

University

"K-theoretic" analog of Postnikov-Shapiro algebra distinguishes graphs

nenashev@math.su.se

Nenashev Gleb

Stockholm University

Postnikov-Shapiro algebra counting subforests

1st Let Φ_G be the algebra over \mathbb{K} generated by $\{\phi_e : e \in G\}$ with relations $\phi_e^2 = 0$, for any $e \in G$. Take any linear order of vertices of G. For i = 0, ..., n, set

$$X_i = \sum_{e \in G} C_{i,e} \phi_e,$$

where $c_{i,e} = \pm 1$ for vertices incident to e (for the smaller vertex, $c_{i,e} = 1$, for the bigger vertex, is $C_{i,e} = -1$) and 0 otherwise. Denote by C_G the subalgebra of Φ_G generated by X_1, \ldots, X_n . **2nd** Let J_G be the ideal in $\mathcal{K}[x_1, \dots, x_n]$ generated by the polynomials

$$\sum_{l=1}^{n} \left(\sum_{j=1}^{n} x_{j}\right)^{D_{l}+1}$$

Comments

Here all graphs without loops, but might have multiple edges.

We fix a field \mathbb{K} of zero characteristic.

Example

where I ranges over all nonempty subsets of vertices, and D_{l} is the total number of edges between ' and its complementary. Define the algebra B_G as the quotient $\mathbb{K}[x_1, \dots, x_n]/J_G$.

Theorem(Postnikov, Shapiro) The algebras B_G and C_G are isomorphic. Their total dimension as vector spaces over \mathbb{K} is equal to the number of subforests in G.

The Hilbert series of algebra C_G is given by

$$\mathcal{HS}_{C_G}(t) = \mathcal{T}_G\left(1+t,\frac{1}{t}\right) \cdot t^{|G|-\nu(G)+c(G)}$$

where c(G) is number of connected component of G and T_G is Tutte polynomial of G.

Theorem(N.) Given two graphs G_1 and G_2 , algebras C_{G_1} and C_{G_2} are isomorphic if and only if their graphical matroids are isomorphic. (The algebraic isomorphism can be thought of either as graded or as non-graded.)

"K-theoretic" filtration

1st Let $\mathcal{K}_G \subset \Phi_G$ be subalgebra defined by the generators:

 $Y_i = \exp(X_i) = \prod (1 + C_{i,e}\phi_e), \ i = 0, ..., n.$

 Φ_{Δ} generated by ϕ_a, ϕ_b and ϕ_c with relations

$$\phi_a^2 = \phi_b^2 = \phi_c^2 = \mathbf{0}.$$

Generators of C_G are

 $X_0 = \phi_a + \phi_c,$

$$X_1 = -\phi_a + \phi_b,$$

 $X_2 = -\phi_b - \phi_c.$

Algebra C_G has a natural graded structure and its graded components are

- $\Bbbk = span\{1\}, dim = 1;$
- > span{ $\phi_a \phi_b$, $\phi_a + \phi_c$ }, dim = 2;
- > span{ $\phi_a \phi_b$, $\phi_b \phi_c$, $\phi_a \phi_c$ }, dim = 3;
- > span{ $\phi_a \phi_b \phi_c$ }, *dim* = 1.

e∈G

2nd Define J_G in $\mathcal{K}[y_0, y_1, \dots, y_n]$ as the ideal generated by the polynomials

$$q_I = \left(\prod_{i\in I} y_i - 1\right)^{D_I+1},$$

where I ranges over all nonempty subsets in $\{0, 1, ..., n\}$. Set $D_G := \mathcal{K}[y_0, ..., y_n]/J_G$.

Theorem(N., Shapiro) For any graph G, algebras B_G , C_G , D_G and \mathcal{K}_G are isomorphic as non-filtered algebras. Their total dimension is equal to the number of subforests in G.

Furthermore, for any graph G, algebras D_G and \mathcal{K}_G are isomorphic as filtered algebras.

Question What is sense of Hilbert series $HS_{\mathcal{K}_G}$?

Theorem(N., Shapiro) Given two graphs G_1 and G_2 without isolated vertices, \mathcal{K}_{G_1} and \mathcal{K}_{G_2} are isomorphic as filtered algebras if and only if G_1 and G_2 are isomorphic.

Example

Let Φ_G^T be the algebra generated by $\{\phi_e : e \in G\}$ with relations $\phi_e^2 = 0$, for any $e \in G$, and $\prod_{e \in C} \phi_e = 0, \text{ for any cut } C.$ Let $C_G^T \subset \Phi_G^T$ be subalgebra generated by $X_i = \sum_{e \in G} c_{i,e} \phi_e$, for i = 0, ..., n. Let $\mathcal{K}_G^T \subset \Phi_G^T$ be filtered subalgebra generated by $Y_i = e^{X_i} = \prod_{e \in G} (1 + c_{i,e}\phi_e)$, for i = 0, ..., n.

Generators of \mathcal{K}_{Δ} are

$$Y_{0} - 1 = e^{X_{0}} - 1 = \phi_{a} + \phi_{c} + \phi_{a}\phi_{c};$$

$$Y_{1} - 1 = e^{X_{1}} - 1 = -\phi_{a} + \phi_{b} - \phi_{a}\phi_{b};$$

$$Y_{2} - 1 = e^{X_{2}} - 1 = -\phi_{b} - \phi_{c} + \phi_{b}\phi_{c}.$$

The filtered structure is

- $F_0 = \text{span}\{1\}, dim = 1;$ $F_1 = \text{span}\{1, Y_0, Y_1, Y_2\},\$ $dim(F_1) - dim(F_0) = 3;$
- $F_2 = \operatorname{span}\{1, Y_0, Y_1, Y_2, Y_0^2, Y_1^2, Y_0Y_1, \ldots\},\$ $dim(F_2) - dim(F_1) = 3.$

Graded algebras C_{G_1} and C_{G_2} are **isomorphic**.

Filtered algebras \mathcal{K}_{G_1} and \mathcal{K}_{G_2} are **not isomor**phic.

Definitions of B_G^T and D_G^T are similar to definitions of B_G and D_G , we need to write power D_I instead $D_{l} + 1.$

Theorem For any graph G, algebras B_G^T , C_G^T , D_G^T and \mathcal{K}_G^T are isomorphic as non-filtered algebras. Their total dimension is equal to the number of spanning trees of G. Furthermore, algebras B_G^T , C_G^T are isomorphic as graded algebras and algebras D_G^T , \mathcal{K}_G^T are isomorphic as filtered algebras.

Conjecture Given two graphs G_1 and G_2 , algebras C_{G_1} and C_{G_2} are isomorphic if and only if their bridge-matroids are isomorphic. (bridge-free matroid of graph G is graphical matroid of graph G', which is obtained from G by removal all its bridges)

Question When are \mathcal{K}_{G_1} and \mathcal{K}_{G_2} isomorphic?