São Paulo School of Advanced Science on Algorithms, Combinatorics and Optimization

The Perfect Matching Polytope, Solid Bricks and the Perfect Matching Lattice July 2016

Cláudio L. Lucchesi

FACOM, UFMS, Brazil

- Is solidity of a brick in P? Is it in NP?
 - solidity of bricks is in co-NP
 - Kawarabayashi and Ozeki's ⇒ polynomial algorithm for the recognition of odd intercyclic graphs
- Conjecture [Murty]
 - $\exists c \text{ s.t. } \forall \text{ simple solid graph } G \text{ of order } 2n \geq c,$ $|E| \leq n^2 \text{ with equality only if } G = K_{n,n}$
- Conjecture [Murty]
 - $\exists k \text{ s.t. } \forall \text{ simple solid brick of order } n, |E| \leq kn$
- Conjecture [Murty]

Every cubic solid brick is odd intercyclic

Pfaffian Orientations

<u>Theorem</u> [Kasteleyn (1963)]
 Every planar graph G has an orientation D s.t.

 $\det(\mathrm{Adj}(D)) = |\mathcal{M}|^2$

• <u>Theorem</u> [Valiant (1979)] Determinantion of $|\mathcal{M}|$ is NP-hard

- Not all graphs have such orientations
- Even if a graph has such an orientation, not all orientations may work
- The problem of deciding which bipartite graphs have such orientations is related to many seemingly unrelated and fundamental problems

Digraph

Let A = (a_{ij}) denote the adjacency matrix of D.
A is a *skew symmetric matrix*

$$\forall i, j \ a_{ij} = -a_{ji}$$

The Pfaffian of A is:

$$Pf(\mathbf{A}) = \sum_{M \in \mathcal{M}} \operatorname{sign}(M) a_{u_1 v_1} a_{u_2 v_2} \dots a_{u_k v_k}$$

if all pms have the same sign: |M| = |Pf(A)|
<u>Theorem</u> [Muir (1882)] If A is skew symmetric then det(A) = (Pf(A))²

Two Pfaffian Problems

- The Pfaffian recognition problem
 - Given: A digraph D
 - Decide: if D is Pfaffian
- The Pfaffian orientation problem
 - Given: A graph G
 - <u>Decide</u>: if G is Pfaffian (that is, it admits a Pfaffian orientation).
- Theorem [Vazirani and Yanakakis (1989)] A polynomial-time solution to one of the two problems implies a polynomial-time solution to the other problem

Oddly oriented cycles

An orientation of an even cycle is <u>odd</u> if an odd number of edges are oriented in one of the senses of traversal, and the rest (also odd in number) are oriented in the other sense. Otherwise, the orientation is <u>even</u>

• Lemma Let M_1 and M_2 be two perfect matchings of a digraph, and let k be the number of evenly directed M_1M_2 -alternating cycles. Then

sign $M_1 \times \text{sign } M_2 = (-1)^k$

Corollary Let M be any perfect matching of a digraph D. Then D is Pfaffian iff all its M-alternating cycles are oddly oriented

Conformal Subgraphs

- A subgraph H of a graph G is <u>conformal</u> if G V(H) has a perfect matching.
- Corollary A digraph is Pfaffian iff all conformal even cycles are oddly oriented
- $\blacksquare J$ is a conformal subgraph H
- \blacksquare *H* is a conformal subgraph *G*
- $\blacksquare \Rightarrow J$ is a conformal subgraph of G
- Corollary A digraph is Pfaffian iff all conformal subgraphs are Pfaffian

The Heawood graph is Pfaffian

The Heawood graph is the smallest cubic graph of girth six. It is bipartite and has no conformal cycles of lengths 8 or 12

Direct each edge from its black end to its white end

$K_{3,3}$ is not Pfaffian

- the three cycles are conformal in $K_{3,3}$
- every edge lies in precisely two of the three cycles
- every change of orientation of an edge changes the parity of two of the three cycles
- the three cycles are even
- every orientation renders an odd number of such cycles as even

The Even Directed Cycle Problem

- Given: A digraph D
- Decide: if *D* has a directed cycle of even length

• D has a directed cycle of even length iff the associated bipartite digraph B(D) is not Pfaffian

$\textbf{Koh-Tindell} \rightarrow \textbf{Heawood}$

The associated bipartite digraph of this graph is the Heawood graph with the orientation mentioned earlier

Kasteleyn's Algorithm

- An orientation D of a 2-connected plane graph G is <u>odd</u> if every facial cycle, except possibly the the one bounding the outer face, contains an odd number of edges directed clock-wisely
- An odd orientation of a 2-connected plane graph can be found inductively using an ear decomposition
- An odd orientation of a 2-connected plane graph is a Pfaffian orientation

Kasteleyn's Algorithm

• \forall cycle Q,

$|\operatorname{clock}(Q)| \equiv 1 + |I| \pmod{2},$

where I is the number of vertices in the interior of Q

- If Q is alternating then |I| is even
- \therefore the parity of Q is odd

Minors—Little's Theorem

- A graph *H* is a *minor* of a graph *G* if *H* may be obtained from *G* by edge deletions and tight cut contractions
- (Every graph is a minor of itself)
- <u>Theorem</u> [Little (1975)]
 A bipartite mc graph is Pfaffian iff it has no K_{3,3}-minor

A Polynomial Algorithm

• Let G_1, G_2, \ldots, G_n be $n \ge 2$ graphs such that $|V(G_i)| \ge 6$ and let Q be a quadrilateral such that $G_i \cap G_j = Q$ for $1 \le i < j \le n$

• The <u>4-sum</u> of the n graphs is

 $\left[\bigcup_{i=1}^{n} G_i\right] - R$, where $R \subseteq E(Q)$

- If a brace is a 4-sum of two or more graphs, then each summand is a brace
- If a brace G is the 4-sum of three or more braces, then G is Pfaffian iff each summand is a Pfaffian brace
- A brace is <u>reducible</u> if it is a 4-sum of three or more graphs
 spas-sco-4 p. 18/24

A Polynomial Algorithm

- We are thus left with (simple) irreducible braces
- Every planar brace is clearly Pfaffian
- We are thus left with (simple) irreducible nonplanar braces
- <u>Theorem</u> [McCuaig (2004) and Robertson, Seymour and Thomas (1999)]
 The only simple, Pfaffian, nonplanar, irreducible brace is the Heawood graph
- ⇒ polynomial time algorithm for the Pfaffian recognition problem for bipartite graphs

The Rotunda is Pfaffian

- 4-sum of three cubes, with R = E(Q)
- ... the rotunda is Pfaffian

Graphs

- a mc graph G is <u>near-bipartite</u> if G is not bipartite but it contains two edges, e_1 and e_2 , s.t. $G - e_1 - e_2$ is bipartite mc
- <u>Theorem</u> [Fischer and Little (2001)] *A near-bipartite brick is non-Pfaffian iff it has a* $minor \in \{K_{3,3}, \Gamma_1, \Gamma_2\}$

A Polynomial Time Algorithm

- A. Miranda and L (2010):
- Fischer and Little's characterization
- McCuaig–RST algorithm
- ⇒ polynomial time algorithm for recognizing Pfaffian near-bipartite graphs

Other Pfaffian Graphs

- not very much is known
- Norine and Thomas (2008) have conjectured the (infinite) list of minimal non-Pfaffian bricks

thank you!