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4-Flows

Theorem [Tait (1880)]
A 2-connected cubic graph is 4-face-colourable iff it is
3-edge-colourable
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4-Flows

A 4-flow of G is an orientation D of G with weights

in {1, 2, 3} in the edges so that the in-flow equals the
out-flow at each vertex

Theorem [Tutte (1954)]
A planar graph is 4-face-colourable iff it has a
4-flow

H is a minor of G if it may be obtained from G by
edge contractions and deletions
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4-Flows

Conjecture [Tutte (1966)]

Every 2-connected graph free of Petersen minors
has a 4-flow

Theorem [Kilpatrick (1975), Jaeger (1976),
Matthews (1978)]
A 2-connected cubic graph has a 4-flow if and only
if it has a 3-edge-colouring

in her recent Ph. D. thesis, K. Edwards proved the
conjecture for cubic graphs! (she coauthors a paper
with Sanders, Seymour and Thomas)
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The Integer Cone

the Integer Cone

M: the set of perfect matchings of a mc graph

χM ∈ 2E is the incidence vector of M ∈ M

IntCone(G) :=
∑

αM∈Z+,M∈M αMχM

A cubic graph G admits a 3-edge-colouring if and

only if 1 ∈ IntCone(G)

Theorem [L (2001)]

In a solid brick G, every regular vector x ∈ Z
E
+ is in

IntCone(G)
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Relaxations of the IntCone

IntCone(G) :=
∑

αM∈Z+
αMχM
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Relaxations of the IntCone

IntCone(G) :=
∑

αM∈Z+
αMχM

Cone(G) :=
∑

αM∈R+ αMχM

Lat(G) :=
∑

αM∈Z αMχM

Lin(G) :=
∑

αM∈R αMχM
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A Relaxation of Tutte’s Conjecture

Let G be a mc graph, let r ∈ R. A vector x ∈ R
E is

r-regular if x(C) = r for every tight cut C of G

Theorem [Lovász (1987)]
For every mc graph G, every regular vector

∈ Lin(G)

Lin(G) :=
∑

αM∈R

αMχM
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An example: 1 ∈ Lin(P )

P has six perfect matchings

one M0 and five M1, · · · ,M5

every edge in precisely two pms

1 ∈ Lin(P) : 1 =
∑6

i=1
1
2χ

Mi

spsas-sco-1 – p. 8/50



Regular in Every Tight Cut
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x(C1) = 6 x(C2) = 18
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Regular Vectors in Bipartite Graphs

degree constraints

[∀v, w ∈ V x(∂(v)) = x(∂(w))] ⇒ regularity

C

x(C) = 4r − 3r = r
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Regular Vectors in Near-Bricks

mc G is a near-brick if b(G) = 1

∀ tight C of near-brick G, one of the C-contractions
is bipartite

degree constraints

[∀v, w ∈ V x(∂(v)) = x(∂(w))] ⇒ regularity

C

x(C) = 4r − 3r = r
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Proof of Lovász’s Theorem

G mc, x ∈ R
E r-regular, r ∈ R

⇒ x ∈ Lin(G)

by induction on |E|

Reduction to Bricks and Braces: Merger operation
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Merger for Tight Cuts

Reduction to Bricks and Braces
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Merger for Tight Cuts
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Induction Step for Braces

G mc, e is removable if G− e is mc

If a brace G 6∈ {K2, C4}, it has a removable edge e

let Me be a pm that contains e

let y be the restriction of x− x(e)χMe to G− e

I.H.: y is regular in G− e⇒ y ∈ Lin(G− e)

x = x(e)χMe + y ⇒ x ∈ Lin(G)
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Induction Step for Solid Bricks

Theorem [Lovász (1987)]

∀ brick 6∈ {K4, C6} has a removable edge

C6 is not solid

every solid brick 6= K4 has a removable edge

Theorem [CLM (2002)]
e removable in solid brick G ⇒ G− e is a
near-brick

let Me be a pm that contains e

let y be the restriction of x− x(e)χMe to G− e

I.H.: y is regular in G− e⇒ y ∈ Lin(G− e)

x = x(e)χMe + y ⇒ x ∈ Lin(G)
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The Merger - Robust Cuts

C: robust cut of brick G

x ∈ R
E: r-regular

x(C) 6= r

restrictions of x to C-contractions of G not regular!
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Merger - Robust Cuts
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Merger - Robust Cuts

let β := x(C)−r

|M∩C|−1

M ∈ M: |M ∩ C| > 1

let s := r − β, let y := x− βχM

y is s-regular

y(C) = x(C)− |M ∩ C| · β = r − β = s

now, the restrictions of y to the C-contractions of G
are s-regular!

proceed as in the case of tight cuts
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Relaxations of Tutte’s Conjecture

Theorem [Seymour (1979)]
For every 2-connected cubic graph G free of

Petersen minors, 1 ∈ Lat(G)

Theorem [Lovász (1987)]
For every mc graph G free of Petersen bricks, every

regular vector in Z
E lies in Lat(G)

If G is 2-connected and cubic, then ∀ tight C,

|C| = 3

Corollary For every 2-connected cubic G free of

Petersen bricks, 1 ∈ Lat(G)
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Vectors in the Matching Lattice

Theorem [Lovász (1987)]
∀ mc graph G free of Petersen bricks, every

r-regular vector in Z
E lies in Lat(G)

Lat(G) :=
∑

αM∈Z

αMχM Lin(G) :=
∑

αM∈R

αMχM

A brick is a Petersen brick if its underlying simple
graph is P

A mc G is free of Petersen bricks if its tight cut

decomposition has no Petersen brick.
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An example: 2 ∈ Lat(P )

P has six perfect matchings

one M0 and five M1, · · · ,M5

every edge in precisely two pms

2 ∈ Lat(P) : 2 =
∑6

i=1 χ
Mi

1 6∈ Lat(P)
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Regular in Every Tight Cut

C1 C2

2
2 2

3

3

3

4
44

5

5

5

66

6

r = 12

x(C1) = 6 x(C2) = 18

spsas-sco-1 – p. 24/50



Regular Vectors in Bipartite Graphs

degree constraints

[∀v, w ∈ V x(∂(v)) = x(∂(w))] ⇒ regularity

C

x(C) = 4r − 3r = r
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Regular Vectors in Near-Bricks

mc G is a near-brick if b(G) = 1

∀ tight C of near-brick G, one of the C-contractions
is bipartite

degree constraints

[∀v, w ∈ V x(∂(v)) = x(∂(w))] ⇒ regularity

C

x(C) = 4r − 3r = r
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Proof of Lovász’s Theorem

G mc free of P, x ∈ Z
E , r-regular

⇒ x ∈ Lat(G)

by induction on |E|

Reduction to Bricks and Braces: Merger operation
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Merger for Tight Cuts

Reduction to Bricks and Braces
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Merger for Tight Cuts

1

1

111 1

1111

11

1

2

2

2

3

3

33

33

3

3 4

4

4

C

spsas-sco-1 – p. 29/50



Induction Step for Braces

G mc, e is removable if G− e is mc

If a brace G 6∈ {K2, C4}, it has a removable edge e

let Me be a pm that contains e

let y be the restriction of x− x(e)χMe to G− e

I.H.: y is regular in G− e⇒ y ∈ Lat(G− e)

x = x(e)χMe + y ⇒ x ∈ Lat(G)
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Induction Step for Solid Bricks

Theorem [Lovász (1987)]

∀ brick 6∈ {K4, C6} has a removable edge

C6 is not solid

every solid brick 6= K4 has a removable edge

Theorem [CLM (2002)]
e removable in solid brick G ⇒ G− e is a solid
near-brick

i.e. the brick of G− e is solid

P is not solid

∴ G− e free of P
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Induction Step for Solid Bricks

let Me be a pm that contains e

let y be the restriction of x− x(e)χMe to G− e

I.H.: y is regular in G− e⇒ y ∈ Lat(G− e)

x = x(e)χMe + y ⇒ x ∈ Lat(G)
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The Merger - Robust Cuts

C: robust cut of brick G free of P

x ∈ Z
E: r-regular,

x(C) 6= r

restrictions of x to C-contractions of G not regular!
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Merger - Robust Cuts Does Not Work
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The Characteristic of P

A robust cut of mc G is λ-robust is G has a pm

M : |M ∩ C| = λ

Theorem [CLM (2002)]
Let G be a brick 6= P. Then G has a 3-robust cut C
s.t. both C-contractions of G are free of P
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Merger - 3-Robust Cuts
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Merger - 3-Robust Cuts
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Merger - 3-Robust Cuts
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Merger - 3-Robust Cuts
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Merger - 3-Robust Cuts

M ∈ M: |M ∩ C| = 3

let β := x(C)−r

|M∩C|−1 =
x(C)−r

2

x(C) ≡ r (mod 2)

∴ β ∈ Z!!!
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Merger - 3-Robust Cuts

let β := x(C)−r

|M∩C|−1 =
x(C)−r

2

β ∈ Z!!!

let s := r − β, let y := x− βχM

y is s-regular, y ∈ Z
E

y(C) = x(C)− 3β = r − β = s

now, the restrictions of y to the C-contractions of G
are s-regular!

both C-contractions are free of P

proceed as in the case of tight cuts
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The Matching Lattice of P

which r-regular x ∈ Z
E lie in Lat(P)?

both shores of every robust cut C of P induce a
pentagon

C

spsas-sco-1 – p. 43/50



The Matching Lattice of P

let Q be a pentagon in a cubic graph, M ∈ M

|M ∩ ∂(V (Q))| = 3 ⇒ the 3 edges of M ∩ ∂(Q) are
“cyclically consecutive” in S
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The Matching Lattice of P

let Q be a pentagon in a cubic graph, M ∈ M

|M ∩ ∂(V (Q))| = 3 ⇒ the 3 edges of M ∩ ∂(Q) are
“cyclically consecutive” in S

λ(P) = 5
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The Matching Lattice of P

let Q be any pentagon of P

C := ∂(V (Q)) is robust

five perfect matchings Mi, i = 1, · · · , 5:

|Mi ∩ C| = 1

one perfect matching, M0: |M0 ∩ C| = 5

let x ∈ Lat(P )

x = α0χ
M
0 +

∑5
i=1 αiχ

M
i αi ∈ Z

x is r-regular, r =
∑

αi

x(C) = 5α0 +
∑5

i=1 αi = r + 4α0

necessary condition:
x(C)−r

4 ∈ Z

it is also sufficient (merger)
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The Matching Lattice of P

let Q be any pentagon of P

C := ∂(V (Q)) is robust

necessary condition:
x(C)−r

4 ∈ Z

merger ⇒ it is also sufficient

An r-regular vector x ∈ Z
E lies in Lat(P) if and

only if

x(C) ≡ r (mod 4)

2 ∈ Lat(P): 2(C) = 10 ≡ 6 (mod 4)

1 6∈ Lat(P): 1(C) = 5 6≡ 3 (mod 4)
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The Characteristic of P

Theorem [CLM (2002)]
The characteristic λ(G) of every nonsolid brick G

lies in {3, 5}. Moreover, λ(G) = 5 iff G is a
Petersen brick

Theorem [CLM (2002)]

Every brick G 6∈ {K4, C6} has a (b+ p)-invariant
edge

An edge e of a mc graph G is (b+ p)-invariant if e

is removable and (b+ p)(G− e) = (b+ p)(G)

An edge e of a mc graph G is removable if G− e is
mc
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Example

e

f1
f2
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Example

e

e
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A Polynomial Algorithm

Theorem [CLM (2002)]

Every brick G 6∈ {K4, C6} has a (b+ p)-invariant
edge

Corollary [CLM (2002)]

Every simple brick G not in {K4, C6,P} has a
removable edge e such that G− e is a near-brick
and the brick of G− e is not P

⇒ polynomial algorithm for the terms of Lovász’s
Theorem
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