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Circle Packing Problems

Circle Packing Problems

Flávio K. Miyazawa Approximation Algorithms for Circle Packing July, 2016 4 / 57



Circle Packing Problems

Packings
Given:

I A list of geometrical items L and bins B
I Obtain a good packing of items in L into bin B ∈ B
I The inner region of two packed items cannot overlap
I Each packed item must be totally contained in the bin
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Circle Packing Problems

Problems
Circle Strip Packing

I Input: List of circles L = (c1, . . . , cn)

I Output: Packing of L into a rectangle of width 1 and
minimum height.

Minimize

Flávio K. Miyazawa Approximation Algorithms for Circle Packing July, 2016 6 / 57



Circle Packing Problems

Problems
Circle Bin Packing

I Input: List of circles L = (c1, . . . , cn)

I Output: Packing of L into the minimum number of unit
bins.

Minimize
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Circle Packing Problems

Some Applications

I Cutting and Packing of circular items
I Transportation of tubes, cilinders,...
I Cable assembly/allocations
I Tree plantation
I Origami design
I Marketing
I Cylinder pallet assembly
I . . .
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Circle Packing Problems

Marketing
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Circle Packing Problems

Computational Complexity

Demaine, Fekete, Lang’10: To decide if a set of circles can be
packed into a square is NP-hard.

Approximation Algorithms:
I Efficient Algorithms (polynomial time)

I Analysis: How far from the optimum solution value ?

I Compromise:

Computational Time × Solution Quality
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Circle Packing Problems

Approximation Algorithms
I A(I ) Value of the solution produced by A for instance I
I OPT(I ) Value of an optimum solution of I
I A has approximation factor α if
I A has asymptotic approximation factor α if

for some constant β
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Circle Packing Problems

Approximation Algorithms
For Minimization Problems

PTAS: Polynomial Time Approximation Scheme
I A family of polynomial time algorithms Aε, ε > 0, is a

polynomial time approximation scheme if

Aε(I ) ≤ (1+ ε)OPT(I ), for any instance I

APTAS: Asymptotic Polynomial Time Approximation Scheme
I A family of algorithms Aε, ε > 0 is an asymptotic

polynomial time approximation scheme if

Aε(I ) ≤ (1+ ε)OPT(I ) + βε, for any instance I

where βε is a constant that depends only on ε
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Circle Packing Problems

Online Packing Algorithms

I Incoming items appears one after the other, sequentially
I An incoming item must be packed when it arrives, without

the knowledge of further items
I Once an item is packed, it cannot be repacked again.
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Circle Packing Problems

Online Circle Bin Packing
Example
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Circle Packing Problems

Preliminaries
Some Notation

I If f : D → R is a numerical function, we may write
I fe and f (e), indistictly
I f (S) as the value

∑
e∈D f (e), there is no explicit definition

I If c is a circle and L = (c1, . . . , cn) a list of circles, then
I c is also used to denote its radius
I ĉ is the square with side lengths 2c
I L̂ is the list L̂ = (ĉ1, . . . , ĉn)
I max(L) is the maximum radius of a circle in L
I Area(L) is the total area of the circles in L
I L is the list with |L| equal circles with radius max(L)
I C is the set containing all lists of circles for the input problem

Flávio K. Miyazawa Approximation Algorithms for Circle Packing July, 2016 15 / 57



Circle Packing Problems

Preliminaries
Some Notation

I If f : D → R is a numerical function, we may write
I fe and f (e), indistictly
I f (S) as the value

∑
e∈D f (e), there is no explicit definition

I If c is a circle and L = (c1, . . . , cn) a list of circles, then
I c is also used to denote its radius
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Circle Packing Problems

Preliminaries
If E is a packing or other geometrical composition,
E may be considered as the solid structure

I width(E) is the width of E
I height(E) is the height of E

First considerations
I We consider a more general computational model
I Possible to operate over polynomial solutions
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Basic Algorithms

Basic Algorithms

Flávio K. Miyazawa Approximation Algorithms for Circle Packing July, 2016 17 / 57



Basic Algorithms

Area Lower Bound

I Circle Strip Packing with bin width 1

Opt

Area bound

I Circle Bin Packing with unit square bins
Optimum

Area Lower Bound
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Basic Algorithms

Area based algorithms
Let
C the set containing all lists of circles, and
Q the set containing all lists of squares
next algorithm is a circle version CA from square packing
algorithm A

CA(L)
1. Let P̂ ← A(L̂).
2. Let P the packing P̂ replacing ĉi by ci .
3. Return P.

Lemma. If A is a square packing algorithm and α, β are
constants, st. A(S)≤αArea(S)+β, for any S ∈ Q

CA(L) ≤ α 4
π
Area(L) + β, for any L ∈ C
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Basic Algorithms

Area based algorithms
Best possible density

Hexagonal Packing

I Density π√
12
≈ 0.9069

Lemma. There is no algorithm with approximation factor, based
only on area arguments, better than

√
12
π
≈ 1.10266

Flávio K. Miyazawa Approximation Algorithms for Circle Packing July, 2016 20 / 57



Basic Algorithms

Using square packing algorithms
I Round each circle ci to a square ĉi :

I Use square packing algorithms

I Area increasing: Area(ĉi)
Area(ci)

= 4
π
≈ 1.27324

I Let L̂ = (ĉ1, . . . , ĉn) the list L rounding each circle to a
square

I Bounding the optimum with the area:

Area(L̂) =
4
π
Area(L) ≤ 4

π
OPT(L)
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Basic Algorithms

Using square packing algorithms
Shelf Packing:

I Items are packed over shelves (of zero thickness)
I side by side in a leftmost way
I Items in a same shelf are packed at the same height.
I Item s can be packed in a shelf S if width(s)+width(S) ≤ 1
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Basic Algorithms

Using square packing algorithms

NFDHs(L) # for Strip Packing
1. Sort L = (s1, . . . , sn) st. s1 ≥ · · · ≥ sn
2. For i ← 1 to n :
3. Pack si into the last shelf, if possible
4. otherwise, pack si in a new shelf on top of

the previous shelf or bin’s bottom (in case
there is no previous shelf) m

m+1

Lt

Lk

L1

1

L2

s

Lemma. If L has only squares with side lengths at most 1/m
NFDHs(L) ≤ m+1

m Area(L) + 1
m
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Basic Algorithms

Using square packing algorithms
Sketch.
Each of the first k−1 shelves have width filled by at least m

m+1
Let Lt the first shelf having square with side ≤ 1/(m + 1)

m
m+1

Lt

Lk

L1

1

L2

s

• L1,. . .,Lt−1: m squares of side > 1
m+1 , each.

• Lt , . . . ,Lk : width filled > 1− 1
m+1 = m

m+1 ,
otherwise receive another item.

Sliding up squares in Li can cover all rectangular
region of shelf Li+1, up to width m

m+1 .

(NFDHs(L) − height(L1))
m

m + 1
≤ Area(L)

So,

NFDHs(L) ≤ m + 1
m

Area(L) + height(L1) ≤
m + 1

m
Area(L) +

1
m
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Basic Algorithms

Using square packing algorithms
Let
Cm the set of lists with small circles (diam. ≤ 1/m , m integer)

Corollary. If L ∈ Cm , then

CNFDHs(L) ≤ m + 1
m

4
π
OPT(L) +

1
m

∀L

Corollary. If L is a list of circles then
CNFDHs(L) ≤ 2.548OPT(L) + 1
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Basic Algorithms

Rounding circles to circles
Algorithm EqualCircles(L) # all circles in L have a same size

1. Let P ′ and P ′′ packings of L as below

2. Return packing P ∈ {P ′,P ′′} with minimum height.

Lemma. If all circles of L have radius r , then
EqualCircles(L) ≤ 1.654Area(L) + 2r .
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Basic Algorithms

Rounding circles to circles
Idea: Circles with close radius are rounded up to the same radius
Given L ∈ C, L is the list with |L| circles with radius max(L)

Algorithm Aε(L)
1. δ← ε

6 .
2. For i ≥ 0 do
3. Li ← {r ∈ L : 1/2

(1+δ)i+1 < r ≤ 1/2
(1+δ)i }.

4. Pi ← EqualCircles(Li).
5. P ← P0‖P1‖P2‖ . . . # concatenation of packings
6. Return P.

Theorem. Given ε > 0, we have
Aε(L) ≤ (1.654+ ε)Area(L) + Cε, for any L ∈ C

Flávio K. Miyazawa Approximation Algorithms for Circle Packing July, 2016 27 / 57



Basic Algorithms

Rounding circles to circles
Idea: Circles with close radius are rounded up to the same radius
Given L ∈ C, L is the list with |L| circles with radius max(L)

Algorithm Aε(L)
1. δ← ε

6 .
2. For i ≥ 0 do
3. Li ← {r ∈ L : 1/2

(1+δ)i+1 < r ≤ 1/2
(1+δ)i }.

4. Pi ← EqualCircles(Li).
5. P ← P0‖P1‖P2‖ . . . # concatenation of packings
6. Return P.

Theorem. Given ε > 0, we have
Aε(L) ≤ (1.654+ ε)Area(L) + Cε, for any L ∈ C

Flávio K. Miyazawa Approximation Algorithms for Circle Packing July, 2016 27 / 57



Basic Algorithms

Online Circle Strip Packing
Online Packing

I Incoming items appears one after the other, sequentially
I An incoming item must be packed when it arrives, without

the knowledge of further items
I Once an item is packed, it cannot be repacked again.

Baker, Schwarz’83: For 0 < p < 1, there exists online algorithm
CNFSp s.t.,

CNFSp(L) ≤
2.548

p
OPT(L) +

1
p(1− p)

, for any L ∈ C
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Circle Bin Packing

Circle Bin Packing
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Circle Bin Packing

Rounding to squares
Adaptation of the strip packing version NFDHs.
NFDHb(L) # For the bin packing version
1. Sort L = (s1, . . . , sn) st. s1 ≥ · · · ≥ sn

2. For i ← 1 to n :
3. Pack si in the last shelf (of the last bin), if possible
4. otherwise, pack si in a new shelf at the top of the

previous shelf, if possible
5. otherwise, pack si in a new shelf of a new bin.
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Circle Bin Packing

Rounding to squares
Meir, Moser’68. If all squares of L have side lengths at most 1

m

NFDHb(L) ≤
(

m+1
m

)2 Area(L) + m+2
m

Proof: Exercise (analogous to the proof of NFDHs)

Corollary. For any list L ∈ C with diameters at most 1
m

CNFDHb(L) ≤ 4
π

(
m + 1

m

)2

Area(L)+
m + 2

m

Corollary. For any list L ∈ C
CNFDHb(L) ≤ 5.1OPT(L)+3

Corollary. As radius of circles decrease, the density of the
packing is improved and CNFDHb goes to 4/π ≈ 1.27324.
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Bounded Space Online Bin Packing

Bounded Space Online Bin Packing
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Bounded Space Online Bin Packing

Bounded Space Online Bin Packing

I Algorithms must be online
I At any moment, bins are classified as open or closed
I Only open bins can receive new items
I A bin starts open and once it became closed, it cannot be

open again.
I The number of open bins is bounded by a constant
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Bounded Space Online Bin Packing

Bounded Space Online Bin Packing
Related results with asymptotic approximation:

I Lee and Lee: Algorithm with factor
1.69103 for 1-dimensional items and
showed that no algorithm can have better performance

I Epstein, van Stee’07: Algorithms with factors
2.3722 for packing squares and
3.0672 for packing cubes.
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Bounded Space Online Bin Packing

Bounded Space Online Bin Packing

We will see
I Algorithm with asymptotic approximation factor 2.44
I Lower bound of 2.29

Techniques
I Weighting system to obtain approximation factors
I Specific algorithms to deal with big and small circles
I Grouping circles to consider as equal circles
I Geometric Partition to combine items of the same type
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Bounded Space Online Bin Packing

Bounded Space Online Bin Packing
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Bounded Space Online Bin Packing

Packing equal circles
Find the largest ρ∗ st. k circles of radius ρ∗ can be packed in a
unit square

ρ∗1 = 0.5 ρ∗2 = 0.2928 ρ∗3 = 0.2543 ρ∗4 = 0.1963

ρ∗5 = 0.2071 ρ∗6 = 0.1876 ρ∗7 = 0.1744 ρ∗8 = 0.1705

Previous results: It is known the exact values of ρ∗n , for n ≤ 30
and good lower bounds for many.
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Bounded Space Online Bin Packing

Packing big circles
Round up big circles to the nearest value of ρ
(to bound the number of different circles)

I A circle is big if its radius is larger than 1/M
I Let ρi be the value of ρ∗i , when it is known, otherwise, the

best known lower bound.
I Let K be such that ρK+1 ≤ 1/M < ρK

A circle r is of type i if:
I ρi+1 < r ≤ ρi (for 1 ≤ i < K )
I 1/M < r ≤ ρK (for i = K )
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Bounded Space Online Bin Packing

Packing big circles

I For 1 ≤ i ≤ K , a c-bin of type i is a circular bin of radius ρi

I Circles of type i are packed in a c-bin of type i
I Packing in a c-bins of type 2
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Bounded Space Online Bin Packing

Algorithm - Part 1

To pack a big circle c of type i :
if there is no empty c-bin of type i

close the current bin of type i (if any)
open a new bin of type i containing i c-bins of type i

Pack c into a empty c-bin of type i
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Bounded Space Online Bin Packing

Small circles
Let C > 0 be an integer multiple of 3

A small circle of radius r is of type i , subtype k if
I 1/(i + 1) < C kr ≤ 1/i
I where k is the largest integer such that C kr ≤ 1/M
I and the circle is said to be of type (i , k)
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Bounded Space Online Bin Packing

Small circles

1
M

1
MC

1
M+1

1
(M+1)C

1
M+2

1
(M+2)C

1
(MC−1)C

1
MC−1

1
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1
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1
(M+2)C3
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MC

1
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1
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Bounded Space Online Bin Packing

Small circles

Subtype 1

Subtype 2

Subtype 3

Subtype 4

Subtype 0

Unit Bin

Subdivisions within a same type
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Bounded Space Online Bin Packing

Sub-bins (h-bins and t-bins)
Idea: Round/Pack small circles into hexagonal bins

h-bin of type (i , k):
I hexagonal bin of side length 2/(

√
3C k i)

I Receives a small circle of type (i , k)

t-bin of type (i , k):
I trapezoidal bin obtained by the subdivision of a h-bin of

type (i , k) in the center
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Bounded Space Online Bin Packing

Subdividing a square into h-bins
Subdividing a square into h-Bins
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Bounded Space Online Bin Packing

Partitioning sub-bins
For all M ≤ i < CM and k ≥ 0, if C is multiple of 3 then, it is
possible to partition an h-bin or an t-bin) of type (i , k) into
h-bins and t-bins of type (i , k + 1).
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Bounded Space Online Bin Packing

Algorithm - Part 2

When a small circle c of type (i , k) arrives:
if there is no empty h-bin of type (i , k) or an empty sub-bin of
type (i , k ′) with k ′ < k

close the current bin of type i (if any)
open a bin of type i subdividing into h-bins of type (i , 0)

while there is no h-bin of type (i , k)
let k ′ the largest number such that k ′ < k and there exists an empty sub-bin
of type (i , k ′)
if there exists an empty t-bin of type (i , k ′)

B tal t-bin
else

let B an h-bin of type (i , k ′)
particionate B in sub-bins of type (i , k ′ + 1)

packs c into a h-bin of type (i , k)
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Bounded Space Online Bin Packing

Analysis by weighting function
Given algorithm A and weight function w : L→ R≥0 st.

I A produce bins with average weight at least 1
I.e., w(L)/A(L) ≥ 1 and therefore

A(L) ≤ w(L), for any instance L

I Find α ≥ maximum bin weight. I.e.,

α ≥ sup{w(S) : S ⊆ L and ∃ packing of S in one bin}

Optimum uses at least w(L)
α

bins: w(L) ≤ αOPT

Algorithm A has approximation factor α:
A(L) ≤w(L) ≤ αOPT(L)

Removing few bins, before average leads to asymptotic factor
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Optimum uses at least w(L)
α

bins: w(L) ≤ αOPT

Algorithm A has approximation factor α:
A(L) ≤w(L) ≤ αOPT(L)

Removing few bins, before average leads to asymptotic factor
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Bounded Space Online Bin Packing

Circle weights
How to obtain average weight ≥ 1 ?

I Algorithm produce bins with weight ≥ 1

w(c) =

{
1/i if c is big and type i

Area(c)/γ if c is a small circle,

where γ is area density or lower bound, for bins with small

I If B is closed type i bin (big items) then
B has i circles of weight 1/i and w(B) = 1.

I If B is closed bin for small circles, then
Area(B) is also its density and Area(B) ≥ γ. So

w(B) =
∑
c∈B

w(c) =
∑
c∈B

Area(c)
γ

≥ 1
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Bounded Space Online Bin Packing

Circle weights
γ: lower bound for area covered in closed bins by small items
The non-covered regions are due to:

I LB : upper bound for the non-covered region due to the
shape and partial intersection of hexagons with the border
of the square bin, and is at most 5.89/M

I LF : upper bound for to the set of non-covered hexagons
when a bin is closed: 2

√
3C 2/(M 2(C 2 − 1))

I LH : loss factor due to the rounding of circles into hexagons:
π√
12

M 2

(M+1)2

That is
γ = (1− LB − LF )LH
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Bounded Space Online Bin Packing

Computing β
Value of β is obtained via Mixed Integer Programming:

I xi : number of circles of type i
I y : area of small circles

maximize
y
α
+

K∑
i=1

xi

i

subject to y +

K∑
i=1

πρ2
i+1xi ≤ 1

xi ∈ Z+ ∀ 1 ≤ i ≤ K

y ≥ 0
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Bounded Space Online Bin Packing

Computing β
On the other hand, we do not know if a solution can indeed be
packed in one bin

I Using Constraint Programing to verify if a solution can be
packed in only one bin, with time limit

I If it is not possible, we add a constraint in the model to
avoid such solution

For M = 59 and K = 992, the value of β is 2.4394
I But we do not know if the solution can in fact be packed in

only one bin
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Bounded Space Online Bin Packing

Lower bound for any competitive factor

I 1 circle of type 1
I 1 circle of type 2
I 2 circle of type 4
I 1 circle of type 25

(the area covered by the above circles: 0.77139)
I remaining space is completed with sand

(very small circles, non-necessarily equal)
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Bounded Space Online Bin Packing

Lower Bound
Consider N copies of the lower bound pattern with circles sorted
by radius

An online bounded space algorithm B uses:
I at least N − B bins for the circles of type 1
I at least N/2− 2B bins for the circles of type 2
I at least 2N/4− 2B bins for the circles of type4
I at least N/25− 2B bins for the circles of type25

At least 2.04N − 7B for the circles
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Bounded Space Online Bin Packing

Lower bound
Let S = (1− 0.77139− ε) the remaining area used by sand

I The best way to obtain a dense packing of equal circles is
the hexagonal packing

I with densities π/
√
12

I Even for very small circles, the algorithm cannot do better
than the hexagonal packing

I The algorithm uses at least S
√
12/π− 2kB bins

I k is the number of different radius

The algorithm uses at least 2.2920N − δN −O(1) bins, that
tends to 2.2920− δ when N goes to infinity

An offline algorithm uses at most N bins
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Bounded Space Online Bin Packing

Exercises

I Obtain bounded online approximation algorithms to pack
items into bins, each one could be one of the following:
equilateral triangles, squares, circles, hexagons, etc.

I For the previous exercise, consider the three-dimensional or
d-dimensional case.
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Bounded Space Online Bin Packing

Thanks!
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Bounded Space Online Bin Packing

Questions?
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