A Proof for a Conjecture of Gorgol

Raul Wayne Teixeira Lopes Partially supported by CAPES

Victor Almeida Campos

Partially supported by CNPq

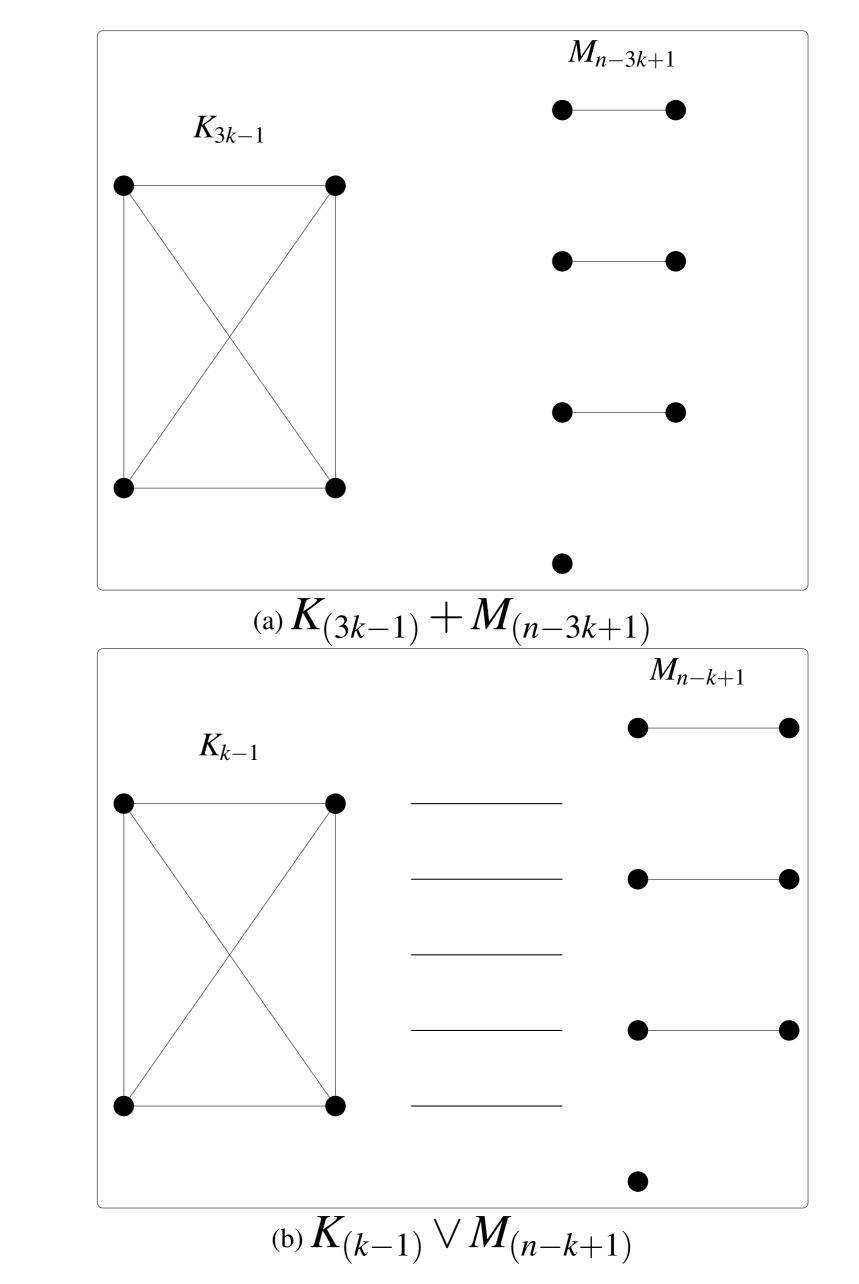
Parallelism, Graphs and Optimization, ParGO Federal University of Ceará, UFC

1 Introduction

The *Turán number* ex(n,F) is the maximum number of edges in a graph on *n* vertices which does not contain *H* as a subgraph. For a general graph *F*, the value of ex(n,F) is asymptotically well known and dependent of the *chromatic number* $\chi(F)$. Erdős, Stone and Simonovits' Theorem [1] state that

$$\lim_{n\to\infty}\frac{ex(n,F)}{n^2}=\frac{\chi(F)-2}{2\chi(F)-2}.$$

Although this theorem gives a lot of information on the asymptotic growth of ex(n, F),



it should be noted that it is only of interest for nonbipartite graphs. If *F* is bipartite, it asserts merely that $ex(n, F) = o(n^2)$. Therefore, we focus on the Turán number for bipartite graphs. In particular, we consider when $F = kP_3$, where P_r is a path on *r* vertices and *kG* consists of *k* disjoint copies of the graph *G*.

For graphs *G* and *F*, let G + F and $G \lor F$ be the *disjoint union* and *join* of *G* and *F*, respectively. The join of *G* and *F* is the graph obtained from G + F by adding edges from all vertices of *G* to all vertices of *F*. Let $H_{ex}(n,G)$ represent an *extremal graph* on *n* vertices without *G* as subgraph with ex(n,G) edges.

Gorgol [2] gave upper and lower bounds for the Turán number forbidding kF, for a graph F on r vertices. The lower bound was obtained by noting that neither

 $G_1(n, kF) = K_{kr-1} + H_{ex}(n - kr + 1, F)$ $G_2(n, kF) = K_{k-1} \vee H_{ex}(n - k + 1, F)$

contain *k* disjoing copies of *F*. Indeed, $G_1(n, kF)$ contains only k - 1 copies of *F* in K_{kr-1} and any copy of *F* in $G_2(n, kF)$ must contain at least one vertex in K_{k-1} . Gorgol's lower bound is, therefore,

 $\operatorname{ex}(n,kF) \geq \max\{e(G_1(n,kF)), e(G_2(n,kF))\}$

where e(G) denotes the number of edges in a graph G.

2 Disjoint copies of P_3

We consider the case when $F = P_3$. Let

The given algorithm is then as follows:

Algorithm 1 Disjoint copies of <i>P</i> ₃ .
Input: (G,k) .
1: $\mathscr{Q} \leftarrow \emptyset$
2: while \exists improvement \mathscr{Q}' of \mathscr{Q} do
3: $\mathscr{Q} \leftarrow \mathscr{Q}'$
4: end while
5: return 2

$$g_1(n,k) = e(G_1(n,kP_3)),$$

 $g_2(n,k) = e(G_2(n,kP_3)) \text{ and}$
 $Gorgol(n,k) = \max\{g_1(n,k), g_2(n,k)\}.$

Note that $H_{ex}(n, P_3) = M_n$, where M_n is a *near perfect matching* on *n* vertices. If *n* is even, then M_n consists of a matching on *n* vertices and, if *n* is odd, then $M_n = M_{n-1} + K_1$. Thus, $e(M_n) = \lfloor n/2 \rfloor$ and we have

$$g_1(n,k) = \binom{3k-1}{2} + \left\lfloor \frac{n-3k+1}{2} \right\rfloor;$$

$$g_2(n,k) = \binom{k-1}{2} + (k-1)(n-k+1) + \left\lfloor \frac{n-k+1}{2} \right\rfloor;$$

$$\operatorname{Gorgol}(n,k) = \begin{cases} g_1(n,k), & \text{for } 3k \le n \le 5k, \\ g_2(n,k), & \text{for } n \ge 5k. \end{cases}$$

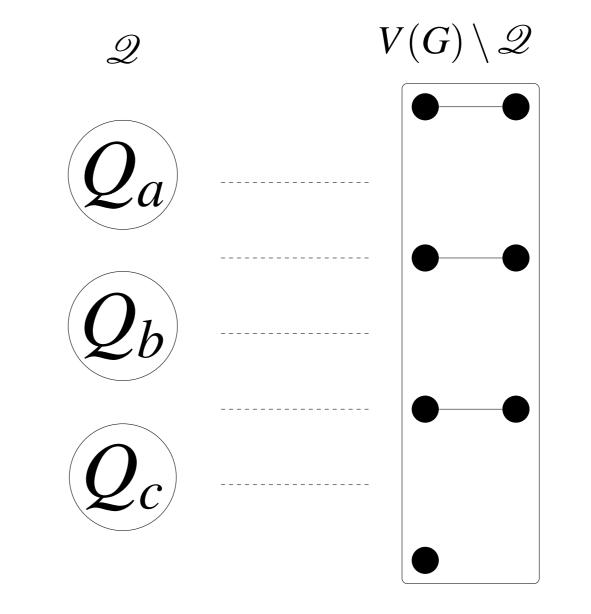
Gorgol's Conjecture states that, when $n \ge 3k$,

$ex(n, kP_3) = Gorgol(n, K).$

In the same paper, Gorgol proved this is true when $k \in \{2,3\}$. Bushaw and Kettle [3] also proved the conjecture is true for $n \ge 7k$.

In this work, we give a constructive proof for Gorgol's Conjecture for all values of n and k. In particular, we give an algorithm that finds a set of disjoint copies of P_3 given a graph G as input. We prove Gorgol's Conjecture by showing that, if G has n vertices and more than Gorgol(n,k) edges, then this algorithm returns at least k disjoint copies of P_3

To find improvements for our current collection \mathcal{Q} , we need to search only in a small subgraph of *G*.



With local improvements only we can find the desired k disjoint copies of P_3 , proving the conjecture. The naive complexity of the algorithm is $O(n^{12}k^5)$. With a subset of local improvements and good use of data structures, we find a collection of k disjoint P_3 in O(k|E|) time. Our main result, which proves Gorgol's Conjecture, can then be stated as

Theorem. If a graph G has n vertices and $e(G) \ge \text{Gorgol}(n,k)$ edges, then the provided algorithm will find a collection \mathcal{Q} of size at least k.

References

3 Algorithm

The algorithm receives as input a graph G = (V, E) and an integer $k \le n/3$. Let $\mathscr{Q} = \{Q_1, Q_2, \dots, Q_s\}$ be a collection of subsets of V(G) such that:

• $Q_i \cap Q_j = \emptyset$.

• $|Q_i| = 3.$

• $G[Q_i]$ contains a copy of P_3 as subgraph.

We start with an empty collection \mathscr{Q} and iteratively look for an improvement \mathscr{Q}' for \mathscr{Q} . We say that a collection \mathscr{Q}' is an improvement of \mathscr{Q} if either $|\mathscr{Q}'| > |\mathscr{Q}|$ or $|\mathscr{Q}'| = |\mathscr{Q}|$ and \mathscr{Q}' has more triangles than \mathscr{Q} . [1] Bondy, J. A. and Murty, U.S.R. *Graph Theory* Graduate Texts in Mathematics 244, 2008, pp.317-320

- [2] Gorgol, I. *Turán Numbers fo disjoints copies of graphs*. Graphs and Combinatories (4 January 2011), pp. 1-7.
- [3] Bushaw, N. and Kettle, N. *Turán Numbers of multiple paths and equibipartite forests*. Combinatorics, Probability and Computing, 2011, Vol.20(6), pp.837-853