗ ∗

Through constructions of sphere packings, spherical codes, or binary codes, one
provides lower bounds for the parameters ∆T(n,Bn), A(n, θ), and A(n, d). These
notes are concerned however with the nonconstructive task of providing upper bounds
for these parameters.

Delsarte [11] proposed a bound for A(n, d) that became known as the linear pro-
gramming bound. Later, Delsarte, Goethals, and Seidel [12] gave an analogous bound
for A(n, θ), and Cohn and Elkies [7] proposed an analogous bound for ∆T(n,K). All
three linear programming bounds are similar, yet their common root is not immedi-
ately clear. This common root is the Lovász theta number (see §5 and §7); identifying
it allows us to present a unified treatment and to more easily adapt these results to
other situations.

A final remark before we proceed. Binary error-correcting codes come up naturally
in the context of communication theory, and their study has been motivated by its
development, as noted above. Perhaps less clear is that sphere packings and spherical
codes, purely geometrical problems, also have important applications in communica-
tion theory. In fact, Shannon considers sphere packings in his foundational work [34],
and spherical codes have applications to the design of signals for the Gaussian channel
(see Sloane [35]).

§3. Packings and the independence number

Let G = (V,E) be a graph (our graphs never have loops nor parallel edges). A
set C ⊆ V is independent if x, y are nonadjacent for all x, y ∈ C. The independence
number of G is the maximum cardinality of any independent set of G and is denoted
by α(G).

To each packing problem of the previous section we may associate a packing graph
in such a way that packings correspond to independent sets and vice versa, and
determining the optimal packing density becomes the same as determining the inde-
pendence number of the packing graph (even if sometimes we have to redefine what
the independence number is, as in the case of sphere packings below). Let us now see
which packing graph is associated with each problem.

Binary error-correcting codes. Given n, d > 0, consider the graph G(n, d) whose
vertex set is Hn and in which distinct vertices x, y ∈ Hn are adjacent if |x−y| ≤ d−1.
Then C ⊆ Hn is independent in G(n, d) if and only if C is a binary code of length n
and minimum distance d. So A(n, d) = α(G(n, d)).

Spherical codes. Given n ≥ 1 and θ ∈ (0, π], let G(n, θ) be the graph whose vertex
set is Sn−1 and in which distinct vertices x, y ∈ Sn−1 are adjacent if cos θ < x ·y < 1.
Then C ⊆ Sn−1 is independent in G(n, θ) if and only if C is a spherical code with
minimum angular distance θ. It follows that A(n, θ) = α(G(n, θ)).

Note here that, unlike G(n, d), graph G(n, θ) is infinite. However, it still has a
finite independence number.

Translational body packings. Given a convex body K ⊆ Rn, consider the graph
GT(n,K) whose vertex set is Rn and in which distinct vertices x, y ∈ Rn are ad-
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jacent if (x + K◦) ∩ (y + K◦) 6= ∅, where K◦ is the interior of K. Then C ⊆ Rn is
independent in GT(n,K) if and only if

⋃
x∈C x+K is a packing of translates of K.

Graph GT(n,K) is infinite and so is its independence number. A way around this
problem is to define the size of an independent set as the density of the corresponding
packing and redefine the independence number accordingly. Another option is to use a
compactification approach and avoid dealing with infinite independent sets altogether;
this is the approach that we shall take in §9. Packing graphs can also be used to model
congruent body packings, but the idea is not discussed in these notes.

∗ ∗ ∗

The correspondence between packings and independent sets of graphs is more of
a rewording than anything else. We are moreover left with huge graphs like G(n, d),
or even infinite ones like G(n, θ) or GT(n,K), not to mention that determining the
independence number of a graph is a classical NP-hard combinatorial problem. So
what do we get by establishing this connection?

When dealing with a graph parameter like the independence number, that is hard
to compute, one looks for lower and upper bounds that can be efficiently computed.
Lovász [22] proposed an upper bound for the independence number of a finite graph,
based on semidefinite programming, that can be efficiently computed. It is a slight
variation of this bound that we will adapt and use to compute bounds for the inde-
pendence number of the packing graphs presented above.

§4. Semidefinite programming basics

This is just a quick summary of the basic facts of semidefinite programming that
we will need; for more background see the book by Tunçel [39].

A symmetric matrix A ∈ Rn×n is positive semidefinite if xTAx ≥ 0 for all x ∈ Rn
or, equivalently, if all eigenvalues of A are nonnegative. (The term positive semidefi-
nite is used exclusively for symmetric matrices.) If A, B ∈ Rn×n are matrices, then

〈A,B〉 = trATB =

n∑
i,j=1

AijBij

is the trace inner-product between A and B. If both A and B are positive semidefinite,
then 〈A,B〉 ≥ 0.

Let I= and I≤ be two finite and disjoint sets of indices, and let C ∈ Rn×n and Ai ∈
Rn×n, for i ∈ I=∪I≤, be symmetric matrices, and bi, for i ∈ I=∪I≤, be real numbers.
A semidefinite programming problem asks us to maximize the linear function X 7→
〈C,X〉 where X ∈ Rn×n ranges over all positive semidefinite matrices satisfying some
given linear constraints, namely:

〈Ai, X〉 = bi for i ∈ I=,

〈Ai, X〉 ≤ bi for i ∈ I≤.

As usual, we will write this problem in the following compact form:

max 〈C,X〉
〈Ai, X〉 = bi for i ∈ I=,

〈Ai, X〉 ≤ bi for i ∈ I≤,

X is positive semidefinite.

(1)

The “max” above should be read as “maximize”, and it does not imply that there
is an optimal solution: the problem could be infeasible, unbounded, or — and here
lies a difference between semidefinite programming and linear programming — the
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optimal value could be finite but never attained. If all the matrices C and Ai are
diagonal, then the problem above is a linear programming problem.

Just as a linear programming problem has a dual, so does problem (1), namely

min
∑
i∈I=∪I≤ yibi∑
i∈I=∪I≤ yiAi − C is positive semidefinite,

yi ≥ 0 for i ∈ I≤.

(2)

Here, too, “min” should be read as “minimize”. The optimization variables are now
the yi, but (2) can be written in the same form as (1) with a little work. You should
try to do so and then compute the dual of the resulting problem to see that the dual
of the dual problem is again the primal problem.

Just as in the case of linear programming, primal and dual are related via two
important results: weak duality and strong duality. Weak duality asserts that, ifX is a
feasible solution of (1) and y is a feasible solution of (2), then 〈C,X〉 ≤

∑
i∈I=∪I≤ yibi.

Indeed, matrices X and
∑
i∈I=∪I≤ yiAi−C are both positive semidefinite, hence their

trace inner-product is nonnegative. But then

0 ≤
∑

i∈I=∪I≤

yi〈Ai, X〉 − 〈C,X〉 ≤
∑

i∈I=∪I≤

yibi − 〈C,X〉,

as we wanted.
Strong duality asserts that the optimal values of primal and dual coincide, that

is, there is no duality gap, and that moreover both optima are attained. Unlike in
the case of linear programming, when strong duality always holds, for some pairs of
primal-dual semidefinite programs the duality gap maybe be nonzero. A sufficient
condition for the duality gap to be zero is to require either primal or dual to be
strictly feasible.

Primal problem (1) is strictly feasible if it admits a positive definite feasible so-
lution X such that 〈Ai, X〉 < bi for all i ∈ I≤. Dual problem (2) is strictly feasible
if it admits a feasible solution y such that

∑
i∈I=∪I≤ yiAi − C is positive definite

and yi > 0 for all i ∈ I≤.

Theorem 1. If the dual is bounded from below and strictly feasible, then there is an
optimal primal solution and no duality gap. Similarly, if the primal is bounded from
above and strictly feasible, then there is an optimal dual solution and no duality gap.

Finally, what makes semidefinite programming attractive as a generalization of
linear programming is that there are efficient algorithms for it, both in theory and in
practice. In theory, under a few extra assumptions, the ellipsoid method can be used
to solve semidefinite programming problems to any desired precision in polynomial
time (see the book by Grötschel, Lovász, and Schrijver [15]). In practice, interior point
methods can solve moderately-sized problems efficiently, though numerical instability
is much more of an issue than with linear programming.

§5. The Lovász theta number

Let G = (V,E) be a finite graph. Lovász [22] introduced a graph parameter ϑ(G),
now called the Lovász theta number of G, that can be computed to any desired
precision in polynomial time and that provides an upper bound for the independence
number of G, that is, ϑ(G) ≥ α(G). Perhaps not surprisingly given all the connections
to communication theory mentioned in §2, the theta number was actually introduced
in the context of communication theory as an upper bound to the Shannon capacity
of a graph.
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A variation of the theta number, called the theta prime number of G and denoted
by ϑ′(G), was later introduced by McEliece, Rodemich, and Rumsey [24] and Schri-
jver [31]. There are many equivalent definitions of ϑ′(G); one of them is as the optimal
value of the following semidefinite programming problem:

max 〈J, L〉
trL = 1,

L(x, y) = 0 if xy ∈ E,

L:V × V → R is nonnegative and positive semidefinite,

(3)

where J is the all-ones matrix.
This is indeed a semidefinite programming problem in form (1), since all con-

straints can be directly represented using the trace inner-product. Parameter ϑ(G) is
the optimal value of problem (3) when the constraint that L has to be nonnegative
is dropped.

Theorem 2. α(G) ≤ ϑ′(G).

Proof. Let C be a nonempty independent set of G = (V,E) and let 1C :V → {0, 1}
be the characteristic function of C, that is, 1C(x) = 1 if and only if x ∈ C. Then the
matrix L such that

L(x, y) =
1

|C|
1C(x)1C(y)

for all x, y ∈ V is a feasible solution of (3), and hence ϑ′(G) ≥ 〈J, L〉 = |C|. Since C
is an arbitrary nonempty independent set, the theorem follows.

The dual of (3) is the problem

min λ

Z(x, x) ≤ λ for all x ∈ V ,

Z(x, y) ≤ 0 if x 6= y and xy /∈ E,

Z:V × V → R is symmetric and Z − J is positive semidefinite.

(4)

(This problem is not in the form (2), but can be derived from it. This is a simple but
good exercise!)

Both primal and dual are strictly feasible and bounded, and hence both optima
are attained and there is no duality gap. So ϑ′(G) can be alternatively defined as the
optimal value of (4).

Actually, any feasible solution of (4) provides an upper bound to α(G). A direct
proof is as follows. Let C be a nonempty independent set and (Z, λ) be a feasible
solution of (4). Then

0 ≤
∑
x,y∈C

(Z − J)(x, y) =
∑
x,y∈C

Z(x, y)− |C|2 ≤ λ|C| − |C|2,

whence |C| ≤ λ.

§6. An upper bound for A(n, d)

Graph G(n, d) from §3, which is such that A(n, d) = α(G(n, d)), is a finite graph.
So ϑ′(G(n, d)) as defined in the previous section provides an upper bound for A(n, d).
Since G(n, d) has 2n vertices, we cannot hope to solve the semidefinite programming
problem that defines ϑ′(G(n, d)) even for small values of n. Graph G(n, d) is highly
symmetric however, and this can be used to simplify (4) considerably.

An isometry of Hn is a bijection ϕ:Hn → Hn that preserves the Hamming dis-
tance. The set of all isometries is a group under function composition, denoted
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by Iso(Hn). Isometries can be obtained by flipping and permuting bits. More pre-
cisely, given x0 ∈ Hn and σ ∈ Sn, we can construct the isometry x 7→ x0 + σx, where
the sum is carried out in Zn2 and σx is obtained by permuting the bits of x according
to the permutation σ; every isometry is of this form. Every isometry of Hn is an
automorphism of G(n, d).

Iso(Hn) acts on matrices A:Hn ×Hn → R: for an isometry ϕ we have

(ϕ ·A)(x, y) = A(ϕ−1x, ϕ−1y) for all x, y ∈ Hn.

If ϕ ·A = A for all ϕ ∈ Iso(Hn), then A is invariant.
The crucial step in solving (4) is to require Z to be invariant. Then we still get

an upper bound (actually, this restriction does not worsen the bound, as we will
see below) and problem (4) can be greatly simplified, since invariant and positive
semidefinite matrices can be conveniently parametrized.

Theorem 3. A matrix A:Hn×Hn → R is invariant and positive semidefinite if and
only if

A(x, y) =

n∑
k=0

fkK
n
k (|x− y|) (5)

for some nonnegative numbers f0, . . . , fn which are uniquely determined by, and
uniquely determine, A.

Here, Kn
k (t) is the Krawtchouk polynomial of degree k. Computed on an integer t

with 0 ≤ t ≤ n, it is given by

Kn
k (t) =

k∑
i=0

(−1)i
(
t

i

)(
n− t
k − i

)
.

Proof. Suppose A:Hn × Hn → R is symmetric and invariant. For u ∈ Hn, let
χu:Hn → R be such that χu(x) = (−1)u·x. The χu are pairwise orthogonal and
form therefore a basis of RHn . Each χu is also an eigenvector of A, since

(Aχu)(x) =
∑
y∈Hn

A(x, y)(−1)u·y

=
∑
y∈Hn

A(0, x+ y)(−1)u·y

=
∑
y∈Hn

A(0, y)(−1)u·(x+y)

= (−1)u·x
∑
y∈Hn

A(0, y)(−1)u·y.

The eigenvalue of χu depends only on |u|. Indeed, if for v ∈ Hn we have |v| = |u|,
then there is a permutation σ ∈ Sn such that v = σu. But then∑

y∈Hn

A(0, y)(−1)σu·y =
∑
y∈Hn

A(0, σy)(−1)σu·σy

=
∑
y∈Hn

A(0, σy)(−1)u·y

=
∑
y∈Hn

A(0, y)(−1)u·y.

(The last identity follows from the invariance of A and from the fact that σ−10 = 0.)
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For k = 0, . . . , n, denote by λk the common eigenvalue of χu when |u| = k. Write

Bk(x, y) =
∑
u∈Hn

|u|=k

χu(x)χu(y) =
∑
u∈Hn

|u|=k

(−1)u·(x+y).

A simple counting argument shows that Bk(x, y) = Kn
k (|x− y|). Taking fk = λk/2

n,
we have A = f0B0 + · · · + fnBn. Since A is positive semidefinite, λk ≥ 0 and
hence fk ≥ 0, and so we have the desired expression for A(x, y).

For the converse, each Bk is invariant and positive semidefinite. So if A = f0B0 +
· · ·+ fnBn for nonnegative f0, . . . , fn, then A is invariant and positive semidefinite.

Finally, the fact that the fk are uniquely determined by, and uniquely deter-
mine, A, follows from the fact that the Bk matrices are linearly independent.

Now use this theorem to rewrite (4) for G(n, d), assuming Z to be invariant. Note
that the all-ones matrix J is invariant and positive semidefinite; its expansion (5)
has only one nonzero coefficient, namely the coefficient of Kn

0 , which equals 1. So
Z:Hn ×Hn → R is invariant and such that Z − J is positive semidefinite if and only
if

Z(x, y) =

n∑
k=0

fkK
n
k (|x− y|)

with f0 ≥ 1 and f1, . . . , fn nonnegative.
Now, if Z is invariant, then all its diagonal entries are the same. Moreover,

in G(n, d) we have that x and y are adjacent if |x − y| ∈ {0, . . . , d − 1}, so we
may rewrite (4) for invariant Z as

min
∑n
k=0 fkK

n
k (0)∑n

k=0 fkK
n
k (t) ≤ 0 for t = d, . . . , n,

f0 ≥ 1 and fk ≥ 0 for k = 1, . . . , n.

(6)

This is a linear programming problem with n+1 variables. Its optimal value provides
an upper bound for A(n, d) (actually, any feasible solution provides an upper bound).

The restriction to invariant matrices does not worsen the bound given by (4), i.e.,
the optimal values of (4) and (6) coincide. Indeed, if (Z, λ) is any feasible solution
of (4), then for any ϕ ∈ Iso(Hn) we have that (ϕ ·Z, λ) is also feasible for (4). Hence

Z =
1

| Iso(Hn)|
∑

ϕ∈Iso(Hn)

ϕ · Z

is such that (Z, λ) is feasible for (4), and Z is invariant.
Bound (6) was proposed by Delsarte [11]; it is often called Delsarte’s bound or

linear programming bound. Its relation to ϑ′(G(n, d)) was observed by McEliece,
Rodemich, and Rumsey [24] and Schrijver [31].

We started with a huge semidefinite programming problem and, thanks to sym-
metry, ended up with a small linear programming problem. Exploiting the symmetry
of a problem is a key technique in semidefinite programming; in these notes we will
barely scratch the surface.

§7. A generalization of the theta number

Parameter ϑ′ was defined for a finite graph and hence does not apply directly to
an infinite graph like G(n, θ). To use ϑ′ to give an upper bound for A(n, θ) we may
discretize the infinite graph G(n, θ) and use the definition of ϑ′ from §5, or we may try
to extend the definition of §5 to infinite graphs like G(n, θ); the latter is the approach
taken in this section.
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It is not hard to come up with an extension of (4) to infinite graphs. For instance,
we could extend the concept of positive semidefiniteness to functions A:V × V → R
with infinite V by calling such a function positive semidefinite if

(
A(xi, xj)

)N
i,j=1

is

positive semidefinite for every choice x1, . . . , xN of finitely many points in V . With
this definition, (4) can be extended directly and the proof that any feasible solution
provides an upper bound to the independence number works as given in §5.

For this extension we imposed no conditions on V . On the one hand, therefore,
we get a very general bound, but on the other hand positive semidefinite functions
A:V × V → R can be very general objects and we have little hope of dealing with
them in all generality successfully.

So for our extension we impose some extra constraints on the vertex set, narrowing
the space of functions we consider. More precisely, we require V to be a compact,
Hausdorff, and separable measure space with a Radon measure µ that is nonzero on
open sets, and then restrict our functions to be continuous kernels on V .

In what follows we need some concepts from functional analysis, which can be
found in any standard book such as the one by Riesz and Sz.-Nagy [29].

Let V and µ be as above. For f , g ∈ L2(V ), write

(f, g) =

∫
V

f(x)g(x) dµ(x).

(We usually deal with real-valued functions. In §10, complex-valued functions will
be needed, but it will always be clear when a function is complex-valued.) A kernel
is a function in L2(V × V ). As a matrix A ∈ Rn×n defines a linear transformation
A:Rn → Rn, so does a kernel K ∈ L2(V ×V ) define an operator K:L2(V )→ L2(V ):
for f ∈ L2(V ) and x ∈ V ,

(Kf)(x) =

∫
V

K(x, y)f(y) dµ(y).

(You have to prove that the integral converges for almost all x ∈ V and that Kf ∈
L2(V ).)

A kernel K is symmetric if K(x, y) = K(y, x) for all x, y ∈ V or, alternatively, if K
is self-adjoint as an operator. A symmetric kernel K is positive if for all ρ ∈ L2(V )
we have

(Kρ, ρ) =

∫
V

∫
V

K(x, y)ρ(x)ρ(y) dµ(x)dµ(y) ≥ 0.

So a positive kernel is the analogue of a positive semidefinite matrix; we say “positive”
instead of “positive semidefinite” just to follow tradition.

The Spectral Theorem can be generalized to kernels. We say that a number λ is
an eigenvalue of a kernel K ∈ L2(V ×V ) if there is a nonzero function f ∈ L2(V ) such
that Kf = λf , in which case f is an eigenfunction associated with λ. The Hilbert-
Schmidt theorem states that if K is a symmetric kernel, then there is a complete
orthonormal system f1, f2, . . . of L2(V ) and real numbers λ1, λ2, . . . , where λi is an
eigenvalue of K and fi is an associated eigenfunction of λi, such that

K(x, y) =

∞∑
i=1

λifi(x)fi(y)

with convergence in the L2 norm. As a consequence we may prove that a symmetric
kernel K is positive if and only if all its eigenvalues are nonnegative, as is the case for
a matrix.

11



Finally, we come to the extension of (4). Let G = (V,E) be a graph where V is
a compact, Hausdorff, and separable measure space with a Radon measure that is
nonzero on open sets. Let ϑ′(G) be the optimal value of

min λ

Z(x, x) ≤ λ for all x ∈ V ,

Z(x, y) ≤ 0 if x 6= y and xy /∈ E,

Z:V × V → R is a continuous and symmetric kernel

and Z − J is positive,

(7)

where J :V × V → R is the constant 1 kernel. Note that, if V is a finite set, then
positive kernels are just matrices and the problem above becomes (4).

Theorem 4. If (Z, λ) is a feasible solution of (7), then α(G) ≤ λ. In particu-
lar, α(G) ≤ ϑ′(G).

Proof. The assumptions made on V allow us to use the following observation of
Bochner [4]: a continuous and symmetric kernel K:V × V → R is positive if and

only if
(
K(xi, xj)

)N
i,j=1

is positive semidefinite for every choice x1, . . . , xN of finitely

many points in V .
Then the proof in §5 follows through. Indeed, if (Z, λ) is feasible for (7) and C ⊆ V

is a nonempty independent set, then

0 ≤
∑
x,y∈C

(Z − J)(x, y) =
∑
x,y∈C

Z(x, y)− |C|2 ≤ λ|C| − |C|2,

whence |C| ≤ λ as needed.

Note in particular that if (7) is feasible then α(G) is finite.
This theorem applies directly to graph G(n, θ), since V = Sn−1 together with

the surface measure satisfies all requirements above; this application is the topic of
the next section. Since Rn is noncompact, we cannot apply the theorem directly
to GT(n,K); to do so we will need a compactification step (see §9).

For our extension of ϑ′ we used the dual formulation (4). One may define a primal
problem of which (7) is the dual using a general theory of convex optimization (see
e.g. the book by Barvinok [3]), by optimizing over measures on V × V instead of
kernels.

§8. An upper bound for A(n, θ)

The sphere Sn−1 is a compact Hausdorff and separable space and the surface
measure ω over Sn−1 is a Radon measure that is nonzero on open sets. So The-
orem 4 holds for V = Sn−1 and ϑ′(G(n, θ)) as defined in (7) is an upper bound
for α(G(n, θ)) = A(n, θ). The question is however: how can ϑ′(G(n, θ)) be com-
puted? Or, simpler still, how can we find a feasible solution of (7)?

As in §6, the answer is to exploit the symmetry of G(n, θ). The orthogonal
group O(n) = {A ∈ Rn×n : ATA = I } acts on Sn−1, the action of A ∈ O(n)
taking x to Ax, and this action preserves the inner product: for all x, y ∈ Sn−1 we
have Ax ·Ay = x · y. Then every A ∈ O(n) gives an automorphism of G(n, θ).

O(n) acts on kernels K:Sn−1 × Sn−1 → R: for A ∈ O(n) we have

(A ·K)(x, y) = K(A−1x,A−1y) for all x, y ∈ Sn−1.

If A ·K = K for all A ∈ O(n), then K is invariant. The key idea is then to restrict
ourselves in (7) to invariant kernels. We still get an upper bound to A(n, θ) (actually,
as in the case of binary codes in §6, this restriction does not worsen the bound given
by (7); see below), but now we are able to use the following characterization of positive
and invariant kernels due to Schoenberg [30] (cf. Theorem 3 above):
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Theorem 5. A kernel K:Sn−1×Sn−1 → R is continuous, positive, and invariant if
and only if

K(x, y) =

∞∑
k=0

fkP
n
k (x · y) (8)

for some nonnegative numbers f0, f1, . . . such that
∑∞
k=0 fk converges, in which

case the series in (8) converges absolutely and uniformly over Sn−1 × Sn−1. The
numbers fk are uniquely determined by, and uniquely determine, K.

Here Pnk is the Jacobi polynomial of degree k and parameters α = β = (n− 3)/2
(see, e.g., the book by Szegö [37]). These univariate polynomials can be obtained
from the sequence of polynomials 1, t, t2, . . . by applying the Gram-Schmidt orthog-
onalization process with respect to the inner product

(ϕ,ψ)n =

∫ 1

−1

ϕ(t)ψ(t)(1− t2)(n−3)/2 dt

for ϕ, ψ: [−1, 1] → R. We shall normalize the polynomials Pnk so that Pnk (1) = 1.
The Jacobi polynomials can be easily computed with a recurrence; see (4.5.1) in the
book by Szegö [37].

Let us now use the theorem above to rewrite (7). Since Pn0 is the constant 1
polynomial, a symmetric kernel Z:Sn−1×Sn−1 → R is continuous and such that Z−J
is positive if and only if

Z(x, y) =

∞∑
k=0

fkP
n
k (x · y) (9)

with f0 ≥ 1 and f1, f2, . . . nonnegative such that
∑∞
k=0 fk converges. Recall also

that x, y ∈ Sn−1 are adjacent in G(n, θ) if cos θ < x·y < 1. Then (7) can be rewritten,
giving us the problem

min
∑∞
k=0 fk∑∞
k=0 fkP

n
k (t) ≤ 0 if −1 ≤ t ≤ cos θ,

f0 ≥ 1 and f1, f2, . . . nonnegative with
∑∞
k=0 fk <∞.

(10)

This is a linear programming problem with infinitely many variables (one for each
k ≥ 0) and infinitely many constraints (one for each t ∈ [−1, cos θ]). In practice, to
find a feasible solution of (10), and therefore an upper bound for A(n, θ), we have to
turn this problem into a finite linear program.

The first step is easy: fix some d > 0 and set fk = 0 if k > d, that is, truncate
expansion (9). We get a linear program with finitely many variables and the bound
thus obtained is still valid.

Dealing with the infinitely many constraints is trickier. One approach is to use
sampling: choose a finite set S ⊆ [−1, cos θ] and consider only the constraints in (10)
for t ∈ S. If S is a fine enough sample, one would hope that the optimal solution of
the resulting linear program would also be feasible for the original, but that has to
be checked. In any case, if the finite sample S is not enough to produce a feasible
solution, but produces an almost feasible one, by playing with the variable f0 and
rescaling the solution we may obtain a feasible solution to the original problem, at
the cost of loosing a bit of quality. It is also possible to use semidefinite programming
to deal with the constraints of (10) in such a way as to avoid sampling; we will see
how in §12.

It is an excellent exercise to compute a table of bounds given by (10) for the kissing
number τn = A(n, π/3). For n = 3, taking d = 13, we get the bound 13.15833 . . .,
proving that τ3 ≤ 13. Compare this with the volume bound of §2, which only shows
that τ3 ≤ 14.
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To obtain (10) from (7) we restricted ourselves to invariant kernels, and so the
optimal value of (10) could be strictly worse than that of (7), which is ϑ′(G(n, θ)).
This is however not the case. The argument runs similar to that in §6. Let µ be the
Haar measure over O(n), normalized so that µ(O(n)) = 1 (this is the Radon measure
invariant under O(n); for more information see e.g. the book by Mattila [23]). If (Z, λ)
is feasible for (7), then for every A ∈ O(n) we have that (A·Z, λ) is also feasible for (7).
But then the kernel

Z(x, y) =

∫
O(n)

Z(A−1x,A−1y) dµ(A)

is invariant and such that (Z, λ) is feasible for (7).
The upper bound for A(n, θ) given by (10) is called the linear programming bound.

It was introduced by Delsarte, Goethals, and Seidel [12] and quickly became a funda-
mental tool in the study of spherical codes. For instance, it was used by Odlyzko and
Sloane [26] to prove that τ8 = 240 and τ24 = 196560; Musin [25] developed a stronger
version of the bound to show that τ4 = 24, and Bachoc and Vallentin [2] strength-
ened the bound further, via semidefinite programming, to provide some of the best
upper bounds for A(n, θ) currently known. Finally, the relation between (10) and (7),
which mimics the relation between Delsarte’s linear programming bound for A(n, d)
and ϑ′(G(n, d)), was observed by Bachoc, Nebe, Oliveira, and Vallentin [1].

§9. Periodic packings and compactification

The bound given by problem (7) applies directly to G(n, θ), but not to GT(n,K)
since Rn is not compact. A simple compactification trick will suffice to put us back
on track, however. In order to describe the trick, we have to give a rigorous definition
for the notion of density, which was informally introduced in §2.

LetA ⊆ Rn be a measurable set. We say thatA has density δ(A) if for every p ∈ Rn
we have that

δ(A) = lim
T→∞

volA ∩ (p+ [−T, T ]n)

vol[−T, T ]n
,

where volX is the Lebesgue measure of X ⊆ Rn. (In particular, the limit above must
exist for every p ∈ Rn.)

Not every set has a density, but every measurable set A ⊆ Rn has an upper density

δ(A) = sup
p∈Rn

lim sup
T→∞

volA ∩ (p+ [−T, T ]n)

vol[−T, T ]n
.

So for a convex body K ⊆ Rn we may define

∆T(n,K) = sup{ δ(P ) : P a translational packing of K} and

∆C(n,K) = sup{ δ(P ) : P a congruent packing of K}.

Both these parameters remain unchanged if we restrict ourselves to packings with
density. Even more: they remain unchanged if we restrict ourselves to periodic pack-
ings.

A set A ⊆ Rn is periodic if there is a lattice Λ ⊆ Rn that leaves A invariant, i.e.,
x+A = A for all x ∈ Λ. Such a lattice Λ is a periodicity lattice of A. Such a periodic
set A repeats itself in translated copies of a fundamental region

F = {α1u1 + · · ·+ αnun : 0 ≤ αi < 1 for i = 1, . . . , n }

of Λ, where u1, . . . , un is a basis of Λ (see Figure 3). If A is measurable, it has a
density and

δ(A) =
volA ∩ F

volF
.
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Figure 3. The hexagonal lattice in R2, generated by the two vectors shown,
and a fundamental region in gray.

Suppose now P is a packing, either translational or congruent, of K. Given ε > 0,
there are p ∈ Rn and T (which we may pick arbitrarily large) such that∣∣∣∣δ(P )− volP ∩ (p+ [−T, T ]n)

vol[−T, T ]n

∣∣∣∣ < ε

2
. (11)

LetQ be the union of all copies of K in P that intersect (p+[−T+d, T−d]n), where d =
diamK. By picking T large enough, the ratio vol[−T +d, T −d]n/ vol[−T, T ]n can be
made as close to 1 as wanted, and so we may assume that∣∣∣∣volP ∩ (p+ [−T, T ]n)

vol[−T, T ]n
− volQ

vol[−T, T ]n

∣∣∣∣ < ε

2
. (12).

Now, let P ′ be the packing obtained by pasting copies of Q in a periodic fashion, that
is, set

P ′ =
⋃

x∈2TZn

x+Q.

This is indeed a packing, since we erased a border of width d when making Q. More-
over, this is a periodic packing with periodicity lattice 2TZn, and from (11) and (12)
we get | δ(P )− δ(P ′)| < ε.

So to compute ∆T(n,K) or ∆C(n,K) we may restrict ourselves to periodic pack-
ings. This allows us to work with a packing graph having a compact vertex set.
Indeed, let Λ ⊆ Rn be a lattice and consider the graph GT(n,Λ,K) whose vertex set
is Rn/Λ and in which distinct vertices x, y ∈ Rn/Λ are adjacent if there is v ∈ Λ such
that (x+ v +K◦) ∩ (y +K◦) 6= ∅. If C ⊆ Rn/Λ is independent in GT(n,Λ,K), then⋃

v∈Λ

⋃
x∈C

x+ v +K

is a packing of translates of K that is periodic with periodicity lattice Λ. Conversely,
periodic translational packings of K with periodicity lattice Λ correspond to indepen-
dent sets in GT(n,Λ,K), and hence the maximum density of a periodic translational
packing of K with periodicity lattice Λ is

α(GT(n,Λ,K)) volK
vol(Rn/Λ).

Graph GT(n,Λ,K) has a nice compact vertex set and therefore the machinery of §7
applies: ϑ′(GT(n,Λ,K)) as defined by (7) provides an upper bound to α(GT(n,Λ,K)).
The only problem is that we do not know the periodicity lattice Λ in advance — usu-
ally, we are interested in considering lattices with larger and larger minimal vectors.
A way around this issue is the topic of the next section.
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§10. An upper bound for ∆T(n,K)

Let K ⊆ Rn be a convex body. To get an upper bound for ∆T(n,K), the idea is
to define an optimization problem from any feasible solution of which we will be able
to derive a feasible solution of (7) for GT(n,Λ,K) for any lattice Λ ⊆ Rn with large
enough minimal vectors.

To describe this optimization problem we need some notions from the theory of
harmonic analysis on Rn. What we need is little, however; more background can be
found in the book by Katznelson [19].

In this section we deal with complex-valued functions. A function f :Rn → C is
rapidly decreasing if it is infinitely differentiable and any of its derivatives, multiplied
by any polynomial on the variables x1, . . . , xn, vanishes at infinity.

Let f ∈ L1(Rn). The Fourier transform of f computed at u ∈ Rn is

f̂(u) =

∫
Rn

f(x)e−2πiu·x dx.

If f is rapidly decreasing, then its Fourier transform is also rapidly decreasing and we
have the inversion formula

f(x) =

∫
Rn

f̂(u)e2πiu·x du.

A function f ∈ L∞(Rn) is of positive type if f(x) = f(−x) for all x ∈ Rn and for
all ρ ∈ L1(Rn) we have ∫

Rn

∫
Rn

f(x− y)ρ(x)ρ(y) dxdy ≥ 0. (13)

A function f ∈ L1(Rn) with f(x) = f(−x) for all x ∈ Rn is of positive type if and
only if its Fourier transform is nonnegative. It is easy to give a proof of this for rapidly
decreasing functions by using the inversion formula. Indeed, let f :Rn → C be rapidly
decreasing and such that f(x) = f(−x) for all x ∈ Rn. Then its Fourier transform is
real-valued; given ρ ∈ L1(Rn), use the inversion formula to substitute f(x−y) in (13)
and exchange integrals to get∫

Rn

∫
Rn

f(x− y)ρ(x)ρ(y) dxdy =

∫
Rn

f̂(u)|ρ̂(u)|2 du. (14)

So, if f̂(u) ≥ 0 for all u ∈ Rn, then (14) is nonnegative for all ρ ∈ L1(Rn). On the

other hand, if f̂(u) < 0 for some x ∈ Rn, then we may choose a ρ ∈ L1(Rn) such
that (14) is negative.

The optimization problem promised at the beginning of the section is:

min f(0)

f(x) ≤ 0 if K◦ ∩ (x+K◦) = ∅,
f̂(0) ≥ volK,
f :Rn → R is rapidly decreasing and of positive type.

(15)

Theorem 6. If f is any feasible solution of (15), then ∆T(n,K) ≤ f(0).

Proof. Let f be a feasible solution of (15) and take a lattice Λ ⊆ Rn whose minimal
vectors have length at least as large as the diameter of K. Then for x, y ∈ Rn/Λ set

Z(x, y) =
vol(Rn/Λ)

volK
∑
v∈Λ

f(x− y + v).
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We show now that (Z, λ) with λ = vol(Rn/Λ)f(0)/ volK is a feasible solution of (7)
for the graph GT(n,Λ,K).

First, since f is rapidly decreasing, the infinite sum above converges for all x, y
and the resulting kernel is continuous.

Next, since the minimal vectors of Λ have length at least as large as the diam-
eter of K, if v ∈ Λ is nonzero then K◦ ∩ (v + K◦) = ∅, and hence f(v) ≤ 0. But
then Z(x, x) ≤ λ for all x ∈ Rn/Λ.

Now, if distinct x, y ∈ Rn/Λ are nonadjacent in GT(n,Λ,K), then for all v ∈ Λ
we have that (x+ v +K◦) ∩ (y +K◦) = ∅, and this happens if and only if K◦ ∩ (x−
y + v +K◦) = ∅. So f(x− y + v) ≤ 0 for all v ∈ Λ, and Z(x, y) ≤ 0.

It remains to show that Z − J is positive. To this end we will show that all
eigenvalues of Z − J are nonnegative. The dual lattice of Λ is

Λ∗ = {u ∈ Rn : u · v ∈ Z for all v ∈ Λ }.

The functions x 7→ e2πiu·x, for u ∈ Λ∗, are periodic with periodicity lattice Λ: for v ∈
Λ and all x ∈ Rn we have e2πiu·(x+v) = e2πiu·x. So these are functions in L2(Rn/Λ);
they actually form a complete orthonormal system of L2(Rn/Λ) with respect to the
inner product

(ϕ,ψ) =
1

vol(Rn/Λ)

∫
Rn/Λ

ϕ(x)ψ(x) dx

for ϕ, ψ ∈ L2(Rn/Λ).
Function x 7→ e2πiu·x is an eigenfunction of Z with eigenvalue

vol(Rn/Λ)f̂(u)

volK
.

Indeed, ∫
Rn/Λ

Z(x, y)e2πiu·y dy =
vol(Rn/Λ)

volK

∫
Rn/Λ

∑
v∈Λ

f(x− y + v)e2πiu·y dy.

Exchange the integral with the sum above and note that, since the exponential is
periodic with periodicity lattice Λ, the result is the same as integrating f over Rn:∫

Rn/Λ

Z(x, y)e2πiu·y dy =
vol(Rn/Λ)

volK

∫
Rn

f(x− y)e2πiu·y dy

=
vol(Rn/Λ)

volK

∫
Rn

f(y)e2πiu·(x−y) dy

=
vol(Rn/Λ)f̂(u)

volK
e2πiu·x,

as we wanted.
Now, the constant 1 kernel J has only one eigenfunction with nonzero eigenvalue,

namely the constant 1 function, whose eigenvalue is vol(Rn/Λ). The constant 1
function is also an eigenfunction of Z (take u = 0 in x 7→ e2πiu·x) with eigenvalue

vol(Rn/Λ)f̂(0)

volK
≥ vol(Rn/Λ),

since f̂(0) ≥ volK.
So we see that all eigenvalues of Z − J are nonnegative: the eigenvalue of the

constant 1 function is nonnegative, and for all other u ∈ Λ∗ the eigenvalue of x 7→
e2πiu·x is nonnegative since f̂(u) ≥ 0 as f is of positive type.
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So (Z, λ) is a feasible solution of (7) for the graph GT(n,Λ,K). Hence from The-
orem 4 it follows that α(GT(n,Λ,K)) ≤ λ. Recall from the previous section that the
maximum density of a periodic packing of translates of K is

α(GT(n,Λ,K)) volK
vol(Rn/Λ)

≤ λ volK
vol(Rn/Λ)

= f(0).

Since Λ is any lattice with large enough minimal vectors, the theorem follows.

If we rewrite f using the inversion formula, then (15) becomes a linear program-

ming problem with infinitely many variables (one variable f̂(u) for each u ∈ Rn) and
infinitely many constraints. The bound given by (15) is commonly called the linear
programming bound (compare with the linear programming bound for binary codes
of §6 or spherical codes of §8). We now require f to be nonpositive in a noncompact
set, and this makes it much harder to apply sampling and linear programming as
could be done for the linear programming bound for spherical codes in §8. One way
to find feasible solutions of (15) is to use polynomial optimization methods with sums
of squares. The essential theory is presented in §11, then applied to the bound for
spherical codes in §12 and to (15) in §13.

Theorem 6 was originally proven by Cohn and Elkies [7] and then used to find
upper bounds for the maximum density of sphere packings. Their approach to finding
feasible solutions of (15) is however different from the one in §13.

§11. Sum-of-squares polynomials and semidefinite programming

If a polynomial p ∈ R[x1, . . . , xn] can be written as a sum of squares, that is, if
there are polynomials q1, . . . , qm such that p = q2

1 + · · ·+ q2
m, then p is nonnegative

everywhere. Having a sum-of-squares decomposition is a sufficient condition for non-
negativity, but it is not in general necessary: Hilbert [18] showed that nonnegativity
is equivalent to having a sum-of-squares decomposition only for (i) univariate polyno-
mials, (ii) polynomials of degree two, and (iii) two-variable polynomials of degree 4.
(Exercise: show that a univariate polynomial is nonnegative if and only if it is the
sum of at most two squares.)

So requiring a polynomial to be a sum of squares is usually more restrictive than
requiring it to be nonnegative. It is however an NP-complete problem to decide
whether a given polynomial is nonnegative (prove it), while deciding whether a given
polynomial is a sum of squares is a more tractable computational problem in practice,
since it can be reduced to the problem of deciding whether a certain semidefinite
programming problem is feasible. Though the complexity of this latter problem is
still open, it can be solved in practice by most solvers in many cases of practical
interest.

For d ≥ 0, let R[x1, . . . , xn]≤d denote the space of polynomials of degree at most d.
If B is any finite set of polynomials, let vB :B → B be such that vB(p) = p for
all p ∈ B. The connection between sums of squares and semidefinite programming is
established by the following theorem.

Theorem 7. Let p ∈ R[x1, . . . , xn] be a polynomial of degree 2d and let B be a basis
of R[x1, . . . , xn]≤d. Then p is a sum of squares if and only if there is a positive
semidefinite matrix Q:B ×B → R such that p = vTBQvB.

Proof. Say there is a positive semidefinite matrix Q such that p = vTBQvB . Then we
have Q = u1u

T
1 + · · ·+ umu

T
m for some vectors ui:B → R and writing qi = uTi vB we

have that each qi is a polynomial and

p = vTBQvB = vTBu1u
T

1 vB + · · ·+ vTBumu
T

mvB = q2
1 + · · ·+ q2

m,

hence p is a sum of squares.
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Conversely, say p = q2
1 + · · · + q2

m for some q1, . . . , qm. Each qi has degree at
most d and thus can be expressed as a linear combination of the polynomials in B.
So for i = 1, . . . , m let ui:B → R be such that qi = uTi vB . Then p = vTBQvB ,
with Q = u1u

T
1 + · · ·+ umu

T
m positive semidefinite.

Given a polynomial p ∈ R[x1, . . . , xn] of degree 2d, how can we set up a semidefinite
programming problem that is feasible if and only if p is a sum of squares? We start
by picking a basis B of R[x1, . . . , xn]≤d. Then from Theorem 7 we know that p is a
sum of squares if and only if there is a positive semidefinite matrix Q:B × B → R
such that

p = vTBQvB = 〈vBvTB , Q〉.

This identity is not a linear constraint on the entries of Q, but an identity between
polynomials. Both sides of the identity are polynomials of degree 2d, so to check the
identity we have to expand both sides on a basis B= of R[x1, . . . , xn]≤2d and compare
coefficients.

More precisely, for q ∈ R[x1, . . . , xn]≤2d and r ∈ B=, let coeff(r, q) be the coeffi-
cient of r in the expansion of q on the basis B=. For r ∈ B=, write coeff(r, vBv

T

B)
for the real matrix obtained from vBv

T

B by applying coeff(r, · ) entrywise. Then p =
〈vBvTB , Q〉 if and only if

〈coeff(r, vBv
T

B), Q〉 = coeff(r, p) for each r ∈ B=. (16)

So p is a sum of squares if and only if there is a positive semidefinite matrix satisfying
the |B=| linear constraints above.

Let us work out an example in detail. Say we are given the polynomial p(x) =
x8 + 2x6 + 3x4 + 4x3 + 4 and we are asked to find its global minimum

min{ p(x) : x ∈ R } = max{λ : p(x)− λ ≥ 0 for all x ∈ R }
= max{λ : p(x)− λ is a sum of squares }.

(The last identity follows from the fact that nonnegativity is equivalent to being a
sum of squares for univariate polynomials.)

Since p has degree 8, we take B = {1, x, x2, x3, x4}. Then vTB = (1, x, x2, x3, x4)
and

vBv
T

B =


1 x x2 x3 x4

x x2 x3 x4 x5

x2 x3 x4 x5 x6

x3 x4 x5 x6 x7

x4 x5 x6 x7 x8

 .

Take B= = {1, x, . . . , x8} and write Fk = coeff(xk, vBv
T

B) for k = 0, . . . , 8. Here are,
for instance, F0 and F4:

F0 =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 and F4 =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 .

Then for λ ∈ R we have that p(x)− λ is a sum of squares if and only if there is a
positive semidefinite matrix Q:B ×B → R satisfying

〈F0, Q〉 = 4− λ, 〈F3, Q〉 = 4, 〈F6, Q〉 = 2,
〈F1, Q〉 = 0, 〈F4, Q〉 = 3, 〈F7, Q〉 = 0,
〈F2, Q〉 = 0, 〈F5, Q〉 = 0, 〈F8, Q〉 = 1.

(17)
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So the global minimum of p is the optimal value of the semidefinite programming
problem

max λ

Q and λ satisfy (17),

Q:B ×B → R is positive semidefinite and λ ∈ R.

(Note λ is also a variable in this problem.)
We will sometimes write semidefinite programming problems with “polynomial

constraints”, that is, constraints such as p = 〈vBvTB , Q〉 that are identities between two
polynomials. It is then implied that to transform the problem into a true semidefinite
programming problem one has to pick a basis to express the polynomial identity, as
described above.

So far we have discussed the relation between sums of squares and nonnegativ-
ity everywhere, but what if we want a polynomial to be nonnegative inside a given
domain?

If the domain is a basic closed semialgebraic set, that is, a set

D = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0 }

where gi ∈ R[x1, . . . , xn], then the theory can be easily extended. Indeed, if there are
sum-of-squares polynomials q0, q1, . . . , qm such that

p = q0 + q1g1 + · · ·+ qmgm,

then p is nonnegative in D. The converse holds under certain conditions; see e.g. a
theorem of Putinar [28].

For univariate polynomials the situation is much simpler. A classical theorem of
Lukács (see Theorem 1.21.1 in the book by Szegö [37]) asserts that a polynomial p ∈
R[x] is nonnegative on the interval [a, b] if and only if there are polynomials q, q′ such
that

p(x) = q(x)2 + (x− a)(b− x)q′(x)2

if p has even degree, or

p(x) = (x− a)q(x)2 + (b− x)q′(x)2

if p has odd degree.
It is usual in the literature to always use the standard monomial basis (i.e., the

basis of the space of polynomials consisting of all monomials) for both B and B=.
This restriction does not make the theory any simpler and, though it is true that the
standard monomial basis is used in most practical applications, sometimes picking
another basis is essential for the numerical stability of the resulting problem. This
will be the case in §13.

§12. Application to the linear programming bound for spherical codes

In §8 we used sampling to compute the linear programming bound (10) for spher-
ical codes. Let us now use sums of squares to describe a semidefinite programming
problem any feasible solution of which gives an upper bound to A(n, θ).

As in §8, we start by fixing d > 0 and truncating the sums in (10) after k = 2d.
So we wish to solve the problem

min
∑2d
k=0 fk∑2d
k=0 fkP

n
k (t) ≤ 0 if −1 ≤ t ≤ cos θ,

f0 ≥ 1 and f1, . . . , f2d ≥ 0.
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n Lower bound Upper bound n Lower bound Upper bound
3 12 13.158330 14 1606 3530.606349
4 24 25.558429 15 2564 5451.677955
5 40 46.337573 16 4320 8364.000000
6 72 82.631215 17 5346 12373.384615
7 126 140.162445 18 7398 18199.285714
8 240 240.000000 19 10668 26771.000000
9 306 380.099072 20 17400 39655.000000

10 500 595.828789 21 27720 59693.117647
11 582 915.389530 22 49896 88391.875000
12 840 1416.090277 23 93150 130340.050063
13 1154 2234.378143 24 196560 196560.000000

Table 4. Table of lower and upper bounds for the kissing number. The lower
bounds come from Table 1.5 in Conway and Sloane [8], except for n = 13
and 14, in which case they were provided by Zinoviev and Ericson [40]. The
upper bounds were computed by solving problem (18) numerically with d = 11;
the standard monomial basis was used throughout. My gratitude goes to
Fabŕıcio Caluza Machado for computing the table above.

Notice that
∑2d
k=0 fkP

n
k (t) is a univariate polynomial on t. Therefore, it is non-

positive on [−1, cos θ] if and only if there are sum-of-squares polynomials q, q′ such
that

2d∑
k=0

fkP
n
k (t) = −q(t)− (t+ 1)(cos θ − t)q′(t).

Here, q has degree up to 2d and q′ has degree up to 2(d− 1).
Let B and B′ be bases of R[t]≤d and R[t]≤d−1 respectively. Then q is a sum of

squares if and only if there is a positive semidefinite matrix R:B × B → R such
that q = 〈vBvTB , R〉. Similarly, q′ is a sum of squares if and only if there is a positive
semidefinite matrix R′:B′ × B′ → R such that q′ = 〈vB′vTB′ , R′〉. So any feasible
solution of the semidefinite programming problem with polynomial constraints

min
∑2d
k=0 fk∑2d
k=0 fkP

n
k (t) + 〈vBvTB , R〉+ 〈(t+ 1)(cos θ − t)vB′vTB′ , R′〉 = 0,

f0 ≥ 1 and f1, . . . , f2d ≥ 0,

R:B ×B → R and R′:B′ ×B′ → R positive semidefinite

(18)

gives an upper bound to A(n, θ).
Table 4 shows bounds for the kissing number obtained by solving the problem

above for different values of n. It is a good exercise to try to duplicate these results.

§13. Application to the linear programming bound for sphere packings

Let us now use sums of squares to describe a semidefinite programming problem
any feasible solution of which provides an upper bound for ∆T(n,K), where K ⊆ Rn is
a ball of radius 1/2. This process is similar to that described in the previous section,
but slightly more involved.

Radial functions. If K is a ball of radius 1/2, then K◦ ∩ (x + K◦) = ∅ if and only
if ‖x‖ ≥ 1. Hence the nonpositivity constraint on f in (15) becomes

f(x) ≤ 0 if ‖x‖ ≥ 1.

To simplify (15), we restrict the choice of f to radial functions. A function f :Rn → C
is radial if f(x) depends only on ‖x‖, that is, f(x) = f(y) if ‖x‖ = ‖y‖. Since K
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is a ball, this restriction does not worsen the bound given by (15). The argument is
already familiar. If f is a feasible solution of (15) and A ∈ O(n) is an orthogonal
matrix, then function A · f such that (A · f)(x) = f(A−1x) is also a feasible solution
of (15) with the same objective value. Hence if µ is the Haar measure over O(n)
normalized so that µ(O(n)) = 1, then the function f such that

f(x) =

∫
O(n)

f(A−1x) dµ(A)

is a radial function that is a feasible solution of (15) with f(0) = f(0). (The only
technical point here is to argue that f is rapidly decreasing.)

A parametrization of f̂ , and positive typeness. Function f is radial if and only if its
Fourier transform f̂ is radial. Moreover, since f is of positive type and real-valued,
we have f(x) = f(−x) for all x ∈ Rn, and this holds if and only if f̂ is real-valued

and such that f̂(u) = f̂(−u) for all u ∈ Rn (prove it).

We specify f via its Fourier transform f̂ . Fix an integer d > 0 and set f̂(u) =

p(‖u‖)e−π‖u‖2 , where p is an even univariate polynomial of degree at most 2d. Then f
is of positive type if and only if p is nonnegative, and since p is univariate this happens
if and only if p is a sum of squares.

Computing f from f̂ , and constraints on f . To compute f from f̂ given as above we
use the following theorem.

Theorem 8. If k ≥ 0 and x ∈ Rn, then∫
Rn

‖u‖2ke−π‖u‖
2

e2πu·x du = k!π−kL
n/2−1
k (π‖x‖2)e−π‖x‖

2

.

Here, Lαk is the Laguerre polynomial of degree k and parameter α. For a proof of
this theorem, see the paper by de Laat, Oliveira, and Vallentin [21].

The Laguerre polynomials Lαk of parameter α > −1 are univariate polynomials
that can be obtained, aside from normalization, by applying the Gram-Schmidt or-
thogonalization process to the polynomials 1, t, t2, . . . with respect to the inner
product

(ϕ,ψ)α =

∫ ∞
0

ϕ(t)ψ(t)tαe−t dt

for ϕ, ψ:R → R. There are simple recurrence relations that can be used to com-
pute Lαk ; see e.g. (5.1.10) in the book by Szegö [37].

If p(t) =
∑d
k=0 akt

2k, then using Theorem 8 we see that

f(x) =
d∑
k=0

akk!π−kL
n/2−1
k (π‖x‖2)e−π‖x‖

2

.

In other words, from Theorem 8 we see how to define a linear transformation F on
the space of univariate even polynomials so that f(x) = F(p)(‖x‖)e−π‖x‖2 . Note
moreover that F preserves the degree of a polynomial to which it is applied.

Since p is univariate, we have f(x) ≤ 0 if ‖x‖ ≥ 1 if and only if there are sum-of-
squares polynomials q, q′ such that

F(p)(s) = −q(s)− (s2 − 1)q′(s).

Note moreover that the degree of q is at most 2d, and similarly the degree of q′ is at
most 2(d− 1). Since p is even and s2 − 1 is also even, we may assume that q and q′

are even.
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Full formulation. In our formulation we have to ensure that p, q, and q′ are even.
Instead of being a burden in the form of extra constraints, this allows us to break
down the matrices representing these polynomials into two blocks each.

To simplify the discussion let us assume d > 0 is odd. Let P0, P1, . . . be a
sequence of univariate polynomials such that Pk has degree k. Then Pk(t2) is an even
polynomial of degree 2k and tPk(t2) is an odd polynomial of degree 2k + 1.

Write B0 = {P0(t2), . . . , Pbd/2c(t
2)} and B1 = {tP0(t2), . . . , tPbd/2c(t

2)} and set
B = B0 ∪ B1. We know that p is a sum of squares if and only if there is a positive
semidefinite matrixQ:B×B → R such that p = 〈vBvTB , Q〉. LetQ−:B×B → R be the
matrix such that Q−(r, s) = Q(r, s) if r, s ∈ Bi for i = 0, 1 and Q−(r, s) = −Q(r, s)
otherwise. This matrix is positive semidefinite. Moreover

p(−t) = 〈(vBvTB)(−t), Q〉 = 〈(vBvTB)(t), Q−〉.

But then, since p(t) = p(−t), we have

p = (1/2)(〈vBvTB , Q〉+ 〈vBvTB , Q−〉) = 〈vBvTB , (1/2)(Q+Q−)〉.

Now (1/2)(Q + Q−) is a positive semidefinite matrix with a zero in position (r, s)
for all (r, s) ∈ B0 × B1 ∪ B1 × B0. So this matrix gives a representation of p and is
composed of two blocks corresponding to B0 and B1.

We may represent polynomial q similarly. As for polynomial q′, it has degree at
most 2(d − 1), so we take B′0 = {P0(t2), . . . , Pbd/2c−1(t2)} and proceed similarly to
define B′1.

Extend the linear transformation F to matrices of even polynomials by applying
it entrywise. For short, write Vi = vBiv

T

Bi
and V ′i = vB′

i
vTB′

i
. Then each feasible

solution of the following semidefinite programming problem with polynomial identity
constraints provides an upper bound for ∆T(n,K) (cf. (15)):

min 〈F(V0)(0), Q0〉+ 〈F(V1)(0), Q1〉
〈F(V0)(s), Q0〉+ 〈F(V1)(s), Q1〉+ 〈V0(s), R0〉+ 〈V1(s), R1〉

+〈(s2 − 1)V ′0(s), R′0〉+ 〈(s2 − 1)V ′1(s), R′1〉 = 0,

〈V0(0), Q0〉+ 〈V1(0), Q1〉 ≥ volK,
Qi, Ri:Bi ×Bi → R and R′i:B

′
i ×B′i → R are positive semidefinite.

(19)

Choosing bases and computational results. To solve problem (19) we need to choose
polynomials P0, P1, . . . . We also need to choose a basis B= of the space of even
polynomials of degree up to 2d so as to transform (19) into a semidefinite programming
problem.

We could pick the standard monomial basis both times. This is a very poor
choice in practice: the resulting problems are ill-conditioned and numerical instability
prevents solvers from finding solutions even for small values of d.

A better choice, arrived at by extensive guessing and experimentation (see the
paper by de Laat, Oliveira, and Vallentin [21], §5.3), is to take

Pk(t) = µ−1
k L

n/2−1
k (2πt),

where µk is the largest absolute value of any coefficient of L
n/2−1
k (2πt), and set B= =

{P0(t2), . . . , Pd(t
2)}.

Table 5 shows bounds for ∆T(n,K) computed by solving (19) for different values
of d. Again, it is a good exercise to reproduce this table. The lower bounds on the
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n Lower bound d = 21 d = 25
2 0.28868 0.28867518 0.28867505
3 0.17678 0.18615810 0.18615285
4 0.12500 0.13126244 0.13125761
5 0.08839 0.09976847 0.09972443
6 0.07217 0.08089432 0.08084123
7 0.06250 0.06939099 0.06931809
8 0.06250 0.06273191 0.06253436
9 0.04419 0.05951452 0.05910841
10 0.03906 0.05868910 0.05033605
11 0.03516 0.06035374 0.00385678
12 0.03704 0.06549422 0.05775411
13 0.03516 0.07455412 0.00164939
14 0.03608 0.08571855 0.07182631
15 0.04419 0.10084887 0.00003525

Table 5. Table with lower bounds for the sphere packing density, together
with upper bounds computed by solving problem (19) numerically for d = 21
and d = 25. Densities are actually the center density, the number of centers
of unit balls per unit volume; to get the density, multiply by the volume of a
unit ball. These are numerical results, not all trustworthy; see below.

table are taken from Cohn and Elkies [7]; compare this table to the table at the end
of their paper.

It should be noted that the numbers on the table were computed by solving prob-
lem (19) with the CSDP [5] solver, which works with double-precision floating-point
arithmetic. No rigorous verification was done on the solutions obtained, so the num-
bers obtained cannot be said to provide bounds. As the dimension and degree in-
crease, the problems become more unstable. Notice for instance the result for n = 15
and d = 25: it is clearly wrong! When using numerical solvers to get bounds, the
work is not over when the problem is solved. Rigorous verification of the solutions
— along with the many tricks involved in tweaking an infeasible solution to turn it
into a feasible one — is an essential part of the process. See for instance the paper
by de Laat, Oliveira, and Vallentin [21] for one approach to rigorous verification of
solutions.
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