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The Precedence Relation

mc G, cut C precedes cut D (C � D) if

|M ∩ C| ≤ |M ∩D| ∀M ∈ M

C1
C2

D

|M ∩D|+2 = |M ∩C1|+ |M ∩C2|+1 ∀M ∈ M

|M ∩D|+ 2 ≥ |M ∩ C1|+ 2 ∀M ∈ M

∴ C1 � D
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The Precedence Relation

C strictly precedes D (C ≺ D) if C � D and

∃M ∈ M |M ∩ C| < |M ∩D|

C1
C2

D

|M ∩D|+2 = |M ∩C1|+ |M ∩C2|+1 ∀M ∈ M

C2 not tight ⇒ ∃M : |M ∩D|+ 2 > |M ∩ C1|+ 2

∴ C1 ≺ D
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The Perfect Matching Polytope

M: the set of pms of G

χS ∈ 2E: the incidence vector of S ⊆ E

Poly(G) :=
∑

M∈M αMχM

(
∑

αM = 1, αM ∈ R
+)

Example
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The Perfect Matching Polytope

Theorem [Edmonds (1965)]

A vector x ∈ R
E ∈ Poly(G) of a mc graph G iff:

x ≥ 0 (nonnegativity)

x(∂(v)) = 1, ∀v ∈ V (degree constraints)

x(∂(S)) ≥ 1, ∀ odd S ⊂ V (odd set constraints)

Example
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Separating Cuts & The PM Polytope

Theorem [CLM (2004)]

A vector x ∈ R
E ∈ Poly(G) of a mc graph G iff :

x ≥ 0 (nonnegativity)

x(∂(v)) = 1, ∀v ∈ V (degree constraints)

x(C) ≥ 1, ∀ sep C (separating cut constraints)
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Barriers and Admissible Edges

G a matchable graph (ie G has a pm)

A barrier is a set B ⊂ V st:

|O(G− B)| = |B|

B

e ∈ E is admissible if ∃ pm M : e ∈ M

Lemma e is admissible iff no barrier contains both
ends of e
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Barriers and Admissible Edges

Lemma e := uv is admissible iff no barrier
contains both u and v

only if: {u, v} ⊆ B ⇒ e not admissible

converse: if H := G− u− v matchable ⇒ e adm

H not matchable ⇒ ∃S : |O(H − S)| > |S|

parity: |O(H − S)| ≥ |S|+ 2

B := S ∪ {u, v}

|O(G− B)| ≥ |B|

∴ B is a barrier
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Separating Cuts & The PM Polytope

Suppose x(C) < 1 for some odd C

C := {odd D : x(D) < 1, D � C}

take D ∈ C minimal wrt �

⇒ D is separating

Suppose D not separating ⇒ one D-contraction H
not mc:

either it has no pm or some edge 6∈ pm
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Separating Cuts & The PM Polytope

H not matchable ⇒ ∃S : |O(H − S)| > |S|

G mc ⇒ contraction vertex ∈ S

C1 C2 C3
C4

D
S

x(D) + 1 ≥
∑

x(Ci)

∴ ∃i : 1 > x(Ci), say i = 1

|M ∩D|+ 1 =
∑

|M ∩ Ci| ≥ |M ∩ C1|+ 3 ∀M ∈ M

C1 ≺ D, contradiction
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Separating Cuts & The PM Polytope

H matchable, not mc ⇒ ∃e := {u, v} : e not
admissible

∃ barrier B: {u, v} ⊆ B

G mc ⇒ contraction vertex ∈ B

C1 C2 C3

D
B

e

x(D) + 2 ≥ 2x(e) +
∑

x(Ci) ≥
∑

x(Ci)

∴ ∃i : 1 > x(Ci), say i = 1
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Separating Cuts & The PM Polytope

continuation

e

C1 C2 C3

D
B

∃i : 1 > x(Ci), say i = 1

|M∩D|+2 ≥ 2|M ∩{e}|+
∑

|M∩Ci| ∀M ∈ M

|M ∩D|+ 2 ≥ 2|M ∩ {e}|+ |M ∩ C1|+ 2

C1 ≺ D, contradiction
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Building Blocks

Bricks and braces are the building blocks of mc
graphs

In fact, we may also break some bricks, by
cut-contractions of separating cuts

A brick free of nontrivial separating cuts is solid

Examples of Solid Bricks

wheels Möbius ladders
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Properties of Solid Bricks

Theorem [Reed and Wakabayshi (2003)]
A brick G is nonsolid if and only if it has two
disjoint odd cycles C1 and C2 such that

G− [V (C1) ∪ V (C2)] has a perfect matching

Corollary Every odd intercyclic brick is solid

Theorem [CLM (2004)]
A brick is solid if and only if its perfect matching
polytope is characterized only by the degree
constraints ∀x ∈ R

E,x ≥ 0 :

x ∈ Poly ⇔ x(v) = 1 (∀v ∈ V (G))

Solidity of Bricks is in co-NP

Open Is Solidity of Bricks in P? in NP?
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More Examples of Solid Bricks

Möbius Ladders M4n, n ≥ 1 (odd intercylic)

Odd Wheels W2n+1, n ≥ 1 (odd intercylic)

Theorem [CLM (2006), Kothari and Murty (2015)]
The odd wheels are the only planar solid bricks

Murty’s graph, a solid brick that is not odd
intercyclic

e

C
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Robust Cuts & The PM Polytope

Theorem A vector x ∈ R
E ∈ Poly(G) of a brick G

iff :

x ≥ 0 (nonnegativity)

x(∂(v)) = 1, ∀v ∈ V (degree constraints)

x(C) ≥ 1, ∀ sep C (robust cut constraints)

C is robust if both C-contractions are near-bricks

G is a near-brick if b(G) = 1

Example:
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Getting Robust Cuts

Suppose G is a brick and x(C) < 1 for some odd C

C := {odd D : x(D) < 1, D � C}

take D ∈ C minimal wrt �

⇒ D is robust

previous reasoning: D is separating

Suppose D not robust ⇒ one D-contraction H not
near-brick

G brick ⇒ b(H) > 0 else D tight ∴ b(H) ≥ 2

H has nontrivial tight cuts

ELP ⇒ H has a nontrivial tight cut that is either a
2-separation cut or a barrier cut
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Case: H Has a 2-Separation Cut S

G brick ⇒ the contraction vertex ∈ S

D
C1

C2

x(D) + 1 = x(C1) + x(C2)

∴ ∃i : 1 > x(Ci), say i = 1

|M ∩D|+ 1 = |M ∩ C1|+ |M ∩ C2| ∀M ∈ M

G brick ⇒ C2 not tight

C1 ≺ D, contradiction
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G has a nontrivial barrier B

G brick ⇒ the contraction vertex ∈ B

C1 C2 C3

D
B

x(D) + 2 ≥
∑

x(Ci)

∴ ∃i : 1 > x(Ci), say i = 1

|M ∩D|+ 2 =
∑

|M ∩ Ci| ≥ |M ∩ C1|+ 2 ∀M ∈ M

C1 � D

C2 or C3 nontrivial ⇒ C1 ≺ D, contradiction
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Case: H has a nontrivial barrier B

Ci is trivial (∀i ≥ 2)

C1 C2 C3

D
B

X

|M ∩D| = |M ∩ C1|

C1 and D are matching-equivalent

H1 := contract X

b(H1) = b(H) ≥ 2

repeat the process with C1 playing the role of D
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Existence of Robust Cuts

From the previous reasoning:

Corollary [CLM (2002)]

Every nonsolid brick has a robust cut

spsas-sco-1 – p. 21/21


	The Precedence Relation
	The Precedence Relation
	The Perfect Matching Polytope
	The Perfect Matching Polytope
	Separating Cuts & The PM Polytope
	Barriers and Admissible Edges
	Barriers and Admissible Edges
	Separating Cuts & The PM Polytope
	Separating Cuts & The PM Polytope
	Separating Cuts & The PM Polytope
	Separating Cuts & The PM Polytope
	Building Blocks
	Properties of Solid Bricks
	More Examples of Solid Bricks
	Robust Cuts & The PM Polytope
	Getting Robust Cuts
	Case: $H$ Has a 2-Separation Cut $S$
	$G$ has a nontrivial barrier $B$
	Case: $H$ has a nontrivial barrier $B$
	Existence of Robust Cuts

