São Paulo School of Advanced Science on Algorithms, Combinatorics and Optimization

The Perfect Matching Polytope, Solid Bricks and the Perfect Matching Lattice July 2016

Cláudio L. Lucchesi

FACOM, UFMS, Brazil

<u>Theorem</u> [Tait (1880)] A 2-connected cubic graph is 4-face-colourable iff it is 3-edge-colourable

<u>Theorem</u> [Tait (1880)] *A 2-connected cubic graph is 4-face-colourable iff it is 3-edge-colourable*

<u>Theorem</u> [Tait (1880)] A 2-connected cubic graph is 4-face-colourable iff it is 3-edge-colourable

a

b

a > b

a - b

- A <u>4-flow</u> of G is an orientation D of G with weights in {1, 2, 3} in the edges so that the in-flow equals the out-flow at each vertex
- <u>Theorem</u> [Tutte (1954)]
 A planar graph is 4-face-colourable iff it has a 4-flow
- H is a <u>minor</u> of G if it may be obtained from G by edge contractions and deletions

Conjecture [Tutte (1966)]

Every 2-connected graph free of Petersen minors has a 4-flow

 <u>Theorem</u> [Kilpatrick (1975), Jaeger (1976), Matthews (1978)]

A 2-connected cubic graph has a 4-flow if and only if it has a 3-edge-colouring

in her recent Ph. D. thesis, K. Edwards proved the conjecture for cubic graphs! (she coauthors a paper with Sanders, Seymour and Thomas)

The Integer Cone

• the Integer Cone

• \mathcal{M} : the set of perfect matchings of a mc graph

• $\chi^M \in 2^E$ is the incidence vector of $M \in \mathcal{M}$

• Int
$$\mathcal{C}$$
one $(G) := \sum_{\alpha_M \in \mathbb{Z}_+, M \in \mathcal{M}} \alpha_M \chi^M$

- A cubic graph G admits a 3-edge-colouring if and only if $1 \in IntCone(G)$
- Theorem [L (2001)] In a solid brick G, every regular vector $\mathbf{x} \in \mathbb{Z}_+^E$ is in Int $\mathcal{C}one(G)$

Relaxations of the IntCone

Int
$$\mathcal{C}$$
one $(G) := \sum_{\alpha_M \in \mathbb{Z}_+} \alpha_M \chi^M$

Relaxations of the IntCone

Int
$$\mathcal{C}$$
one $(G) := \sum_{\alpha_M \in \mathbb{Z}_+} \alpha_M \chi^M$

$$\mathcal{C}$$
one $(G) := \sum_{\alpha_M \in \mathbb{R}^+} \alpha_M \chi^M$

Relaxations of the IntCone

Int
$$\mathcal{C}$$
one $(G) := \sum_{\alpha_M \in \mathbb{Z}_+} \alpha_M \chi^M$

$$\mathcal{C}one(G) := \sum_{\alpha_M \in \mathbb{R}^+} \alpha_M \chi^M$$

$$\mathcal{L}at(G) := \sum_{\alpha_M \in \mathbb{Z}} \alpha_M \chi^M$$

Int
$$\mathcal{C}$$
one (G) := $\sum_{\alpha_M \in \mathbb{Z}_+} \alpha_M \chi^M$
 \mathcal{C} one (G) := $\sum_{\alpha_M \in \mathbb{R}^+} \alpha_M \chi^M$
 \mathcal{L} at (G) := $\sum_{\alpha_M \in \mathbb{Z}} \alpha_M \chi^M$
 \mathcal{L} in (G) := $\sum_{\alpha_M \in \mathbb{R}} \alpha_M \chi^M$

A Relaxation of Tutte's Conjecture

Let G be a mc graph, let $r \in \mathbb{R}$. A vector $\mathbf{x} \in \mathbb{R}^E$ is r-regular if $\mathbf{x}(C) = r$ for every tight cut C of G

■ <u>Theorem</u> [Lovász (1987)] *For every mc graph G, every regular vector* $\in Lin(G)$

$$\mathcal{L}\mathrm{in}(G) := \sum_{\alpha_M \in \mathbb{R}} \alpha_M \chi^M$$

An example: $1 \in \mathcal{L}in(P)$

\square P has six perfect matchings

- one M_0 and five M_1, \cdots, M_5
- every edge in precisely two pms

$$\mathbf{I} \in \mathcal{L}in(\mathbb{P}) : \mathbf{1} = \sum_{i=1}^{6} \frac{1}{2} \chi^{M_i}$$

Regular in Every Tight Cut

 $\mathbf{x}(C_1) = 6 \quad \mathbf{x}(C_2) = 18$

Regular Vectors in Bipartite Graphs

• degree constraints $[\forall v, w \in V \quad \mathbf{x}(\partial(v)) = \mathbf{x}(\partial(w))] \Rightarrow$ regularity

 $\mathbf{I}(C) = 4r - 3r = r$

Regular Vectors in Near-Bricks

- mc G is a *near-brick* if b(G) = 1
- \forall tight C of near-brick G, one of the C-contractions is bipartite
- degree constraints [$\forall v, w \in V \quad \mathbf{x}(\partial(v)) = \mathbf{x}(\partial(w))$] ⇒ regularity

$$\bullet \mathbf{x}(C) = 4r - 3r = r$$

Proof of Lovász's Theorem

- $G \operatorname{mc}, \mathbf{x} \in \mathbb{R}^E r$ -regular, $r \in \mathbb{R}$
- $\blacksquare \Rightarrow \mathbf{x} \in \mathcal{L}in(G)$
- by induction on |E|
- Reduction to Bricks and Braces: Merger operation

Merger for Tight Cuts

Reduction to Bricks and Braces

Merger for Tight Cuts

Induction Step for Braces

- $G \mod e$ is *removable* if G e is mc
- If a brace $G \notin \{K_2, C_4\}$, it has a removable edge e
- let M_e be a pm that contains e
- let y be the restriction of $\mathbf{x} \mathbf{x}(e)\chi^{M_e}$ to G e
- I.H.: y is regular in $G e \Rightarrow y \in \mathcal{L}in(G e)$
- $\mathbf{I} \mathbf{x} = \mathbf{x}(e)\chi^{M_e} + \mathbf{y} \Rightarrow \mathbf{x} \in \mathcal{L}\mathrm{in}(G)$

Induction Step for Solid Bricks

- <u>Theorem</u> [Lovász (1987)] $\forall brick \notin \{K_4, \overline{C_6}\}$ has a removable edge
- $\overline{C_6}$ is not solid
- every solid brick $\neq K_4$ has a removable edge
- Theorem [CLM (2002)] e removable in solid brick $G \Rightarrow G - e$ is a near-brick
- let M_e be a pm that contains e
- let y be the restriction of $\mathbf{x} \mathbf{x}(e)\chi^{M_e}$ to G e
- I.H.: y is regular in $G e \Rightarrow y \in \mathcal{L}in(G e)$
- $\mathbf{x} = \mathbf{x}(e)\chi^{M_e} + \mathbf{y} \Rightarrow \mathbf{x} \in \mathcal{L}in(G)$

The Merger - Robust Cuts

- \blacksquare C: robust cut of brick G
- $\mathbf{x} \in \mathbb{R}^E$: *r*-regular
- $\blacksquare \mathbf{x}(C) \neq r$
- restrictions of x to C-contractions of G not regular!

• let
$$\beta := \frac{\mathbf{x}(C) - r}{|M \cap C| - 1}$$

 $\blacksquare M \in \mathcal{M}: |M \cap C| > 1$

let
$$s := r - \beta$$
, let $\mathbf{y} := \mathbf{x} - \beta \chi^M$

y is *s*-regular

$$\mathbf{y}(C) = \mathbf{x}(C) - |M \cap C| \cdot \beta = r - \beta = s$$

- now, the restrictions of y to the C-contractions of G are s-regular!
- proceed as in the case of tight cuts

Relaxations of Tutte's Conjecture

- <u>Theorem</u> [Seymour (1979)] For every 2-connected cubic graph G free of Petersen minors, $\mathbf{1} \in \mathcal{L}at(G)$
- <u>Theorem</u> [Lovász (1987)] For every mc graph G free of Petersen bricks, every regular vector in \mathbb{Z}^E lies in $\mathcal{L}at(G)$
- If G is 2-connected and cubic, then \forall tight C, |C| = 3
- Corollary For every 2-connected cubic G free of Petersen bricks, $\mathbf{1} \in \mathcal{L}at(G)$

Vectors in the Matching Lattice

 <u>Theorem</u> [Lovász (1987)]
 ∀ mc graph G free of Petersen bricks, every r-regular vector in Z^E lies in Lat(G)

$$\mathcal{L}at(G) := \sum_{\alpha_M \in \mathbb{Z}} \alpha_M \chi^M \quad \mathcal{L}in(G) := \sum_{\alpha_M \in \mathbb{R}} \alpha_M \chi^M$$

- A brick is a <u>Petersen brick</u> if its underlying simple graph is \mathbb{P}
- A mc G is *free of Petersen bricks* if its tight cut decomposition has no Petersen brick.

An example: $2 \in \mathcal{L}at(P)$

\blacksquare \mathbb{P} has six perfect matchings

one M₀ and five M₁, ..., M₅
every edge in precisely two pms

•
$$\mathbf{2} \in \mathcal{L}at(\mathbb{P}) : \mathbf{2} = \sum_{i=1}^{6} \chi^{M_i}$$

• $\mathbf{1} \notin \mathcal{L}at(\mathbb{P})$

Regular in Every Tight Cut

 $\mathbf{x}(C_1) = 6 \quad \mathbf{x}(C_2) = 18$

Regular Vectors in Bipartite Graphs

■ degree constraints $[\forall v, w \in V \quad \mathbf{x}(\partial(v)) = \mathbf{x}(\partial(w))] \Rightarrow$ regularity

 $\mathbf{I}(C) = 4r - 3r = r$

Regular Vectors in Near-Bricks

- mc G is a *near-brick* if b(G) = 1
- \forall tight C of near-brick G, one of the C-contractions is bipartite
- degree constraints $[\forall v, w \in V \quad \mathbf{x}(\partial(v)) = \mathbf{x}(\partial(w))] \Rightarrow$ regularity

$$\bullet \mathbf{x}(C) = 4r - 3r = r$$

Proof of Lovász's Theorem

- G mc free of \mathbb{P} , $\mathbf{x} \in \mathbb{Z}^E$, r-regular
- $\blacksquare \Rightarrow \mathbf{x} \in \mathcal{L}\mathrm{at}(G)$
- by induction on |E|
- Reduction to Bricks and Braces: Merger operation

Merger for Tight Cuts

Reduction to Bricks and Braces

Merger for Tight Cuts

Induction Step for Braces

- $G \mod e$ is *removable* if G e is mc
- If a brace $G \notin \{K_2, C_4\}$, it has a removable edge e
- let M_e be a pm that contains e
- let y be the restriction of $\mathbf{x} \mathbf{x}(e)\chi^{M_e}$ to G e
- I.H.: y is regular in $G e \Rightarrow y \in \mathcal{L}at(G e)$
- $\mathbf{I} \mathbf{x} = \mathbf{x}(e)\chi^{M_e} + \mathbf{y} \Rightarrow \mathbf{x} \in \mathcal{L}\mathrm{at}(G)$

Induction Step for Solid Bricks

- <u>Theorem</u> [Lovász (1987)] $\forall brick \notin \{K_4, \overline{C_6}\}$ has a removable edge
- $\overline{C_6}$ is not solid
- every solid brick $\neq K_4$ has a removable edge
- <u>Theorem</u> [CLM (2002)] *e removable in solid brick* $G \Rightarrow G - e$ *is a* <u>solid</u> *near-brick*
- i.e. the brick of G e is solid
- $\blacksquare \mathbb{P}$ is not solid
- \therefore G e free of \mathbb{P}

Induction Step for Solid Bricks

- let M_e be a pm that contains e
- let y be the restriction of x − x(e)χ^{M_e} to G − e
 I.H.: y is regular in G − e ⇒ y ∈ Lat(G − e)
 x = x(e)χ^{M_e} + y ⇒ x ∈ Lat(G)

The Merger - Robust Cuts

- \blacksquare C: robust cut of brick G free of \mathbb{P}
- $\mathbf{x} \in \mathbb{Z}^E$: *r*-regular,
- $\blacksquare \mathbf{x}(C) \neq r$

restrictions of x to C-contractions of G not regular!

Merger - Robust Cuts Does Not Work

Merger - Robust Cuts Does Not Work

The Characteristic of $\ensuremath{\mathbb{P}}$

- A robust cut of mc G is $\underline{\lambda}$ -robust is G has a pm $M: |M \cap C| = \lambda$
- <u>Theorem</u> [CLM (2002)] Let G be a brick $\neq \mathbb{P}$. Then G has a 3-robust cut C s.t. both C-contractions of G are free of \mathbb{P}

spsas-sco-1 – p. 38/50

spsas-sco-1 – p. 40/50

$$\bullet M \in \mathcal{M}: |M \cap C| = 3$$

• let
$$\beta := \frac{\mathbf{x}(C) - r}{|M \cap C| - 1} = \frac{\mathbf{x}(C) - r}{2}$$

• $\mathbf{x}(C) \equiv r \pmod{2}$
• $\beta \in \mathbb{Z}!!!$

$$\mathbf{y}(C) = \mathbf{x}(C) - 3\beta = r - \beta = s$$

- now, the restrictions of y to the C-contractions of G are s-regular!
- both C-contractions are free of \mathbb{P}
- proceed as in the case of tight cuts

- which *r*-regular $\mathbf{x} \in \mathbb{Z}^E$ lie in $\mathcal{L}at(\mathbb{P})$?
- both shores of every robust cut C of \mathbb{P} induce a pentagon

- let Q be a pentagon in a cubic graph, $M \in \mathcal{M}$
- $|M \cap \partial(V(Q))| = 3 \Rightarrow$ the 3 edges of $M \cap \partial(Q)$ are "cyclically consecutive" in S

let Q be a pentagon in a cubic graph, M ∈ M
|M ∩ ∂(V(Q))| = 3 ⇒ the 3 edges of M ∩ ∂(Q) are "cyclically consecutive" in S

let Q be a pentagon in a cubic graph, M ∈ M
|M ∩ ∂(V(Q))| = 3 ⇒ the 3 edges of M ∩ ∂(Q) are "cyclically consecutive" in S

let Q be a pentagon in a cubic graph, M ∈ M
|M ∩ ∂(V(Q))| = 3 ⇒ the 3 edges of M ∩ ∂(Q) are "cyclically consecutive" in S

$$\bullet \lambda(\mathbb{P}) = 5$$

- \blacksquare let Q be any pentagon of $\mathbb P$
- $C := \partial(V(Q))$ is robust
- five perfect matchings M_i , $i = 1, \dots, 5$: $|M_i \cap C| = 1$
- one perfect matching, M_0 : $|M_0 \cap C| = 5$

let
$$\mathbf{x} \in \mathcal{L}at(P)$$

$$\mathbf{x} = \alpha_0 \chi_0^M + \sum_{i=1}^5 \alpha_i \chi_i^M \quad \alpha_i \in \mathbb{Z}$$

• **x** is *r*-regular,
$$r = \sum \alpha_i$$

•
$$\mathbf{x}(C) = 5\alpha_0 + \sum_{i=1}^5 \alpha_i = r + 4\alpha_0$$

• necessary condition: $\frac{\mathbf{x}(C)-r}{4} \in \mathbb{Z}$

- \blacksquare let Q be any pentagon of $\mathbb P$
- $C := \partial(V(Q))$ is robust
- necessary condition: $\frac{\mathbf{x}(C)-r}{4} \in \mathbb{Z}$
- merger \Rightarrow it is also sufficient
- An *r*-regular vector $\mathbf{x} \in \mathbb{Z}^E$ lies in $\mathcal{L}at(\mathcal{P})$ if and only if

$$\mathbf{x}(C) \equiv r \pmod{4}$$

- $\mathbf{2} \in \mathcal{L}at(\mathbb{P}): \mathbf{2}(C) = 10 \equiv 6 \pmod{4}$
- $\bullet \mathbf{1} \not\in \mathcal{L}at(\mathbb{P}): \mathbf{1}(C) = 5 \not\equiv 3 \pmod{4}$

The Characteristic of $\mathbb P$

- Theorem [CLM (2002)] The characteristic $\lambda(G)$ of every nonsolid brick Glies in $\{3, 5\}$. Moreover, $\lambda(G) = 5$ iff G is a Petersen brick
- <u>Theorem</u> [CLM (2002)] *Every brick* $G \notin \{K_4, \overline{C_6}\}$ has a (b + p)-invariant *edge*
- An edge e of a mc graph G is (b+p)-invariant if e is removable and (b+p)(G-e) = (b+p)(G)
- An edge e of a mc graph G is <u>removable</u> if G e is mc

Example

A Polynomial Algorithm

- <u>Theorem</u> [CLM (2002)] *Every brick* $G \notin \{K_4, \overline{C_6}\}$ has a (b+p)-invariant *edge*
- Corollary [CLM (2002)]

Every simple brick G not in $\{K_4, \overline{C_6}, \mathbb{P}\}$ has a removable edge e such that G - e is a near-brick and the brick of G - e is not \mathbb{P}

■ ⇒ polynomial algorithm for the terms of Lovász's Theorem