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1 Notation

Throughout, G denotes a graph with vertex set V and edge set E and R
E denotes the set of all

real-valued vectors whose coordinates are indexed by the edges of G.

For a vector x in R
E and a set F of edges, x(F ) =

∑

e∈F x(e).

M denotes the set of all perfect matchings of G.

χM denotes the incidence vector of M .

Cuts: A cut of G is a subset of E that is the coboundary ∂(S) of some subset S of V . For a cut
C := ∂(S), S and S are the shores of C. A cut is trivial if one of its shores is a singleton. A cut is
odd if both its shores have odd cardinality.

Note: This is the notation used in Bondy and Murty’s book “Graph Theory (2008)” [1]. Most
optimizers use δ(S), and we ourselves used ∇(S) instead of ∂(S) in some of our papers [3]-[9].

• For any graph G, O(G) denote the set of odd components of G.

• M2n, n ≥ 2, denotes the Móbius ladder of order 2n

• B2n, n ≥ 3, denotes the biwheel of order 2n

• P2n, n ≥ 3, denote the prism of order 2n

• Wn, n ≥ 3, denotes the n-wheel

∗Based on joint work with Marcelo H. de Carvalho and U. S. R. Murty
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2 Matching Covered Graphs

2.1 Classical Results

Theorem 2.1 (Tait (1880) [26])
A 2-connected cubic planar graph is 4-face-colourable iff it has a 3-edge-colouring.

Theorem 2.2 (Petersen (1891) [22])
Every 2-connected cubic graph has a perfect matching.

Theorem 2.3 (Tutte (1947) [27])
A graph G has a perfect matching iff |O(G− S)| ≤ |S| ∀S ⊆ V .

Corollary 2.4 Every edge of a 2-connected cubic graph lies in a perfect matching.

Exercise 2.5 Deduce Corollary 2.4 from Theorem 2.3.

Barriers: In a graph with a perfect matching, a barrier is a subset S of V s.t. |O(G− S)| = |S|.

Admissible edges: An edge e of G is admissible if e ∈M for some M ∈M.

Exercise 2.6 In a graph with a perfect matching, show that an edge e is admissible iff there is no
barrier that contains both ends of e.

A Matching Covered Graph is a connected graph on two or more vertices in which every edge is
admissible. We restrict our attention to matching covered graphs.

Thus, every 2-connected cubic graph is matching covered. Prisms, Möbius ladders and Biwheels
are examples of matching covered graphs. Figure 1 depicts several cubic matching covered graphs.

(a) K4 = W3 (b) C6 = P6 (c) the Petersen graph

(d) K3,3 = M6 (e) M8 (f) cube B8 = P8

Figure 1: Illustrious Cubic Graphs

Figure 2 depicts noncubic matching covered graphs.
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(a) W5 (b) B10 (c) Murty’s graph

Figure 2: Examples of noncubic matching covered graphs

3 Building Blocks

Let G1 and G2 denote two disjoint matching covered graphs, let v1 denote a vertex of G1, let v2
denote a vertex of G2, such that the degree of v1 in G1 is equal to the degree of v2 in G2. Denote
their common degree by d.

Enumerate the edges incident with v1 as θ(v1) := u1v1, u2v1, . . . , udv1. Enumerate the edges
incident with v2 as θ(v2) := v2w1, v2w2, . . . , v2wd. The splicing of G1 and G2 induced by θ1 and
θ2 is the graph obtained from (G1 − v1) ∪ (G2 − v2) by the addition of the d edges uiwi, for
i = 1, 2, . . . , d. Figure 3 depicts a splicing of two 5-wheels that generates the pentagonal prism P10.
Figure 4 depicts a splicing of two 5-wheels that generates the Petersen graph.
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Figure 3: A splicing that generates P10
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Figure 4: A splicing that generates P, the Petersen graph
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4 Separating Cuts and Tight Cuts

C-contractions: Let C := ∂(X) be a cut of a matching covered graph G, where |X| is odd. We
denote the graph obtained by shrinking X to a single vertex x by G/(X → x) and, similarly,
the graph obtained from G by shrinking X to a single vertex x by G/(X → x). The two graphs
G/(X → x) and G/(X → x) are the C-contractions of G (Figure 5).

X

G

X

x

G/(X → x)

Figure 5: A C-contraction

Separating Cuts: A cut C of G is separating if both C-contractions are also matching covered.

Exercise 4.1 Show that cut C of a matching covered graph G is separating iff, for any e ∈ E,
there is a perfect matching Me such that e ∈Me and |C ∩Me| = 1.

Tight Cuts: A cut C of G is tight if |C ∩M | = 1 for all M ∈M.

Figure 6 shows several examples of tight cuts.

(a) (b) (c)

u

v

B

Figure 6: Tight Cuts

Not every separating cut is tight. For example, the cut C in Figure 7 is a separating cut, but it is
not tight! However

Proposition 4.2 Every tight cut is a separating cut.

Exercise 4.3 Let C := ∂(X) be a separating cut in a matching covered graph G that is not tight.
In this case, show that both shores of C induce graphs that are not bipartite.
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C

Figure 7: Cut C is separating but not tight

Exercise 4.4 Deduce from the above exercise that in a bipartite matching covered graph, every
separating cut is a tight cut.

solid matching covered graphs A matching covered graph is solid if every separating cut is tight.

odd intercyclic graphs A graph is odd intercyclic if every pair of distinct odd cycles shares at least
one vertex.

Exercise 4.5 Prove that every odd intercyclic matching covered graph is solid.

Problem 4.6 (Unsolved) Is there a polynomial time algorithm to determine whether a given
matching covered graph is solid?

We do have a polynomial time algorithm to recognize solid planar graphs.

The following exercise provides a simple characterization of tight cuts in bipartite graphs. If X is
an odd subset of the vertex set of a bipartite matching covered graph G with bipartition (A,B),
clearly, one of |X ∩A| and |X ∩B| is larger than the other; the larger of the two sets is called the
majority part and is denoted by X+, and the smaller is called the minority part and is denoted
by X−. (Similarly, the majority and minority parts of X = V \X are X+ and X−, respectively.)

Exercise 4.7 Let ∂(X) be a tight cut in a bipartite matching covered graph G[A,B]. Show that

(i) |X+| = |X−|+ 1, and |X+| = |X−|+ 1, and

(ii) all edges in the cut ∂(X) have one end in X+ and one end in X+.

Exercise 4.8 Using Exercise 4.3, deduce the following:

(i) Each odd prism (of order 4k + 2, k ≥ 1) has precisely one separating cut that is not tight

(ii) The Petersen graph has precisely six separating cuts that are not tight.

5 Bricks and Braces

Barrier cuts: For any barrier B and any odd component K of G−B, ∂(V (K)) is a tight cut. Such
cuts are called barrier cuts. (See Figure 6(a))
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2-separation cuts: For any 2-separation {u, v} of G and any even component L of G − {u, v},
∂(V (L) ∪ {u}) and ∂(V (L) ∪ {v}) are tight cuts. Such cuts are called 2-separation cuts. (See
Figure 6(b).)

A graph may have tight cuts that are neither barrier cuts nor 2-separation cuts. (See Fig-
ure 6(c).) However:

Theorem 5.1 (Edmonds, Lovász, Pulleyblank, 1982 [13]) Every graph that has a nontriv-
ial tight cut either has a nontrivial barrier or a 2-separation.

New proofs of this result appear in Szigeti, 2002 [25] and in CLM, 2014 [10].

Braces: A brace is a bipartite matching covered graph that has no nontrivial tight cuts. (A bipartite
graph G with bipartition (A,B), |V | ≥ 4, is a brace iff, for any a1, a2 ∈ A and b1, b2 ∈ B, the graph
G − {a1, a2, b1, b2} has a perfect matching.) The cube and K3,3 and all prisms of order 4k, k ≥ 2
and all Möbius ladders of order 4k + 2, k ≥ 1, are braces.

Bricks: A brick is a nonbipartite matching covered graph that has no nontrivial tight cuts. (A
graph G is a brick iff it is bicritical and 3-connected. A proof of this requires Theorem 5.1. There
is a polynomial-time algorithm for deciding whether or not a given G is a brick.) The graphs K4,
C6, all Möbius ladders of order 4k, k ≥ 1, and all prisms of order 4k + 2, k ≥ 1, are bricks.

Tight Cut Decomposition: By repeatedly taking contractions with respect to nontrivial tight cuts,
any graph may be decomposed into bricks and braces. For example, up to multiple edges, the tight
cut decompositions of the graphs in Figure 6 produce, respectively, (a) two K4’s and K3,3, (b) two
K4’s, and (c) two K4’s and K3,3.

Theorem 5.2 (Lovász, 1987 [18]) Any two tight cut decompositions of a matching covered
graph G yield the same list of bricks and braces (except possibly for multiplicities of edges).

Figure 8 depicts an example of the uniqueness of tight cut decompositions, up to multiple edges.

Exercise 5.3 Find all the tight cut decompositions of the graph in Figure 6(c).

Crossing Cuts: Two cuts ∂(X) and ∂(Y ) cross if each of the four quadrants is nonempty: X ∩ Y ,

X ∩ Y , X ∩ Y and X ∩ Y .
Laminar Collection of Cuts: A collection of cuts is laminar if no two of its cuts cross. There is a
one-to-one correspondence between the set of tight cut decompositions of a matching covered graph
G and the set of maximal laminar collections of nontrivial tight cuts of G.

Theorem 5.4 (Uncrossing tight cuts) Let C := ∂(X) and D := ∂(Y ) be two tight cuts of a
matching covered graph G, where |X ∩ Y | is odd. Then:

1. No edge of G joins a vertex in X ∩ Y to a vertex in X ∩ Y , and

2. the cuts ∂(X ∩ Y ) and ∂(X ∩ Y ) are both tight in G.

The following corollary will prove to be very useful in the proof of Theorem 5.2.

Corollary 5.5 Let G be a matching covered graph, let C := ∂(X) and D := ∂(Y ) be two tight
cuts of G that cross, where |X ∩ Y | is odd. Then the underlying simple graphs of the two graphs
G1 := G/X/X ∩ Y and G2 := G/Y /X ∩ Y are isomorphic.
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C D

C-contractions D-contractions

Figure 8: An example of the uniqueness of tight cut decompositions

Proof: Each of the two graphs G1 and G2 has two contraction vertices. For the convenience of
referring to them, let us write:

G1 = (G/X → x)/(X ∩ Y )→ s, and G2 = (G/Y → y)/(X ∩ Y )→ t

See Figure 9.

x

y

X ∩ Y X ∩ Y

s

t

G1 G2

Figure 9: Isomorphic contractions

Observe that V (G1) = (X ∩ Y ) ∪ {x, s}, and V (G2) = (X ∩ Y ) ∪ {y, t}. As D is a tight cut,
G[Y ] is connected. This implies that x and s are adjacent in G1. Similarly, since C is a tight cut,
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G[X] is connected, implying that t and y are adjacent in G2. Furthermore, as there are no edges
between X ∩Y and X ∩Y by Theorem 5.4, it follows that the mapping θ, where θ(v) = v, for each
v ∈ X ∩ Y , θ(x) = t, and θ(s) = y is an isomorphism between the underlying simple graphs of G1

and G2. We leave the details as Exercise 5.6. �

Exercise 5.6 Supply the missing details in the proof of Corollary 5.5.

Proof of Theorem 5.2: We shall refer to two maximal laminar families C and D of nontrivial tight
cuts of G as equivalent, and write C ≡ D, if they produce the same list of bricks and braces, up to
multiple edges. We prove that any two maximal laminar collections of nontrivial tight cuts of G
are equivalent, by induction on the number of vertices.

For i = 1, 2, let Ci be two maximal laminar collections of nontrivial tight cuts of G. We consider
various cases.

Case 1 Collections C1 and C2 contain a common cut C.

Let G1 and G2 denote the two C-contractions of G. For i, j ∈ {1, 2}, let Cij denote the restrictions
of Ci \ {C} to Gj . As any tight cut of Gi, i = 1, 2, is also a tight cut of G, it follows that Cij is a
maximal laminar collection of nontrivial tight cuts of Gj . By induction, C1j and C2j are equivalent.
Thus, C1 and C2 are also equivalent. The assertion holds in this case.

Case 2 There are cuts C1 ∈ C1 and C2 ∈ C2 that do not cross.

By hypothesis, {C1, C2} is laminar. Let C3 denote a maximal laminar collection of nontrivial tight
cuts of G that includes {C1, C2}. For i = 1, 2, Ci and C3 have cut Ci in common. By Case 1,

C1 ≡ C3 ≡ C2.

Thus, C1 and C2 are equivalent. The assertion holds in this case.

Case 3 There are cuts C1 := ∂(X1) ∈ C1 and C2 := ∂(X2) ∈ C2 such that |X1 ∩ X2| is odd and
nontrivial.

If C1 and C2 do not cross then Case 2 is applicable. We may thus assume that C1 and C2 cross.
Let C3 := ∂(X1 ∩X2). Then, C3 is nontrivial. By Theorem 5.4, cut C3 is tight in G.

Let C4 denote a maximal laminar collection of nontrivial tight cuts of G that contains C3. Cuts
C1 and C3 do not cross. By Case 2, collections C1 and C4 are equivalent. Likewise, cuts C2 and C3

do not cross. By Case 2, collections C2 and C4 are equivalent. In sum,

C1 ≡ C4 ≡ C2.

Thus, C1 and C2 are equivalent. The assertion holds in this case.

Case 4 None of the previous cases are applicable.

If G is a brick or a brace then the assertion holds trivially. We may thus assume that G has
nontrivial tight cuts. Then, C1 and C2 are both nonempty. For i = 1, 2, let Ci := ∂(Xi) denote a
cut in Ci. If C1 and C2 do not cross then Case 2 applies. We may thus assume that C1 and C2

cross.
Adjust notation so that |X1 ∩ X2| is odd, whereupon |X1 ∩ X2| is also odd. If |X1 ∩ X2| > 1

or if |X1 ∩X2| > 1 then Case 3 applies. We may thus assume that X1 ∩X2 and X1 ∩X2 are both
singletons. Let u denote the only vertex of X1 ∩X2, let v denote the only vertex of X1 ∩X2.
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Assume that Ci = {Ci}, for i = 1, 2. By Corollary 5.5, G/X1 and G/X2 are isomorphic, up
to multiple edges. Likewise, G/X1 and G/X2 are also isomorphic, up to multiple edges. Thus,
C1 ≡ C2. The assertion holds in this case.

We now prove that Ci = {Ci}, thereby completing the proof. Assume, to the contrary, that one
of C1 and C2 contains two or more cuts. Adjust notation so that C1\{C1} contains a cut D := ∂(Y ).
By hypothesis, C1 is laminar, therefore C1 and D do not cross. Adjust notation so that one of Y
and X1 is a subset of the other. Adjust notation, by complementing the three sets X1, X2 and Y
if necessary, so that Y ⊂ X1. Then,

Y ∩X2 ⊆ X1 ∩X2 = {u} and {v} = X1 ∩X2 ⊆ Y ∩X2. (1)

Cuts C2 and D cross, otherwise Case 2 applies. Thus, Y ∩ X2 is nonempty. From (1) above we
deduce that Y ∩X2 = X1 ∩X2 = {u}. Then, |Y ∩X2| is odd. If |Y ∩X2| > 1 then Case 3 applies.
We may thus assume that |Y ∩ X2| = 1. From (1), we deduce that Y ∩ X2 = X1 ∩ X2, whence
Y ∪X2 = X1 ∪X2. In sum,

Y ∩X2 = X1 ∩X2 and Y ∪X2 = X1 ∪X2.

We conclude that Y and X1 coincide, a contradiction. As assumed, Ci = {Ci}, for i = 1, 2. �

The number of bricks: The number of bricks resulting from a tight cut decomposition of G, denoted
by b(G), is an invariant of G. A graph G is a near-brick if b(G) = 1.

6 The Perfect Matching Polytope

The Perfect Matching Polytope (Poly(G)) is the convex hull of {χM : M ∈M}.

Theorem 6.1 (Edmonds, 1965 [11]) A vector x in R
E belongs to the perfect matching polytope

Poly(G) of a graph G if and only if it satisfies the following system of linear inequalities:

x ≥ 0 (nonnegativity)
x(∂(v)) = 1 for all v ∈ V (degree constraints)
x(∂(S)) ≥ 1 for all odd S ⊂ V (odd set constraints)

When G is bipartite, the first two conditions imply the third. This is in general not true, see
Figure 10.

Exercise 6.2 Prove that for bipartite graphs the nonnegativity and the degree constraints imply
the odd set constraints.

Exercise 6.3 Prove that for near-bricks the nonnegativity and the degree constraints imply the
odd set constraints.

In the case of the Petersen graph, instead of 28 odd set constraints, only six constraints are
necessary, the six cuts whose shores are pentagons (Figure 11).

Exercise 6.4 Prove that in the case of the Petersen graph, the six odd constraints are necessary.

We now try to identify the graphs that need odd set constraints. We study this question in the
context of matching covered graphs.
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Figure 10: A nonnegative 1-regular vector that is not in the polytope

C

Figure 11: The Petersen graph needs only six odd set constraints

Theorem 6.5 Let C be a tight cut of G and let G1 and G2 be the two C-contractions of G. A
vector x in R

E belongs to Poly(G) iff the restrictions of x to E(G1) and E(G2) belong, respectively,
to Poly(G1) and Poly(G2).

Thus, to check if a vector x is in Poly(G), it suffices to check whether or not the restrictions of
x to the edge sets of the bricks and braces are in the perfect matching polytopes of those graphs.
For this reason, in seeking an answer to Problem 4.6, we may restrict our attention to bricks.

7 Solid Bricks

A matching covered graph G is solid if it has no separating cuts other than tight cuts. Since a brick
has no tight cuts other than the trivial cuts, it follows that a brick is solid if and only if it has no
nontrivial separating cuts.

We introduced and made use of solid bricks in proving a conjecture of Lovász ([4] and [5]).
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(This will be described later on.) One of the notions that played a useful role in that work was a
relation defined on the set of cuts of a graph.

A precedence relation on cuts: Let C and D be two cuts of a graph G. Cut D precedes cut C
(written as D � C) if |M ∩D| ≤ |M ∩ C| for each perfect matching M of G.

Example 7.1 Let G be a brick and let C := ∂(X) be a nontrivial odd cut of G. If C is not a
separating cut, then one of the two C-contractions is not matching covered. Suppose that G1 :=
G/(X → x) is not matching covered. Then, either (i) G1 has no perfect matching, or (ii) G1 has
a perfect matching, but it has an edge that is inadmissible. In the first case, there exists a subset
S of V (G1) such that |O(G1 − S)| > |S|, and in the second case, there is a barrier S of G1 that
contains both ends of some edge e of G. Since G is a brick there is no subset S of V (G) with either
of these properties. In both alternatives, the contraction vertex x lies in S (Figure 12).

C

e
S

D

Figure 12: The case |O(G− S)| = |S|

Suppose that K is an odd component of G1 − S and let D := ∂(V (K)). In case (i), |D ∩M | <
|C ∩M | for every perfect matching M of G. In case (ii), |D ∩M | ≤ |C ∩M | for every perfect
matching M of G, with equality only if e does not lie in M . It follows that, in either case, D strictly
precedes C.

If a brick G is nonsolid then, by definition, it has a nontrivial separating cut, say C, and the
two C-contractions G1 and G2 of G are matching covered. But, in general, G1 and G2 need not
be bricks or even near-bricks. For the purpose of applying induction to prove Lovász’s conjecture,
it was necessary for us to find a separating cut C such that both G1 and G2 are near-bricks. We
called such a separating cut a robust cut and proved the following theorem.

Theorem 7.2 Every nonsolid brick has a robust cut.

Given any separating cut C of a brick G, we showed that either C is a robust cut or there is a
separating cut D that precedes C strictly. Thus, any separating cut that is minimal with respect
to the precedence relation is a robust cut. We also proved the following generalization of the above
theorem.

Theorem 7.3 In any nonsolid brick G there are two separating cuts ∂(X) and ∂(Y ), X ∩ Y = ∅,
such that G/X and G/Y are bricks and the graph obtained from G by shrinking X to x and Y to
y is bipartite.

8 A Solution to the Problem for Bricks

Theorem 8.1 For a brick G, Poly(G) consists of all nonnegative 1-regular vectors if and only if
G is solid.
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Proof: Firstly suppose that G is not solid. We wish to show that there is some nonnegative 1-
regular vector in R

E that does not belong to Poly(G). Since G is nonsolid, it has a nontrivial
separating cut C. Let M0 be a perfect matching of G such that |M0 ∩ C| > 1. (Such a perfect
matching must exist; otherwise C would be tight.) Also, since C is separating, for every edge e of
G, there is a perfect matching Me of G such that Me ∩ C = {e}. Now let

x :=
1

|M0| − 1









∑

e∈M0

χMe



− χM0





Clearly the vector x is nonnegative, 1-regular with x(C) < 1.
Conversely, suppose that G is solid. We wish to prove that every nonnegative 1-regular vector in

R
E belongs to Poly(G). Assume to the contrary that there is a nonnegative 1-regular vector x that

does not belong to Poly(G). Then, by Theorem 6.1 there must exist odd cuts C with x(C) < 1.
Let C denote the set of all cuts C for which x(C) < 1 and let D := ∂(Y ) be a cut in C that is
minimal with respect to the precedence relation � defined in the previous section. We shall obtain
a contradiction by showing that D is a separating cut.

Consider the D-contraction G1 := G/Y . We wish to show that G1 is matching covered. If
it is not, then either there is a subset S of V (G1) such that either (i) |O(G1 − S)| > |S| or (ii)
|O(G1−S)| = |S|, but there is an edge e of G1 with both its ends in S. In either case, there must be
an odd component K of G1 − S for which x(D′) < 1, where D′ := ∂(V (K)). Such a component K
is clearly nontrivial. One may verify that D′ strictly precedes D (see Example 7.1), contradicting
the choice of D. Therefore G1 is matching covered. Similarly, G2 := G/S is also matching covered
and D is a separating cut. A contradiction. �

Exercise 8.2 Prove that the cut D above is in fact robust.

Using Theorem 7.3 it is possible to establish the following characterization of nonsolid bricks.

Theorem 8.3 A brick G has a nontrivial separating cut iff it there exists two disjoint subsets X
and Y of V such that (i) G[X] and G[Y ] are nontrivial critical graphs, and (ii) G− (X ∪ Y ) has a
perfect matching.

The above theorem is a variant of the following attractive theorem.

Theorem 8.4 (Reed and Wakabayashi) A brick G has a nontrivial separating cut iff it has two
odd circuits C1 and C2 such that the graph G− (V (C1) ∪ V (C2)) has a perfect matching.

9 Examples of Solid Bricks

A graph is odd-intercyclic if any two odd circuits of G have at least one vertex in common. By
Theorem 8.4, all odd-intercyclic bricks are solid. (This can be proved by elementary arguments
quite easily.) Odd wheels and Möbius ladders described below are examples of odd-intercyclic solid
bricks.

Odd Wheels: The wheel of order n ≥ 3, denoted by Wn, is obtained by adjoining a vertex h to
a circuit R of length n and joining it to each vertex of R; h and R are referred to as the hub and
the rim of Wn, respectively. (The wheel W3 of order three is isomorphic to K4; any one of its four
vertices may be regarded as its hub.) A wheel is odd or even according to the parity of its order.
It is easy to show that every odd wheel is an odd-intercyclic brick.
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Möbius ladder: The ladder L2n, n ≥ 2, is obtained from two disjoint paths (x1, x2, ..., xn) and
(y1, y2, ..., yn) by adding the edges xiyi, 1 ≤ i ≤ n. The Möbius ladder M2n, n ≥ 2, is obtained from
L2n by joining x1 to yn and y1 to xn. This graph is Hamiltonian and is isomorphic to the cubic
graph obtained from the circuit (0, 1, ..., 2n−1) by joining each vertex i to the vertex i+ n (mod 2n).
Figure 13 depicts the Möbius ladderM8.

Figure 13: The Möbius ladder M8

It can be shown that, for any odd integer n ≥ 3, M2n is a brace, and for any even integer n ≥ 2,
M2n is an odd-intercyclic brick.

9.1 An infinite family of solid bricks that are not odd-intercyclic

Let n ≥ 3 be an odd integer. Consider the brace M2n, which is the Möbius ladder on 2n vertices.
Obtain the cubic graph H from M2n by deleting the vertex n, adding three new vertices u, v and
w, and joining u to n− 1, v to 0, w to n+1 and u, v and w to each other. (Thus H is obtained by
splicing M2n and K4.) Now obtain the graph S2n+2 from H by joining 1 and 2n−1. See Figure 14.
It can be shown that S2n+2 is a solid brick for every odd integer n ≥ 3. In fact, Murty devised
this family as a generalization of the first graph in the family, S8, which he discovered, and is the
smallest non-odd-intercyclic solid matching covered graph.

Exercise 9.1 Show that the graph S8 (Figure 14, n = 3) is a non-odd-intercyclic solid brick.

There is a characterization of odd-intercyclic graphs:

Theorem 9.2 (Kawarabayashi and Ozeki [15]) Let G be an internally 4-connected graph.
Then G is odd-intercyclic if and only if G satisfies one of the following:

1. either G− x is bipartite for some vertex x ∈ V ; or

2. G has a triangle T such that G− T is bipartite; or

3. |V | ≤ 5; or

4. G can be embedded into the projective plane so that every face boundary has even length.

One general result that we have been able to prove is that odd wheels are the only simple planar
solid bricks [9].

Solid bricks behave much as bipartite graphs. We have proved that every cubic solid brick has
a 3-edge-colouring [20].
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Figure 14: The solid brick G := S2n+2

10 The Matching Lattice and its Bases

10.1 Regular Vectors

For a matching covered graph G and r ∈ R, a vector x ∈ R
E is r-regular if x(C) = r for each tight

cut C of G. A vector x ∈ R
E is regular if it is r-regular, for some r ∈ R.

10.2 The Linear Space

Lin(G) denotes the set of linear combinations of characteristic vectors of perfect matchings of a
matching covered graph G. That is,

Lin(G) :=
∑

M∈M

α(M)χM ,

where each coefficient α(M) is a real number. Note that if x =
∑

α(M)χM is any vector in Lin(G),
and C is any tight cut of G, then

x(C) =
∑

M∈M

αMχM (C) =
∑

M∈M

αM

As this is true for any tight cut C, it follows that every vector in Lin(G) is regular. Conversely, it
can be shown that all regular vectors are in Lin(G).

Theorem 10.1 (Edmonds, Lovász, Pulleyblank [13]) Let G be a matching covered graph.
A vector x in R

E lies in Lin(G) if and only if it is regular. Moreover, the dimension of Lin(G)
satisfies the formula

dim(Lin(G)) = m− n+ 2− b,

where m, n and b denote respectively the number of edges, vertices and bricks of G.
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We shall abuse the language and refer to a set B of perfect matchings as a basis, meaning actually
the set {χM : M ∈ B} of the corresponding incidence vectors. We shall denote the basis by using
boldface, thus, B denotes the basis consisting of the incidence vectors of matchings in B.

Exercise 10.2 Figure 15 depicts an example of a matching covered graph G and a regular vector
x ∈ R

E . The parameters for graph G are m = 15, n = 10 and b = 2. Thus, dim(Lin(G)) = 5.
Find a basis of Lin(G) consisting of 5 perfect matchings and express x as a linear combination of
these five matchings.

−1 −1

−1

−1

−1
−1

−1
−2

−2

−2

6

6
7

7

7

Figure 15: An illustration of Theorem 10.1

Exercise 10.3 For the graph G of Figure 15 give an example of a nonregular vector x in R
E such

that x(∂(v)) = x(∂(w)) for any each pair {v, w} of vertices of G.

Exercise 10.4

(i) Let r be any real number. If x and y are any two r-regular vectors in R
E , then show that

the vector αx+ βy is also an r-regular vector, for any α and β such that α+ β = 1.

(ii) By Edmonds’ theorem all non-negative 1-regular vectors are in Lin(G). Suppose that y

is a 1-regular vector that is not in Poly(G). Express y as a linear combination of two
vectors in Poly(G) and thereby show that y is also Lin(G). (Hint: Take x to be any
strictly positive vector in Poly(G) (such a vector must exist because every edge of G is in a
perfect matching). Then, by the first part, the vector z := (1− ǫ)x+ ǫy is 1-regular for any
real number ǫ. Clearly, for small enough values of ǫ, the vector z is also non-negative, and
hence is in Poly(G).)

(iii) Now suppose r 6= 1, and let y be an r-regular vector. Show that y is in Lin(G) by showing
that, for any 1-regular vector x, the vector 1

1−r
(x− y) is 1-regular.

Exercise 10.5

(i) Let T denote the matrix whose rows are the incidence vectors of all tight cuts of a matching
covered graph G. For any fixed real number r, show that the set of all r-regular vectors
of G is the set of solutions to the system Tx = r of linear equations, where r is a column
vector each of whose entries is r.

(Thus, the set of all regular vectors is the set of solutions to the system Tx = r, where
r is treated as a variable).
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When G is either a brace or a brick, all tight cuts are trivial. Thus, in this case, T is
the same as the incidence matrix A of G. Consequently, Lin is the set of solutions to the
system Ax− r = 0 of homogeneous linear equations in m+ 1 variables, and its dimension is
(m+ 1)− rank(A).)

(ii) Show that the rank of A is n − 1 when G is bipartite, and is n, when G non-bipartite, and
deduce the validity of the dimension formula for braces and bricks.

10.3 Robust Cuts and Regularity

The regularity of a vector x ∈ R
E is obviously necessary for x to be in Lin(G). Let us now consider

matching covered graphs G that are either bipartite or near-bricks. That is, b(G) ≤ 1. Let x be
a vector in R

E and r ∈ R such that x(∂(v)) = r for any each vertex v of G. For any tight cut C
of G, the inequality b(G) ≤ 1 implies that one C-contraction of G is bipartite, therefore x(C) = r.
In other words, whenever b(G) ≤ 1 the “regularity on the vertices” implies regularity over all tight
cuts. We then have the following very important observation.

Lemma 10.6 Let G be a brick, let C be a robust cut of G, let x ∈ R
E be an r-regular vector,

r ∈ R. If x(C) = r then the restriction of x to each C-contraction of G is r-regular.

10.4 The Matching Lattice

Lat(G) denotes the set of integral linear combinations of characteristic vectors of perfect matchings
of a matching covered graph G. That is,

Lat(G) :=
∑

M∈M

α(M)χM ,

where each coefficient α(M) is an integer. Certainly,

Lat(G) ⊆ Z
E ∩ Lin(G).

If equality held then the characterizations and results for Lin(G) could be easily adapted to
Lat(G). However, equality does not hold: let P be the Petersen graph. It has precisely six perfect
matchings, and each edge lies in precisely two perfect matchings. Thus the vector x ∈ R

E of all 1’s
is equal to

∑

M∈M
1

2
χM . So, x lies in Lin(P ). By Theorem 10.1, dim(Lin(P )) = 6, therefore the

linear combination is unique. We deduce that x does not lie in Lat(P ).
We now state a fundamental result. A Petersen brick is a brick whose underlying simple graph

is the Petersen graph.

Theorem 10.7 (Lovász [17, 18]) Let G be a matching covered graph. The dimension of Lat(G)
satisfies the equality

dim(Lat(G)) = dim(Lin(G)) = m− n+ 2− b.

Moreover, if no brick of G is a Petersen brick then a vector x ∈ Z
E lies in Lat(G) if and only if x

is regular.
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10.5 Two Important Conjectures

Let G be a matching covered graph. An edge e of G is removable if G− e is also matching covered.

Theorem 10.8 (Lovász) Every brick distinct from K4 and C6 has a removable edge.

An edge e of G is b-invariant if e is removable and b(G− e) = b(G). Figure 16 shows an edge e
that is removable but not b-invariant and also a b-invariant edge f . It is important to notice that
the Petersen graph has no b-invariant edge.

e

f

Figure 16: Edge e is removable in the brick G, but b(G− e) = 2; edge f is b-invariant

Lovász considered the possibility of a simpler proof of Theorem 10.7 if the following result were
true:

Conjecture 10.9 (Lovász) Every brick distinct from K4, C6 and the Petersen graph has a b-
invariant edge.

Also, Murty posed the following conjecture, which extends a trivial result for Lin(G) to Lat(G).

Conjecture 10.10 (Murty) Every matching covered graph G has a basis for Lat(G) that con-
sists solely of perfect matchings.

In his Ph. D. Thesis, Marcelo Carvalho proved Lovász’ Conjecture. He in fact proved a result
that is slightly stronger:

Theorem 10.11 (Carvalho 1996 [2], CLM 2002 [4, 5]) Let G be a brick that is distinct from
K4 and C6. If G is not a Petersen brick then G has a b-invariant edge e such that the brick of G−e
is not the Petersen brick.

10.6 Proof of Theorem 10.7 and Conjecture 10.10

Let us prove Lovász’ Theorem 10.7 and Murty’s Conjecture 10.10 by induction, following seminal
ideas used by Seymour [24]. We shall prove the sufficiency of regularity and also the existence of
bases for Lat(G) consisting of m − n + 2 − b perfect matchings. In order to reduce to braces and
bricks, we use the operation of merging.
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10.6.1 The Merger Operation

Let C be a separating cut of a matching covered graph G. We denote by Lat(G,C) the subspace
of Lin(G) spanned by the collection of perfect matchings of G that contain just one edge in C. In
particular, if C is a tight cut then Lat(G,C) = Lat(G).

Let G1 and G2 denote the two C-contractions of G. For i = 1, 2, let Bi be a collection of
perfect matchings of Gi such that Bi is a basis for Lat(Gi). For each edge e in C, let Be

i denote
the subcollection of Bi consisting of those perfect matchings that contain edge e, let F e

i be a fixed
matching in Be

i . See Figure 17. Let

=⇒C
G1

G2

e

F e
1

F e
2

Be
1

Be
2

F e

Be

←

←

Figure 17: Illustration of the merging operation, with |Be
1| = 3 and |Be

2| = 2

Be := {M1 ∪ F e
2 : M1 ∈ Be

1} ∪ {F
e
1 ∪M2 : M2 ∈ Be

2} and let F e := F e
1 ∪ F e

2 .

Clearly, the set B := ∪e∈CB
e is a set of perfect matchings of G. We shall denote it by B1 ∨B2 and

refer to it as the merger of B1 and B2.
It follows that |Be| = |Be

1| + |B
e
2| − 1, since F e is counted twice in the sum |Be

1| + |B
e
2|.

Consequently,
|B1 ∨B2| = |B1|+ |B2| − |C|. (2)

Exercise 10.12 Prove that Be is linearly independent. Conclude that B1 ∨ B2 is linearly inde-
pendent.

Lemma 10.13 Assume that, for i = 1, 2, the restriction xi of a vector x ∈ Z
E to Gi lies in Lat(Gi).

Then, x lies in Lat(G,C) and is an integral linear combination of matchings in B1 ∨B2.

Proof: By hypothesis, Bi is a basis of Lat(Gi). Thus, there exist integral coefficients α(M), M ∈ Bi,
such that

xi =
∑

M∈Bi

α(M)M i = 1, 2.

It follows that

x =
∑

e∈C

[

∑

M∈Be
1

α(M)(M ∪ F e
2 ) +

∑

M∈Be
2

α(M)(F e
1 ∪M)− x(e)F e

]

.
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Consequently, x lies in Lat(G,C) and is an integral linear combination of matchings in B1 ∨B2. �

Corollary 10.14 The merger B1 ∨B2 is a basis for Lat(G,C).

Proof: Let x ∈ Lat(G,C). Then, x is an integral linear combination of perfect matchings of G that
contain precisely one edge in C. Thus, the restrictions xi of x to Gi lie in Lat(Gi). It follows that
B1 ∨B2 spans x. This conclusion holds for each x ∈ Lat(G,C). �

For i = 1, 2, let mi, ni and bi denote, respectively, the number of edges, vertices and bricks of
Gi. By induction, |Bi| = mi − ni + 2− bi. Then,

dim(Lat(G,C)) = |B1 ∨B2| = |B1|+ |B2| − |C|
= (m1 − n1 + 2− b1) + (m2 − n2 + 2− b2)− |C|
= (m1 +m2 − |C|)− (n1 + n2 − 2) + 2− (b1 + b2)
= m− n+ 2− (b1 + b2).

(3)

10.6.2 Reduction to Bricks and Braces

Let C be a nontrivial tight cut of G, let G1 and G2 denote the two C-contractions of G. From (3),
we deduce that Lat(G) has a basis consisting of m− n+ 2− b perfect matchings.

Assume that a vector x ∈ Z
E is r-regular, r ∈ Z. Every tight cut of Gi is also a tight cut of G.

Thus, the restriction xi of x to Gi is r-regular. Assume also that no brick of Gi is a Petersen brick.
By induction, xi lies in Lat(Gi). By Lemma 10.13, x lies in Lat(G).

Using induction and the merger operation, we have reduced the proof of Theorem 10.7 to the
case where G is a brace or a brick.

10.6.3 Reduction to Braces and Solid Bricks

We now use the merger operation and the fact that a nonsolid brick has a robust cut to reduce the
problem to braces and solid bricks.

Let G be a nonsolid brick. If G is the Petersen graph then its set of six perfect matchings are
linearly independent. Moreover, m− n+ 1 = 6, the assertion holds.

If G is a Petersen brick, we may “coalesce” parallel edges and use the previous case to prove
that it also has a basis consisting of m− 9 perfect matchings.

We may thus assume that G is not a Petersen brick. The following result is a fundamental
property of bricks which are not Petersen bricks.

Theorem 10.15 (Carvalho 1996 [2], CLM 2002 [4, 5]) LetG be a brick that is not a Petersen
brick. Then, G has a robust cut C such that (i) the bricks of the C-contractions ofG are not Petersen
bricks and (ii) G has a perfect matching M0 such that |M0 ∩ C| = 3.

Figure 18 illustrates a brick G and a robust cut C as in the statement of Theorem 10.15.
Let C be a robust cut as indicated in Theorem 10.15. Let G1 and G2 denote the two C-

contractions of G. Let M0 be a perfect matching of G that contains precisely three edges in C. By
induction and (3), B1 ∨B2 is a basis for Lat(G,C) consisting of m− n perfect matchings. Add to
that collection M0, thereby obtaining a collection B of m−n+1 perfect matchings. The matching
M0 is not spanned by B1 ∨B2. Thus, B is linearly independent.

Let x ∈ Z
E be an r-regular vector. Let

β :=
x(C)− r

|M0 ∩ C| − 1
and let y := x− β ·M0. (4)
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C

M0

Figure 18: An illustration of Theorem 10.15

Clearly, x(C) and r have the same parity. It follows that β is integral. Moreover, y(C) + β = r,
whence y is s-regular, where s = r− β. Also, y(C) = s. As Gi is a near-brick, the restriction yi of
y to Gi is s-regular. By induction, yi lies in Lat(Gi). By Lemma 10.13, y is spanned by B1 ∨B2.
Thus, x is spanned by B and lies in Lat(G). We conclude that B is a basis of Lat(G) and spans
every regular vector in Z

E .
Again, by the use of induction and the merger operation we have advanced more, now we are

left with the case in which G is either a brace or a solid brick.

10.6.4 Braces and Solid Bricks

Theorem 10.16 (Lovász [17, 19]) Every brace distinct from K2 and C4 has a removable edge.
Every brick distinct from K4 and C6 has a removable edge.

Theorem 10.17 (Carvalho 1996 [2], CLM 2002 [4]) Let e be a removable edge of a solid brick
G. Then, e is b-invariant and G− e is solid.

The assertion of Theorem 10.7 holds trivially for K2, C4 and K4. The brick C6 is not solid. For
any other brace or solid brick G, let e be a b-invariant edge of G. Let Me be any perfect matching
of G that contains edge e. By induction, Lat(G− e) has a basis consisting of m− n+1− b perfect
matchings. Add Me to that basis, thereby obtaining a set B. Clearly, B is linearly independent,
because B\{Me} is linearly independent and none of its perfect matchings contains edge e. For any
regular vector x in Z

E , the restriction y of vector x− x(e) ·Me to E(G− e) is regular. Moreover,
G − e is a solid matching covered graph, therefore its brick is not a Petersen brick. By induction
hypothesis, y lies in Lat(G− e). We conclude that x lies in Lat(G). Indeed, B spans every regular
vector x in Z

E . Thus, B is a basis of G consisting of m−n+1 perfect matchings and every regular
vector in Z

E lies in Lat(G). The proof of Theorem 10.7 is complete.

Exercise 10.18 Find a basis for the matching lattice of the graphs depicted in Figures 15, 16
and 18.
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11 Algorithmic Proof

The proof we gave so far may not yield a polynomial algorithm for determining a basis for Lat(G).
The reason is that we do not know how to find separating cuts efficiently (Problem 4.6).

In his Ph. D. thesis. [2], (see also [4, 5]) Marcelo Carvalho proved the following fundamental
result, fully solving Conjecture 10.9. We denote by (b+p)(G) the invariant consisting of the number
of bricks of G, where the Petersen bricks are counted twice.

Theorem 11.1 (Carvalho 1996 [2], CLM 2002 [4, 5]) Every brick G distinct from K4 and C6

has a removable edge e such that (b+ p)(G− e) = (b+ p)(G).

With this result, we get in polynomial time a basis for Lat(G) for every matching covered graph
G, as (i) Theorem 5.1 indicates how to find tight cuts in polynomial time, (ii) there are polynomial
time algorithms for determining whether a graph has a perfect matching [12].

12 Open Problems

Problem 12.1 Is solidity of a brick in P? Is it in NP?

We know that solidity of bricks is in co-NP. Kawarabayashi and Ozeki [15] have a characterization
of odd intercyclic graphs that gives a polynomial algorithm for the recognition of odd intercyclic
graphs.

Conjecture 12.2 (Murty) There exists a constant c such that every simple solid graph of order
2n ≥ c has at most n2 edges and this limit is only attained by Kn,n

Conjecture 12.3 (Murty) There exists a constant k such that every simple solid brick of order
n has at most kn edges.

Conjecture 12.4 (Murty) Every cubic solid brick is odd intercyclic.

13 Pfaffian Orientations

Theorem 13.1 (Kasteleyn (1963) [14]) Every planar graph G has an orientation D such that
determinant of the adjacency matrix of D is equal to the square of the number of perfect matchings
of G.

Sign of a perfect matching: Suppose that (1, 2, . . . , 2k) is an enumeration of the vertices of a digraph
D. With each perfect matching M = {e1, e2, . . . , ek}, where, for 1 ≤ i ≤ k, ui and vi denote,
respectively, the tail and the head of ei, we associate the permutation π(M), where:

π(M) :=

(

1 2 3 4 . . . 2k − 1 2k
u1 v1 u2 v2 . . . uk vk

)

The sign of M , denoted by sign(M), is the sign of the permutation π(M). (The sign of M does not
depend on the order in which the edges of M are listed. But it does depend on the enumeration of
the vertices. However, the effect of permuting the labels, say by α, on sign(M), merely consists of
multiplying sign(M) by the sign of α.)
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Pfaffian of the adjacency matrix A = (aij) of D:

Pf(A) :=
∑

sign(M) au1v1au2v2 . . . aukvk (5)

where the sum is taken over the set of all perfect matching of D.
Pfaffian orientation: An orientation D of G is called a Pfaffian orientation if all perfect matchings
in D have the same sign. In this case, |Pf(A)| is the number of perfect matchings of D.
A determinantal identity: For a skew-symmetric matrix detA = (Pf(A))2. Thus, if a graph G has
a Pfaffian orientation D, the number of perfect matchings of G can be computed by computing the
determinant of A(D) and taking its square root.
The Pfaffian Recognition Problem:
Given: A digraph D
Decide: whether or not D is Pfaffian.
The Pfaffian Orientation Problem:
Given: A graph G
Decide: whether or not G has a Pfaffian orientation.

Theorem 13.2 (Vazirani and Yanakakis (1989) [28], CLM (2005) [8])
A polynomial-time algorithm for one of the problems implies a polynomial-time algorithm for the
other problem.

Pfaffian orientations of an even cycle: An orientation of an even cycle is odd if an odd number
of edges of are oriented ‘clockwise’, and the rest of the edges (also odd in number) are oriented
‘anti-clockwise’.

An orientation of an even cycle is Pfaffian iff it is odd.

Lemma 13.3 (Sign-Product Lemma) Let D be a directed graph, and let M1 and M2 be two
perfect matchings of D. Let k denote the number evenly directed M1M2-alternating cycles in D.
Then sign(M1)sign(M2) = (−1)k. (See Lemma 8.3.1, Lovász and Plummer’s book [19].)

Corollary 13.4 Let D be a digraph and let M be a perfect matching of D. Then, D is Pfaffian
iff each M -alternating cycle is oddly oriented.

Conformal subgraphs: A subgraph H of a graph G is conformal if G−V (H) has a perfect matching.
An 8-cycle in the Petersen graph is conformal, but a 6-cycle is not.

Corollary 13.5 A digraph D is Pfaffian iff each of its conformal even cycles is oddly oriented.

Example 13.6 The Heawood graph is the smallest cubic graph of girth six. It is bipartite, and
has no conformal cycles of lengths 8 or 12. Let (A,B) be a bipartition of this graph. Then, the
orientation which directs all edges from A to B is a Pfaffian orientation. To see this, let M denote
the perfect matching consisting of the seven vertical edges. Then, in an M -alternating cycle of
length 2k, the k edges of M are oriented the same way, but the remaining k edges are oriented the
other way. When k is even, such a cycle would be evenly oriented, but the Heawood graph does
not have conformal cycles of length 8, or 12!

Pfaffian Orientations of Planar Graphs: An orientation of a 2-connected plane graph G is odd if
each facial cycle of G, except possibly the cycle bounding the outer face, is oddly oriented. Such
an orientation can be found using an appropriate ear decomposition of G.
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Lemma 13.7 If D is an odd orientation of a 2-connected plane graph G and Q is a cycle of G then
the parity of Q in D is the opposite of the parity of the number of vertices of G that lie in the
interior of Q.

Corollary 13.8 Every odd orientation of a 2-connected plane graph G is a Pfaffian orientation
of G.

Exercise 13.9 Prove Lemma 13.7

Reversing the orientations on the edges of a cut: Let D be an orientation of a graph D, and let
C := ∂(X) be a cut of G. Then D rev C denotes the digraph obtained from D by reversing the
orientations on all the edges in the cut C.
Similarity of Orientations: Two orientations D and D′ of G are similar if D′ = D rev C, for some
cut C.

Exercise 13.10 Prove that for any setsX and Y of vertices of a graph G, ∂(X⊕Y ) = ∂(X)⊕∂(Y ),
where ⊕ is the operation of symmetric difference. Deduce that similarity is an equivalence relation
on the set of all possible orientations of G.

If an orientation is Pfaffian, then any orientation similar to it is also Pfaffian. As an application
of the above statement one can show the following: Suppose that G is a Pfaffian graph and that

T is a spanning tree of G. Let
−→
T be any orientation of T . Then

−→
T can be extended to a Pfaffian

orientation
−→
G of G.

Pfaffian Orientations of Bipartite Graphs A variety of algorithmic problems in graph theory and
matrix theory are reducible to the problem of recognizing whether or not a given directed bipartite
graph is Pfaffian. One such problem is the following:
The Even Directed Cycle Problem:
Given: A (strict) digraph D;
Decide: whether or not D has a directed cycle of even length.

The above problem may be reduced to the Pfaffian Recognition Problem as follows. Let D be
any digraph. Obtain the bipartite digraph B(D) from D. (Recall how the vertex-disjoint path
problem is converted to an arc-disjoint path problem.)

Exercise 13.11 Prove that D has an even cycle iff B(D) is not Pfaffian.

A good example to try is the Koh-Tindell digraph (see Bondy and Murty’s book). This graph
has no even cycles. The bipartite digraph associated with the Koh-Tindell digraph is the Heawood
graph with the orientation described earlier.

Similarity of Pfaffian Orientations for Bipartite Graphs

Exercise 13.12 Let G be a Pfaffian bipartite matching covered graph, let e be an edge of G such
thatG−e is (Pfaffian, bipartite) matching covered graph. Assume that any two Pfaffian orientations
of G− e are similar. Prove that any two Pfaffian orientations of G are similar. Conclude that any
Pfaffian orientation of G− e may be extended to a Pfaffian orientation of G.

The Ear Decomposition Theorem: Given any bipartite matching covered graph G, there exists a
sequence
(G1, G2, . . . , Gr) of bipartite matching covered graphs such that: (i) G1 = K2, Gr = G, and (ii) for
1 ≤ i < r, Gi+1 is obtained from Gi by adding an odd ear.
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With the aid of the above theorem, one can now show that any two Pfaffian orientations of a
Pfaffian bipartite matching covered graph are similar.

Theorem 13.13 Let G(A,B) be a Pfaffian bipartite matching covered graph. Then, any two
Pfaffian orientations of G are similar (that is, one can be obtained from the other by reversing
the orientations on the edges of some cut). Furthermore, if G 6= K2, and (G1, G2, . . . , Gr) is an
ear decomposition of G, then a Pfaffian orientation of H := Gr−1 can be extended to a Pfaffian
orientation of G = Gr.

Little (1975) proved that the Pfaffian orientation problem for bipartite graphs is in co-NP by
showing that, in a certain sense, K3,3 is the only minimal non-Pfaffian bipartite graph. To make
this precise, we need to define the operations of contractions and deletions appropriate for matching
covered graphs.

Theorem 13.14 [Little and Rendl (1991) [16]]Let G be a matching covered graph and C a tight
cut in G. Then G is Pfaffian iff both C-contractions of G are Pfaffian

Corollary 13.15 A bipartite matching covered graph is Pfaffian if and only if each of its braces
is Pfaffian.

Removable edges: An edge e of a matching covered graph G is removable if G− e is also matching
covered.

We shall make use of the following lemmas concerning removable edges in the proof of Little’s
theorem.

Lemma 13.16 Every edge of a brace on six or more vertices is removable.

The graph obtained by removing an edge e from a brace G need not be a brace. If it is not, it
has a ‘nested family’ of tight cuts. This is illustrated in the figure below. The only non-removable
edges of G− e are the edges indicated by solid lines.

A1 A2

B1 B2

A3 A4

B3 B4

e

Lemma 13.17 Let G be a brace on six or more vertices, and let e be an edge of G. Suppose that
v is a vertex of G. If the degree of v is greater than two in G − e, then at most one edge of G
incident with v is not removable in G.

We shall say that a matching covered graph H is a minor of another matching covered graph
G if there exists a sequence (G1, G2, . . . , Gr) of graphs such that (i) G1 = G, Gr = H, and (ii) for
0 ≤ i < r, Gi+1 is obtained from Gi by either deleting a removable edge, or by contracting a shore
of a nontrivial tight cut to a single vertex.

Exercise 13.18 Prove that a bipartite matching covered graph is Pfaffian iff all its minors are
Pfaffian.
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Theorem 13.19 (Little’s Theorem) The only minor-minimal non-Pfaffian bipartite matching
covered graph is K3,3.

Proof: (Sketch [8]) Let G be a minor-minimal non-Pfaffian bipartite graph on {1, 2, . . . , 2n}. By
Theorem 13.14 , G is a brace. Since all braces on fewer than six vertices are Pfaffian, it follows
that G has at least six vertices. Also, since all multiple edges are removable, G is simple.

Adjust the enumeration of V (G) so that edge e = {2n−1, 2n} is an edge of G. By the minimality
of G, it follows that G − e is Pfaffian. Let D′ be a Pfaffian orientation of G − e. Note that all
perfect matchings of G which do not contain e have the same sign, say positive, in D′.

e-pairs: A pair {F1, F2} of perfect matchings of G− {2n− 1, 2n} is an e-pair if they have different
signs in D′ − {2n− 1, 2n}. (Such a pair must exist because if all of them are positive, then D′ can
be extended to a Pfaffian orientation of G by orienting e from 2n− 1 to 2n; and if all of them are
negative, then D′ can be extended to a Pfaffian orientation of G by orienting e from 2n to 2n− 1.)

Lemma 13.20 Let {F1, F2} be an e-pair. Then, every removable edge f of G−e belongs to F1∪F2,

Proof: Assume that there there is an edge f 6∈ F1 ∪ F2 which is removable in G− e. We first note
that this assumption implies that G− f is matching covered. (Any edge of G− f , different from e,
is admissible because it also belongs to the matching covered graph G− e− f . Also, e is admissible
in G− f because F1 ∪ {e} is a perfect matching of G− f because it does not contain f .)

Now observe that D′ − f is a Pfaffian orientation of G − e − f . This orientation of G − e − f
can be extended, by Theorem 19, to a Pfaffian orientation D′′ of G− f . But then F1 and F2 would
have the same sign in D′′ − {2n− 1, 2n} = D′ − f − {2n− 1, 2n}. This contradicts the hypothesis
that {F1, F2} is an e-pair. �

Corollary 13.21 The ends of e have degree two in G− e.

Proof: If the degree of an end v of e has degree three or more in G− e, then, by Lemma 26, some
edge incident with v, say f , is removable in G− e. Clearly such an edge f is not in F1 ∪ F2. �

Corollary 13.22 The set F1 ∩ F2 is empty.

Proof: Assume to the contrary that f ∈ F1 ∩F2. Let v denote an end of f . Clearly, v is not an end
of e. Thus, v has degree at least three in G− e and, by Lemma 26, ∂(v)− f contains a removable
edge of G− e. That edge does not lie in F1 ∪ F2. �

Corollary 13.23 F1 ∪ F2 is a single cycle (which is evenly oriented).

Proof: Suppose that F1 ∪ F2 consists of more than one cycle. As F1 and F2 have different signs,
by Lemma 8, at least one cycle, say C, is evenly oriented. Then F1 and F ′

2 = F1⊕C have different
signs. We thus have a new e-pair {F1, F

′
2}, But this pair have common edges, which is impossible

by Corollary 13.22. �

Corollary 13.24 The cycle C := F1 ∪ F2 is chordless.

Proof: Suppose that C has a chord f . Then, C ∪ {f} consists of two cycles of even length. One of
them, say C1, is F1-alternating and the other, say C2, is F2-alternating. As C is evenly oriented,
one of C1 and C2 is evenly oriented. Suppose that C1 is evenly oriented. Then, {F1, F

′
2}, where

F ′
2 := F1 ⊕ C1 is an e-pair. We again have a contradiction because F1 ∩ F ′

2 6= ∅. �
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To summarize, G consists of a chordless cycle on 2n − 2 vertices, the edge e = {2n − 1, 2n},
and the edges linking the ends of e with the cycle. But, the ends of e have degree two in G− e by
Corollary 13.21. Clearly G is K3,3. �

A polynomial algorithm
4-sums Let G1, G2, . . . , Gn be n ≥ 2 graphs and let Q be a square such that |V (Gi)| ≥ 6 and
Gi ∩Gj = Q for 1 ≤ i < j ≤ n. The 4-sum of the n graphs is

[

∪ni=1 Gi

]

−R, where R ⊆ E(Q).

Exercise 13.25 Prove that if a brace is a 4-sum of two or more graphs, then each summand is a
brace.

Exercise 13.26 Prove that if a brace G is the 4-sum of three or more braces, then G is Pfaffian
iff each summand is a Pfaffian brace

Reducible Braces A brace is reducible if it is a 4-sum of three or more graphs
In view of the above results, and taking into account that every planar graph is Pfaffian, in

order to solve the Pfaffian recognition problem for bipartite matching covered graphs it suffices to
solve it for irreducible nonplanar (simple) braces.

This fundamental result is due independently to McCuaig (2004) and to Robertson, Seymour
and Thomas (1999)

Theorem 13.27 ([21, 23]) The only simple, Pfaffian, nonplanar, irreducible brace is the Heawood
graph

This result shows how to solve the Pfaffian recognition problem for bipartite graphs in polyno-
mial time. An example of a brace that is Pfaffian and nonplanar is the rotunda, which is a 4-sum
of three cubes (Figure 19).

Figure 19: The rotunda is a nonplanar Pfaffian brace
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