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Abstract
Let [n] = {1, . . . , n} and let Ωn be the set of all functions from [n] to itself, which we refer to as mappings. Let

ϕ be random uniform element of Ωn and let T(ϕ) be the order T of the permutation obtained by restricting ϕ to
its cyclic nodes. B. Harris proved in 1973 an analogue for random mappings of the Erdös-Turan theorem and, in
2011, E. Schmutz obtained an asymptotic estimate on the logarithm of the expectation of T over all mappings on n
nodes. In this work we obtain analogous results for random mappings with preimage sizes restricted to a set of the
form {0, k}, for k ≥ 2 a fixed integer. This is motivated by the use of these classes of mappings as heuristic models
for the statistics of polynomials of the form xk + a over the integers modulo p, with p ≡ 1 (mod k). We exhibit and
discuss our numerical results on this heuristic.

Introduction
Let [n] = {1, . . . , n} and let ϕ : [n] → [n]; such functions are called mappings in this work. The
iterations of mappings has attracted interest in recent years due to applications in various areas such
as physics, biology, coding theory and cryptography. For instance, Pollard’s classical factorization
method for integers is based on the iterations of a quadratic polynomial. The adaptation of Pollard’s
method to the discrete logarithm problem also relies on iterations of mappings; it is considered by
some authors the best attack on the elliptic curve version of this problem.

It is known that the connected components of the directed graph associated with a mapping ϕ consist
of a single cycle, where each cyclic node is the root of a tree directed from leaves to root. In this work
we focus on asymptotic results on the cycle structure of random uniform mappings. Let ϕ = ϕ(0) be
a mapping on n elements and consider the sequence of functional compositions ϕ(m) = ϕ ◦ ϕ(m−1),
m ≥ 1. There exists an integer T ≥ 1 such that ϕ(m+T ) = ϕ(m) for all m ≥ n. The least integer
T = T(ϕ) satisfying this condition equals the least common multiple of length of the cycles of ϕ;
this is equivalent to the order of the permutation obtained by restricting the mapping f to its cyclic
vertices. Erdös and Turán proved in [4] that the logarithm of this parameter over the symmetric group
Sm converges in distribution to the Gaussian distribution, when centered around µ∗m = 1

2 log2m and
normalized by σ∗m = 1√

3
log3/2m. In 1973 Harris proved that an analogous result holds for the class

of mappings under uniform distribution [5], with centralizing and normalizing constants given by
µn = 1

2 log2√n and normalized by σn = 1√
3

log3/2√n. An asymptotic estimate for the expected
value of T over all mappings on n nodes is obtained in [9]:

logE{0,k}n [T] = C0
n1/3

log2/3 n
(1 + o(1)), (1)

where C0 is a constant determined explicitly such that C0 ≈ 3.36. In this work we derive similar
results for {0, k}-mappings, defined as mappings ϕ : [n] → [n] such that |ϕ−1(y)| ∈ {0, k} for all
y ∈ [n], where k ≥ 2 is a fixed integer.

The research on random mappings with such restrictions is motivated in part due to the heuristic
introduced by Pollard in the analysis of his factorization method [7], where one approximates the
statistics of a class polynomials over finite fields by the ones of an appropriate class of mappings.
This heuristic model was successfully considered by Brent and Pollard in a refined form in [3], lead-
ing to the factorization of the eighth Fermat number. For this reason this heuristic was coined as the
Brent-Pollard heuristic.

Expected Value of T
It is known that, if ϕ : [n] → [n] is a mapping chosen uniformly at random among those satisfying
Z(ϕ) = m, then the restriction of ϕ to its cyclic nodes is equivalent to a random uniform permutation
of the symmetric group Sm. This fact holds for random {0, k}-mappings as well [1], hence, if Mm

denotes the expected order of a uniform random permutation of Sm, then we can write the expected
value of T over all {0, k}-mapping on n nodes as

E{0,k}n [T] =

n∑
m=1

P{0,k}n [Z = m]Mm. (2)

It is clear that, if m̃ is the integer that maximizes P{0,k}n [Z = m]Mm for 1 ≤ m ≤ n, then

P{0,k}n [Z = m0]Mm0 ≤ E{0,k}n [T] ≤ nP{0,k}n [Z = m̃]Mm̃, for all m0 ∈ [1, n]. (3)

The quantities in the bounds above are estimated according to Lemmas 1 and 2 below.
Lemma 1 ([8]). Let k ≥ 2, n = kh and 1 ≤ m ≤ h. Let λ = k−1. A random uniform {0, k}-mapping
on n nodes has exactly m cyclic nodes with probability

P{0,k}n [Z = m] =
λmkm

n−m

(
n−m
h−m

)(
n

h

)−1

.

Lemma 2 ([10]). Let I =
∫∞

0 log log
(

e
1−e−t

)
dt and β0 =

√
8I . Then the expected order Mm of a

random permutation of Sm satisfies, as m approaches infinity,

logMm = β0

√
m

logm
+ O

(√
m log logm

logm

)
.

We extend the quantity in Lemma 1 to real numbers using the Gamma function. This allows us to
define a real function φn,ε(x), for x ∈ [1, n/k], that bounds the summand in Equation (2) by above or
below, depending on the value of ε. We are thus able to obtain upper and lower bounds, as in Equation
(3), that coincide asymptotically.
Theorem 1. Let k ≥ 2 be a fixed integer and, for h ≥ 1, let n = kh. Let λ = k − 1. Then,

logE{0,k}n [T] = C0
(n/λ)1/3

log2/3(n/λ)
(1 + o(1)), as h→∞.

Lognormality of T
We use once again the law of total probability according to the distribution of Z over {0, k}-mappings.
We prove using Lemma 1 that, for each n, the distribution of Z over {0, k}-mappings on n nodes
has a unique mode m# = m#(n) =

√
n/λ + O(1). Let ξ1 = m1−εn

# and ξ2 = m1+εn
# , where

εn = log−3/4(
√
n/λ). We split the interval of possible values for Z as follows:

I1 = {m : 1 ≤ m < ξ1}, I2 = {m : ξ1 ≤ m ≤ ξ2}, I3 = {m : ξ2 < m ≤ n/k}.

We are thus able to write P{0,k}n [logT ≤ µn + xσn] = ζ1 + ζ2 + ζ3, where

ζj =
∑
m∈Ij

P{0,k}n [Z = m]P{0,k}n [logT ≤ µn + xσn|Z = m]. (4)

An asymptotic estimate of the quantity in Lemma 1 allows us to prove that ζ1 and ζ3 are both o(1).
The convergence in distribution of logT over {0, k}-mappings follows from Lemma 3 below: it is
proved using use the special case θ = 1 of Theorem 1.2 of [2].
Lemma 3. Let µn = µn(λ) = 1

2 log2(
√
n/λ) and σ2

n = σ2
n(λ) = 1

3 log3(
√
n/λ). For m ∈ I2, let

δx(m,n) = P{0,k}n

[
logT− µn

σn
≤ x

∣∣∣∣Z = m

]
− φ(x),

and let ∆x(n) = max{|δx(m,n)|,m ∈ I2}. Then ∆x(n) = o(1) for any fixed x ∈ R.
Theorem 2. Let k ≥ 2 be a fixed integer and, for h ≥ 1, let n = kh. Let µn, σ2

n be as in Lemma 3.
For any real number x we have

lim
h→∞

P{0,k}n [logT ≤ µn + xσn] =
1√
2π

∫ x

−∞
e−t

2/2dt.

Moreover, if c is a positive constant, then the convergence is uniform for |x| ≤ c
√

log n.

Heuristics
In the analysis of his factorization method [7], Pollard conjectured that quadratic polynomials mod-
ulo large primes behave like random mappings with respect to their average rho length. However,
it should be noted that the indegree distribution of a class of mappings impacts heavily the asymp-
totic distribution of a number of parameters [1]. Thus one might consider the indegree distribution of
polynomials to better explore the Brent-Pollard heuristic; see the discussion in [6] for example. For
instance, if f is a polynomial of the form f (x) = xk + a (mod p), p ≡ 1 (mod k), then the indegree
distribution of f , defined as sequence nj = #{y ∈ [p] : |f−1(y)| = j}, j ≥ 0, satisfies

n0 =

(
1− 1

k

)
(p− 1), n1 = 1, nk =

1

k
(p− 1).

We denote this class of polynomials by {0, k}-polynomials. In this section we investigate the use of
{0, k}-mappings as a heuristic model for {0, k}-polynomials.

Many known results on the statistics of a random mapping ϕ of a given class depend on its asymp-
totic average coalescence λ, defined as the variance of its distribution of indegrees nj = nj(ϕ), j ≥ 0,
under uniform distribution [1]. It is worth noting that our asymptotic results on different classes of
{0, k}-mappings are determined by their coalescence as well; compare Theorem 1 and Equation (1).
Compare µn, µ∗m and σn, σ∗m as well, under the light of the fact that the expected number of cyclic
nodes over all unrestricted or {0, k}-mappings are asymptotically equivalent to

√
πn/2 and

√
πn/2λ,

respectively.
We exhibit our numerical results on the behavior of T over different classes of polynomials over

finite fields and different classes of mappings. For {0, k}-mappings, we considered mappings on
n = p − 1 nodes, where p ≡ 1 (mod p). For approximately 100 primes p greater than 103, we
consider p mappings chosen at random and all p polynomials of the form indicated in Table 1. We
compute the exact value of T for each function and compute the corresponding average values T(p).
We compute the ratio RT(p) between T(p) and the quantity in Theorem 1. In Tables 1 and 2 we ex-
hibit the average value RT of RT(p) over all primes considered. The column labeled by λ indicates
the asymptotic average coalescence of the corresponding class of functions.

Class of functions λ RT

{0, 2}-polynomials 1 0.8031
{0, 3}-polynomials 2 0.8229
{0, 4}-polynomials 3 0.8224

Table 1: Experimental results on polynomials mod p.

Class of functions λ RT

Unrestricted mappings 1 0.8090
{0, 2}-mappings 1 0.7929
{0, 3}-mappings 2 0.8304
{0, 4}-mappings 3 0.8274

Table 2: Experimental results on random mappings.

Our numerical results provide further arguments that support the Brent-Pollard heuristic: once the
coalescence is taken into account according to the theoretical result of reference (Theorem 1), the
relative error in the approximation of the behavior of T over a class of polynomials by a class of
mappings with the same coalescence does not exceed 2%. This suggests that the coalescence of
{0, k}-polynomials plays an prominent role in the behavior of T over these objects, as suggested by
the Brent-Pollard heuristic.
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