São Paulo School of Advanced Science on Algorithms, Combinatorics and Optimization

The Perfect Matching Polytope, Solid Bricks and the Perfect Matching Lattice July 2016

Cláudio L. Lucchesi

FACOM, UFMS, Brazil

The Precedence Relation

• mc G, cut C precedes cut D ($C \preceq D$) if

$|M \cap C| \le |M \cap D| \quad \forall M \in \mathcal{M}$

 $|M \cap D| + 2 = |M \cap C_1| + |M \cap C_2| + 1 \quad \forall M \in \mathcal{M}$ $|M \cap D| + 2 \ge |M \cap C_1| + 2 \quad \forall M \in \mathcal{M}$ $\therefore \quad C_1 \prec D$

spsas-sco-1 - p. 2/21

The Precedence Relation

• C strictly precedes $D (C \prec D)$ if $C \preceq D$ and

 $\exists M \in \mathcal{M} \quad |M \cap C| < |M \cap D|$

 $|M \cap D| + 2 = |M \cap C_1| + |M \cap C_2| + 1 \quad \forall M \in \mathcal{M}$ $C_2 \text{ not tight} \Rightarrow \exists M : |M \cap D| + 2 > |M \cap C_1| + 2$ $\therefore C_1 \prec D$

spsas-sco-1 – p. 3/21

The Perfect Matching Polytope

M: the set of pms of G
$$\chi^S \in 2^E$$
: the incidence vector of $S \subseteq E$
 $\mathcal{P}oly(G) := \sum_{M \in \mathcal{M}} \alpha_M \chi^M$
 $(\sum \alpha_M = 1, \alpha_M \in \mathbb{R}^+)$
Example

 $\alpha_i = 1/4$ i = 1, 2, 3, 4

The Perfect Matching Polytope

<u>Theorem</u> [Edmonds (1965)] *A vector* $\mathbf{x} \in \mathbb{R}^E \in \mathcal{P}oly(G)$ of a mc graph G iff: $\mathbf{x} \ge \mathbf{0}$ (nonnegativity) $\mathbf{x}(\partial(v)) = 1, \forall v \in V$ (degree constraints) $\mathbf{x}(\partial(S)) \ge 1, \forall \text{ odd } S \subset V$ (odd set constraints)

Example

<u>Theorem</u> [CLM (2004)] *A vector* x ∈ ℝ^E ∈ Poly(*G*) of a mc graph *G* iff: x ≥ 0 (nonnegativity)
x(∂(v)) = 1, ∀v ∈ V (degree constraints)
x(C) ≥ 1, ∀ sep C (separating cut constraints)

Barriers and Admissible Edges

- G a matchable graph (ie G has a pm)
- A *barrier* is a set $B \subset V$ st:

$$|\mathcal{O}(G-B)| = |B|$$

• $e \in E$ is <u>admissible</u> if $\exists pm M : e \in M$

Lemma e is admissible iff no barrier contains both ends of e

Barriers and Admissible Edges

- Lemma e := uv is admissible iff no barrier contains both u and v
- only if: $\{u, v\} \subseteq B \Rightarrow e$ not admissible
- converse: if H := G u v matchable $\Rightarrow e$ adm
- *H* not matchable $\Rightarrow \exists S : |\mathcal{O}(H S)| > |S|$
- parity: $|\mathcal{O}(H-S)| \ge |S|+2$
- $\blacksquare B := S \cup \{u, v\}$
- $|\mathcal{O}(G-B)| \ge |B|$
- \blacksquare \therefore *B* is a barrier

- Suppose $\mathbf{x}(C) < 1$ for some odd C
- $\blacksquare \mathcal{C} := \{ \text{odd } D : \mathbf{x}(D) < 1, D \preceq C \}$
- take $D \in \mathcal{C}$ minimal wrt \preceq
- $\blacksquare \Rightarrow D$ is separating
- Suppose D not separating ⇒ one D-contraction H not mc:
- either it has no pm or some edge \notin pm

- *H* not matchable $\Rightarrow \exists S : |\mathcal{O}(H S)| > |S|$
- $G \operatorname{mc} \Rightarrow \operatorname{contraction} \operatorname{vertex} \in S$

■ $\mathbf{x}(D) + 1 \ge \sum \mathbf{x}(C_i)$ ■ $\therefore \exists i : 1 > \mathbf{x}(C_i), \text{ say } i = 1$ ■ $|M \cap D| + 1 = \sum |M \cap C_i| \ge |M \cap C_1| + 3 \quad \forall M \in \mathcal{M}$ ■ $C_1 \prec D$, contradiction

- *H* matchable, not $mc \Rightarrow \exists e := \{u, v\} : e$ not admissible
- \exists barrier B: $\{u, v\} \subseteq B$
- $G \operatorname{mc} \Rightarrow \operatorname{contraction} \operatorname{vertex} \in B$

• $\mathbf{x}(D) + 2 \ge 2\mathbf{x}(e) + \sum \mathbf{x}(C_i) \ge \sum \mathbf{x}(C_i)$ • $\exists i : 1 > \mathbf{x}(C_i), \text{ say } i = 1$

continuation

 $\blacksquare \exists i : 1 > \mathbf{x}(C_i), \text{ say } i = 1$

 $|M \cap D| + 2 \ge 2|M \cap \{e\}| + \sum |M \cap C_i| \quad \forall M \in \mathcal{M}$

 $|M \cap D| + 2 \ge 2|M \cap \{e\}| + |M \cap C_1| + 2$

• $C_1 \prec D$, contradiction

Building Blocks

- Bricks and braces are the building blocks of mc graphs
- In fact, we may also break some bricks, by cut-contractions of separating cuts
- A brick free of nontrivial separating cuts is *solid*
- Examples of Solid Bricks

Properties of Solid Bricks

- <u>Theorem</u> [Reed and Wakabayshi (2003)] *A brick G is nonsolid if and only if it has two disjoint odd cycles* C_1 *and* C_2 *such that* $G - [V(C_1) \cup V(C_2)]$ *has a perfect matching*
- Corollary Every odd intercyclic brick is solid
- <u>Theorem</u> [CLM (2004)] *A brick is solid if and only if its perfect matching polytope is characterized only by the degree constraints* $\forall \mathbf{x} \in \mathbb{R}^{E}, \mathbf{x} \ge \mathbf{0}$:

 $\mathbf{x} \in \mathcal{P}$ oly $\Leftrightarrow \mathbf{x}(v) = 1 \quad (\forall v \in V(G))$

- Solidity of Bricks is in co-NP
- Open Is Solidity of Bricks in P? in NP?

More Examples of Solid Bricks

- Möbius Ladders M_{4n} , $n \ge 1$ (odd intercylic)
- Odd Wheels W_{2n+1} , $n \ge 1$ (odd intercylic)
- <u>Theorem</u> [CLM (2006), Kothari and Murty (2015)] The odd wheels are the only planar solid bricks
- Murty's graph, a solid brick that is not odd intercyclic

Robust Cuts & The PM Polytope

- Theorem A vector $\mathbf{x} \in \mathbb{R}^E \in \mathcal{P}oly(G)$ of a brick G iff:
 - $\mathbf{x} > \mathbf{0}$ (nonnegativity)
- $\mathbf{x}(\partial(v)) = 1, \forall v \in V$ (degree constraints)
- $\mathbf{x}(C) \ge 1, \forall \text{ sep } C$ (robust cut constraints)
- C is robust if both C-contractions are near-bricks
- G is a <u>near-brick</u> if b(G) = 1

Example:

Getting Robust Cuts

- Suppose G is a brick and $\mathbf{x}(C) < 1$ for some odd C
- $\blacksquare \mathcal{C} := \{ \text{odd } D : \mathbf{x}(D) < 1, D \preceq C \}$
- take $D \in \mathcal{C}$ minimal wrt \preceq
- $\blacksquare \Rightarrow D \text{ is robust}$
- previous reasoning: D is separating
- Suppose D not robust \Rightarrow one D-contraction H not near-brick
- G brick $\Rightarrow b(H) > 0$ else D tight $\therefore b(H) \ge 2$
- H has nontrivial tight cuts
- ELP \Rightarrow *H* has a nontrivial tight cut that is either a 2-separation cut or a barrier cut

Case: H **Has a 2-Separation Cut** S

• G brick \Rightarrow the contraction vertex $\in S$

- $\mathbf{I}(D) + 1 = \mathbf{x}(C_1) + \mathbf{x}(C_2)$
- $:: \exists i : 1 > \mathbf{x}(C_i), \text{ say } i = 1$
- $|M \cap D| + 1 = |M \cap C_1| + |M \cap C_2| \quad \forall M \in \mathcal{M}$
- G brick \Rightarrow C_2 not tight
- $C_1 \prec D$, contradiction

G has a nontrivial barrier ${\cal B}$

• G brick \Rightarrow the contraction vertex $\in B$

• $\mathbf{x}(D) + 2 \ge \sum \mathbf{x}(C_i)$ • $\exists i : 1 > \mathbf{x}(C_i), \text{ say } i = 1$ • $|M \cap D| + 2 = \sum |M \cap C_i| \ge |M \cap C_1| + 2 \quad \forall M \in \mathcal{M}$ • $C_1 \preceq D$

• C_2 or C_3 nontrivial $\Rightarrow C_1 \prec D$, contradiction

spsas-sco-1 – p. 19/21

Case: H has a nontrivial barrier B

• C_i is trivial ($\forall i \geq 2$)

 $|M \cap D| = |M \cap C_1|$

• C_1 and D are *matching-equivalent*

• $H_1 := \text{contract } \overline{X}$

$$\bullet b(H_1) = b(H) \ge 2$$

• repeat the process with C_1 playing the role of D

Existence of Robust Cuts

- From the previous reasoning:
- Corollary [CLM (2002)]

Every nonsolid brick has a robust cut