A stability version for a theorem of Erdős on nonhamiltonian graphs

Ruth Luo

joint work with Zoltan Füredi and Alexandr Kostochka

University of Illinois at Urbana Champaign

Classical results

A simple graph G = (V, E) is called *hamiltonian* if there exists a cycle that covers every vertex of the graph. Conditions for hamiltonicity is a widely studied field, although testing if a graph is hamiltonian is NP-complete. Classical theorems for hamiltonian graphs include those of Dirac, Pósa, Bondy, Chvátal, Ore, and Erdős, among others.

Consider the function

The first Turán-type result for hamiltonian graphs was due to Ore:

Ore (1959): If G is an *n*-vertex graph and e(G) > h(n, 1), then G is hamiltonian.

The extremal example is a complete graph on n-1vertices plus a single edge. Erdős later refined the bound in terms of the minimum degree of the graph.

Figure: $H_{11,3}$.

Main theorem (2016)

Let $n \ge 3$ and $d \le \left|\frac{n-1}{2}\right|$. Suppose that G is an n-vertex nonhamiltonian graph with minimum degree $\delta(G) \ge d$ such that

$$e(G)>\max\{h(n,d+1),h(n,\left\lfloorrac{n-1}{2}
ight
floor)\},$$

Then G is a subgraph of either $H_{n,d}$ or $H'_{n,d}$.

Elementary calculation shows that $h(n, d) > h(n, |\frac{n-1}{2}|)$ in the range $1 \le d \le |\frac{n-1}{2}|$ if and only if d < (n+1)/6 (for n is odd) or if d < (n+4)/6 for n is even. In this range of d, h(n, d) - h(n, d + 1) = n - 3d - 2 > n/2.

The theorem is a stability result in the sense that for d < n/6, each 2-connected, nonhamilitonian *n*-vertex graph with minimum degree at least d and within n/2 edges of h(n, d)is a subgraph of the extremal graph $H_{n.d}$.

Since a hamiltonian graph is necessarily 2-connected, this theorem implies that for d < n/6, the only 2-connected extremal example of a nonhamiltonian graph with h(n, d) edges is $H_{n, d}$.

Erdős (1962): Let G be an n-vertex graph with minimum degree $\delta(G) \geq d$. If

$$e(G) > \max\{h(n, d), h(n, \left|\frac{n-1}{2}\right|)\},$$

then G is hamiltonian.

Figure: $H_{n,d}$ and $H'_{n,d}$ (blue background denotes complete graph).

Sharpness example

For $d \leq \left|\frac{n-1}{2}\right|$, define the graph

Fewer edges

What kind of graphs appear when we relax the bound on the edges? Most nonhamiltonian graphs have few edges, and so if we allow a lower bound on number of edges that is too small, any stability theorem would be weak.

We recently proved another step of the stability theorem.

Define

 $H_{nd}'' := A \cup B$

where A is a complete graph of order n - d - 1, B is a set of d + 1vertices such that e(B) = 1, and there exists a set of vertices $\{a_1,\ldots,a_d\}\subseteq A$ such that for all $b\in B$, $N(b)-B=\{a_1,\ldots,a_d\}$. Note that contracting the edge in B yields $H_{n,d}$.

Figure: $H_{n,d}''$.

Theorem (2016+): If G is a nonhamiltonian graph with $\delta(G) \ge d \ge 4$ and $e(G) > \max\{h(n, d+2), h(n, |\frac{n-1}{2}|)\}$, then G is a subgraph of $H_{n,d}, H'_{n,d}, H_{n,d+1}, H'_{n,d+1}, \text{ or } H''_{n,d}.$

$H_{n.d} := A \cup B$

where A is a clique of order n - d, B is an independent set of order d, and there exists a set of d vertices, $\{a_1, \ldots, a_d\}$ such that for each $b \in B$, $N(b) = \{a_1, \ldots, a_d\}.$

Note that $e(H_{n,k}) = h(n,k)$, and $H_{n,k}$ is nonhamiltonian for all k. $H_{n,d}$ and $H_{n,|(n-1)/2|}$ are sharpness examples for the bound given by Erdős.

Also, define H'_{nd} to be the edge disjoint union of K_{n-d} and K_{d+1} sharing exactly one vertex.

Furthermore, for $d \leq 3$, there are only two additional cases.

Figure: Additional cases for d = 2 and d = 3.

