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Abstract

Combinatorial limits provide an analytic way to represent large discrete

objects, and are closely related to the flag algebra method, which led to

solving several long-standing open problems in extremal combinatorics.

These lecture notes are primarily focused on limits of dense graphs, which

form the best understood case in the theory of combinatorial limits, and

the applications of the flag algebra method in extremal graph theory and

to study of structural properties of graph limits.

1 Introduction

The theory of combinatorial limits has opened new exciting links between analy-
sis, combinatorics, computer science, ergodic theory, group theory and probability
theory. The techniques have been developed to some extent independently for
dense discrete objects and sparse discrete objects. By a dense discrete object,
we mean an object such that a random subobject of a constant size carries some
non-trivial structure. For example in the case of graphs, a random subgraph of
a constant size has some edges with positive probability. We will be concerned
with the convergence and limit representations of graphs and dense graphs in
particular. However, many of the results presented further can be translated to
other discrete objects, e.g., permutations [29,30,35] or partial orders [28,31]. We
also refer the reader to a recent monograph by Lovász [36], where the theory of
graph limits is treated in a more detailed and thorough way.

The theory of limits of dense graphs evolved in a series of papers by Borgs,
Chayes, Lovász, Sós, Szegedy and Vesztergombi [11–13, 39, 40]. The closely re-
lated flag algebra method, which was introduced by Razborov [47], resulted in
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substantial progress on many long standing open problems in extremal combina-
torics, e.g. [2–5, 24–26, 33, 34, 45–49]. We present basic results from this theory
in Section 2. Limits of dense graphs also led to new views on existing concepts
in mathematics and computer science, e.g., on graph quasirandomness as we il-
lustrate in Section 3. We present the flag algebra method in Section 4, where we
also give some simple applications of the method in extremal graph theory. We
also use the method to prove several results on so-called finitely forcible graph
limits in Section 5.

The theory of limits of sparse graphs, such as graphs of bounded degree, is
less developed. Several notions of convergence of such graphs were proposed and
in general, the sparse graph convergence is considered to be significantly less
understood than the convergence of dense graphs. Still, the area of sparse limits
offers one of the most fundamental open problems on graph limits: the conjecture
of Aldous and Lyons [1]. This conjecture gives a necessary and sufficient condition
on a local neighborhood distribution to correspond to a sequence of graphs, and is
essentially equivalent to Gromov’s question whether all countable discrete groups
are sofic. We will cover basic notions on sparse graph convergence in Section 6.

2 Dense graph convergence

In this section, we present basic results related to the convergence of dense graphs.
We start by emphasizing the distinction between the concept of convergence and
the concept of limit representation. The former refers to the property that el-
ements forming a sequence of discrete objects are similar to each other. It is
natural to consider whether a convergent sequence of discrete objects can be
equipped with a limit representation, which captures essential properties of the
elements in the sequence, i.e., the properties related to the convergence of the
sequence. In the case of dense graph convergence, such a limit object is called
graphon. However, it is possible to talk about convergence of discrete objects
without having any particular limit representation in mind.

We now define the notion of convergence of dense graphs. If G and H are
two graphs, the density of H in G, denoted by d(H,G), is the probability that
a randomly chosen subset of |H| vertices of G induces a subgraph isomorphic to
H , where |H| is the order of H , i.e., its number of vertices. A sequence (Gn)n∈N
of graphs is convergent if the sequence of densities d(H,Gn) converges for every
graph H . In what follows, we will only consider convergent sequences (Gn)n∈N of
graphs such that the number of vertices of Gn tends to infinity.

Simple examples of convergent graph sequences include the sequence of com-
plete graphs Kn, the sequence of complete bipartite graphs Kn,n with parts of
equal size, the sequence of complete bipartite graphs K⌊αn⌋,n with part sizes con-
verging to a particular ratio α ∈ (0, 1). A less trivial example of a convergent
sequence of graphs is the sequence of Erdős-Rényi random graphs Gn,p. Recall
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that the Erdős-Rényi random graph G(n, p), n ∈ N and p ∈ [0, 1], is the graph
with n vertices such that any two of its vertices are joined by an edge with
probability p independently of all the other pairs of vertices. The convergence
of this sequence of graphs can be shown using Azuma-Hoeffding inequality and
Borel-Cantelli lemma; we leave the details as an exercise.

Exercise 1. Let p ∈ [0, 1] and let Gn be the Erdős-Rényi random graph G(n, p).
Show that the sequence (Gn)n∈N is convergent with probability one.

Another example of a convergent sequence of graphs is any sequence of sparse
graphs: if (Gn)n∈N is a sequence of graphs such that the number of edges of Gn

is o(|Gn|
2), then the density d(H,Gn) of any non-edgeless graph H converges to

zero and the density d(H,Gn) of any edgeless graph H converges to one. Hence,
the sequence (Gn)n∈N is convergent. This is the reason why the notions presented
in this section are of interest in relation to sequences of dense graphs, i.e., graphs
with the number of edges quadratic in the number of their vertices. We discuss
notions of convergent more appropriate in the sparse setting in Section 6.

A convergent sequence of graphs can be represented by an analytic object
called a graphon. A graphon is a symmetric measurable function W : [0, 1]2 →
[0, 1], where symmetric stands for the property that W (x, y) = W (y, x) for all
x, y ∈ [0, 1]. One can think of a graphon as a continuous analogue of the adjacency
matrix of a graph; this analogy provides a good first intuition when working with
graphons, however, the matter is more complex than it may seem at the first
sight. This analogy leads to the following definition. If W is a graphon, then a
W -random graph of order n is the random graph obtained by sampling n points
x1, . . . , xn independently and uniformly in the unit interval [0, 1] and joining the
i-th vertex and the j-th vertex of the graph by an edge with probabilityW (xi, xj).
Note that if W is the graphon equal to p ∈ [0, 1] for all x, y ∈ [0, 1], then the
W -random graph of order n is the Erdős-Rényi random graph G(n, p).

We define the density of a graph H in a graphon W to be the probability that
the W -random graph of order |H| is isomorphic to H ; this probability is denoted
by d(H,W ). The following holds:

d(H,W ) =
|H|!

|Aut(H)|

∫

[0,1]|H|

∏

vivj∈E(H)

W (xi, xj)
∏

vivj 6∈E(H)

(1−W (xi, xj)) dx1 · · ·x|H|

where V (H) = {v1, . . . , v|H|} and Aut(H) is the automorphism group of H . We
say that a graphon W is the limit of a convergent sequence (Gn)n∈N of graphs if

d(H,W ) = lim
n→∞

d(H,Gn)

for every graph H .
Graphons are usually depicted in the unit square with values being different

shades of gray with white representing zero and black representing one; the origin
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Figure 1: Graphons representing the sequences (Kn)n∈N, (Kn,n)n∈N, (Kn,2n)n∈N
and (G(n, 1/2))n∈N.

Figure 2: Graphons from Exercise 3.

of the coordinate system is usually in the top left corner to follow the analogy
with adjacency matrices. In Figure 1, it is possible to find graphons representing
some of the convergent sequence of graphs that we have presented earlier.

Exercise 2. Show that the graphons depicted in Figure 1 are limits of the se-
quences (Kn)n∈N, (Kn,n)n∈N, (Kn,2n)n∈N and (G(n, 1/2))n∈N.

Exercise 3. Find convergent sequences of graphs such that the graphons depicted
in Figure 2 are their limits.

It is natural to ask whether every convergent sequence of graphs has a limit,
whether this limit is unique (if it exists), and whether every graphon is a limit of
a convergent sequence of graphs. We start with the last of these questions, which
is the simplest to answer.

Theorem 1. Let W be a graphon and let Gn be a W -random graph of order n,
n ∈ N. The sequence (Gn)n∈N is convergent and the graphon W is its limit with
probability one.

Proof. Fix a graph H and an integer n such that n ≥ |H|. The probability that
a particular |H|-tuple of vertices of Gn induces a copy of H is d(H,W ). The
linearity of expectation implies that the expected number of copies of H in Gn

is equal to d(H,W )
(

n
|H|

)

. We next estimate the probability of a large deviation
from this expected value. Let Xi, i = 0, . . . , n, be the random variable equal to
the expected number of copies of H after the first i choices of the vertices of Gn

are made in the interval [0, 1] and the edges between the first i vertices are fixed
when constructing a W -random graph. Observe that Xn is just the number of
copies of H in Gn and X0 is equal to d(H,W )

(

n
|H|

)

.
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Since the random variables X0, . . . , Xn form a martingale, we can apply
Azuma-Hoeffding inequality (Theorem 17) with ci ≤ n|H|−1 and get that

P (|Xn −X0| ≥ t) ≤ 2e
−t2

2n2|H|−1

for every t ∈ R. Substituting t = εn|H|, we get that

P
(

|Xn −X0| ≥ εn|H|
)

≤ 2e−ε2n/2 ,

which yields that

P
(

|d(H,Gn)− d(H,W )| ≥ |H|!2|H|ε
)

≤ 2e−ε2n/2

if n ≥ 2|H|. Borel-Cantelli lemma implies that the sequence (d(H,Gn))n∈N is
convergent with probability one and its limit is d(H,W ). In particular, the
sequence (Gn)n∈N is convergent and the graphon W is its limit with probability
one.

To address the existence of a graphon associated with a convergent sequence
of graphs, we will need to recall the notion of graph regularity. We will use the
notion of regularity due to Frieze and Kannan [19]; this notion is weaker than
the notion of Szemerédi regularity, which is more well-known. Let us define the
notion. If G is a graph and S and T two subsets of its vertices, e(S, T ) is the
number of pairs of vertices s ∈ S and t ∈ T joined by an edge and d(S, T ) is the

corresponding density, i.e., d(S, T ) = e(S,T )
|S| |T |

. A partition V1, . . . , Vk of a vertex

set of a graph G is an equipartition if | |Vi| − |Vj| | ≤ 1 for every i, j ∈ [k]. A
partition V1, . . . , Vk of the vertex set of a graph G is weakly ε-regular if it is an
equipartition and it holds that

∣

∣

∣

∣

∣

e(S, T )−

k
∑

i,j=1

d(Vi, Vj) |S ∩ Vi| |T ∩ Vj|

∣

∣

∣

∣

∣

≤ ε|G|2

for any two subsets S and T of the vertex set of G. Frieze and Kannan [19]
proved the following:

Theorem 2. For every ε ∈ (0, 1), there exists K = 2O(ε−2) such that every graph
G has a weakly ε-regular partition with at most K parts.

We will need a strengthening of Theorem 2. A partition V ′
1 , . . . , V

′
k′ of a vertex

set of a graph G is a refinement of a partition V1, . . . , Vk if for every j ∈ [k′], there
exists i ∈ [k] such that V ′

j ⊆ Vi. The following strengthening of Theorem 2 holds.

Theorem 3. For every ε ∈ (0, 1), there exists K = 2O(ε−2) such that every
equipartition of the vertex set of a graph G into k parts can be refined to a weakly
ε-regular partition with at most K · k parts.
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The following theorem relates weak regular partitions to subgraph densities.

Theorem 4. For every graph H and every δ ∈ (0, 1), there exists ε ∈ (0, 1) such
that if G is a graph with at least ε−1 vertices and V1, . . . , Vk is a weakly ε-regular
partition of its vertex set, then

∣

∣

∣

∣

∣

∣

d(H,G)−
|H|!

|Aut(H)|k|H|

k
∑

i1,...,i|H|=1

∏

vjvj′∈E(H)

d(Vij , Vij′ )
∏

vjvj′ 6∈E(H)

(1− d(Vij , Vij′ ))

∣

∣

∣

∣

∣

∣

≤ δ

where V (H) = {v1, . . . , v|H|}.

We are now ready to prove that every convergent sequence of graphs has a
limit.

Theorem 5 (Lovász and Szegedy [39]). Let (Gn)n∈N be a convergent sequence of
graphs. There exists a graphon W that is a limit of the sequence (Gn)n∈N.

Proof. Fix a convergent sequence (Gn)n∈N, and set εℓ = 2−ℓ for ℓ ∈ N. For every
graph Gn in the sequence, fix a weakly ε1-regular partition V

n,1
1 , . . . , V n,1

kn,1
of its

vertex set; such a partition exists by Theorem 2. Suppose that we have already
fixed a weakly εℓ-regular partition V

n,ℓ
1 , . . . , V n,ℓ

kn,ℓ
of Gn for some n ∈ N and ℓ ∈ N.

By Theorem 3, there exists a weakly εℓ+1-regular partition V
n,ℓ+1
1 , . . . , V n,ℓ+1

kn,ℓ+1
of

Gn that is a refinement of the partition V n,ℓ
1 , . . . , V n,ℓ

kn,ℓ
. By reordering the sets in

the partition, we can assume that if V n,ℓ+1
i ⊆ V n,ℓ

j , V n,ℓ+1
i′ ⊆ V n,ℓ

j′ and i < i′, then
it holds that j ≤ j′. We will refer to this property as the ordering property. Note
that Theorems 2 and 3 yield the existence of a constant Kℓ, ℓ ∈ N, such that
kn,ℓ ≤ Kℓ for every n ∈ N and every ℓ ∈ N.

For every n ∈ N and ℓ ∈ N, associate the graph Gn with a kn,ℓ × kn,ℓ-matrix

An,ℓ such that the entry An,ℓ
ij is equal to d(V n,ℓ

i , V n,ℓ
j ). Next choose a subsequence

(G′
n)n∈N of the sequence (Gn)n∈N such that it holds for every ℓ ∈ N that

• all but finitely values of kn,ℓ are the same, and

• the matrices An,ℓ coordinate-wise converge.

Note that kn,ℓ can have only values between 1 and Kℓ, which implies that it
is possible to choose a subsequence satisfying the first of the two properties.
For such a subsequence, all but finitely many matrices An,ℓ have the same size
and since their coordinates are reals between 0 and 1, it is possible to choose a
subsequence of the former subsequence that also satisfies the second property.
So, the subsequence (G′

n)n∈N indeed exists.
Let kℓ be the value that appears infinitely often among the values kn,ℓ subse-

quence (G′
n)n∈N. Further, let A

ℓ be the kℓ×kℓ-matrix that is the coordinate-wise
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limit of the matrices An,ℓ for the subsequence (G′
n)n∈N. Theorem 4 implies that

the following holds for every graph H :

lim
n→∞

d(H,G′
n) = lim

ℓ→∞

|H|!

|Aut(H)|k
|H|
ℓ

kℓ
∑

i1,...,i|H|=1

∏

vjvj′∈E(H)

Aℓ
ij ,ij′

∏

vjvj′ 6∈E(H)

(1− Aℓ
ij ,ij′

)

where V (H) = {v1, . . . , v|H|}. Since (G′
n)n∈N is a subsequence of the sequence

(Gn)n∈N, it follows that

lim
n→∞

d(H,Gn) = lim
ℓ→∞

|H|!

|Aut(H)|k
|H|
ℓ

kℓ
∑

i1,...,i|H|=1

∏

vjvj′∈E(H)

Aℓ
ij ,ij′

∏

vjvj′ 6∈E(H)

(1−Aℓ
ij ,ij′

) .

(1)
The matrices Aℓ yield random variables Xℓ on [0, 1)2 defined as follows:

Xℓ(x, y) = Aℓ
⌊x·kℓ⌋+1,⌊y·kℓ⌋+1 .

By the ordering property, the random variables Xℓ, ℓ ∈ N, form a martingale.
Hence, Corollary 18 implies that there exists a measurable function from [0, 1]2

to [0, 1] such that
W (x, y) = lim

ℓ→∞
Xℓ(x, y)

for almost every (x, y) ∈ [0, 1)2. Observe that the following holds for every m
and every J ⊆ [m]2:

∫

[0,1]m

∏

jj′∈J

W (xj, xj′) dx1 · · ·xm = lim
ℓ→∞

∫

[0,1)m

∏

jj′∈J

Xℓ(xj , xj′) dx1 · · ·xm . (2)

Since it also holds for every ℓ ∈ N, every m ∈ N and every J ⊆ [m]2 that

1

kmℓ

kℓ
∑

i1,...,im=1

∏

jj′∈J

Aℓ
ij ,ij′

=

∫

[0,1)m

∏

jj′∈J

Xℓ(xj , xj′) dx1 · · ·xm ,

it follows that
d(H,W ) = lim

n→∞
d(H,Gn)

by (1) and (2).

It remains to consider the uniqueness of a limit of a convergent sequence of
graphs. We will say that two graphons W1 and W2 are weakly isomorphic if
d(H,W1) = d(H,W2) for every graph H , i.e., the graphons W1 and W2 are limits
of the same sequences of graphs. For example, the graphons depicted Figure 3 are
weakly isomorphic; they both are a limit of the sequence (Kn,n)n∈N of complete
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Figure 3: Two weakly isomorphic graphons.

bipartite graphs with parts of equal sizes. In particular, the graphon representing
a convergent sequence of graphs is not unique.

The following is a general way of constructing weakly isomorphic graphons.
Let ϕ be a measure preserving map from [0, 1] to [0, 1]. If W is a graphon, let
W ϕ(x, y) = W (ϕ(x), ϕ(y)). Observe that the graphons W and W ϕ are weakly
isomorphic. For example, consider the following measure preserving map:

ϕ(x) =

{

2x if x ≥ 1/2,
2x− 1 otherwise.

If W1 and W2 are the two graphons depicted in Figure 3, then W2 = W ϕ
1 .

Borgs, Chayes and Lovász [10] have shown that the above way of constructing
weakly isomorphic graphons is in a certain sense the only way of obtaining weakly
isomorphic graphons.

Theorem 6 (Borgs, Chayes and Lovász [10]). If W1 and W2 are weakly isomor-
phic graphons, then there exist measure preserving maps ϕ1 and ϕ2 such that the
graphons W ϕ1

1 and W ϕ2

2 are equal almost everywhere.

3 Graph quasirandomness

In this section, we look at graph quasirandomness as studied in [15, 50, 51] to
illustrate the concepts introduced in the previous section. Additional notation
needs to be introduced. Let h(H,G) denote the density of non-induced copies of
H in G, and let hp(H) denote the expected value of h(H,G(n, p)) for n ≥ |H|.
Note that that h(H,G) can be expressed as a linear combination of the values
d(H ′, G), where H ′ ranges over all supergraphs of H with the same number of
vertices. The following is a classical result by Thomason [50].

Theorem 7. Let (Gn)n∈N be a sequence of graphs. If the limit of h(K2, Gn) exists
and is equal to hp(K2) and the limit of h(C4, Gn) exists and is equal to hp(C4) for
some p ∈ [0, 1], then the limit of h(H,Gn) exists for every graph H and is equal
to hp(H).

It is straightforward to cast Theorem 7 in the language of graphons. To do
so, one needs to extend the definition of h(H,G) to graphons: h(H,W ) is defined
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to be the expected number of non-induced copies of H in a W -random graph of
order |H|.

Theorem 8. Let W be a graphon. If h(K2,W ) = hp(K2) and h(C4,W ) = hp(C4)
for some p ∈ [0, 1], then W is equal to p almost everywhere.

Proof. Fix a graphon W such that h(K2,W ) = hp(K2) and h(C4,W ) = hp(C4)
for some p ∈ [0, 1]. Define w : [0, 1] → [0, 1] as follows

w(z) =

∫

[0,1]

W (z, x)dx .

One can think of the value w(z) as of the degree of z ∈ [0, 1]; indeed, if z ∈ [0, 1]
is one of the points chosen during a construction of a W -random graph with n
vertices, then w(z) · (n− 1) is the expected degree of the vertex corresponding to
z. Since h(K2,W ) = hp(K2) = p, we obtain that

∫

[0,1]

w(z)dz = p . (3)

Using Cauchy-Schwartz inequality, we obtain from (3) that

∫

[0,1]

w(z)2dz ·

∫

[0,1]

1dz ≥







∫

[0,1]

w(z)dz







2

= p2 . (4)

We next compute the following integral.

∫

[0,1]2







∫

[0,1]

W (x, z)W (y, z)dz − p2







2

dxy =

∫

[0,1]4

W (x, z)W (y, z)W (x, z′)W (y, z′)dxyzz′−2p2
∫

[0,1]3

W (x, z)W (y, z)dxyz+p4 =

∫

[0,1]4

W (x, z)W (y, z)W (x, z′)W (y, z′)dxyzz′ − 2p2
∫

[0,1]

w(z)2dz + p4 .

Since the equality h(C4,W ) = hp(C4) implies that the first term is equal to p4

and the whole integral is non-negative, it follows that
∫

[0,1]

w(z)2dz ≤ p2 .
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Hence, the inequality (4) holds with equality, which is only possible if w(z) is
a multiple of the constant one function almost everywhere. We conclude that
w(z) = p for almost every z ∈ [0, 1].

In addition, since the integral

∫

[0,1]2







∫

[0,1]

W (x, z)W (y, z)dz − p2







2

dxy

is equal to zero, it follows that for almost every pair x, y ∈ [0, 1]2,
∫

[0,1]

W (x, z)W (y, z)dz = p2 .

Lemma 9, which we prove further, implies that
∫

[0,1]

W (x, z)2dz = p2 (5)

for almost every x ∈ [0, 1]. Since w(x) = p for almost every x ∈ [0, 1], we get that
∫

[0,1]

W (x, z)dz = p (6)

for almost every x ∈ [0, 1]. By Cauchy-Schwartz inequality, we have that

p2 =







∫

[0,1]

W (x, z)dz







2

≤







∫

[0,1]

W (x, z)2dz













∫

[0,1]

1dz






= p2

for almost every x ∈ [0, 1]. Since the equality holds if and only if W (x, z) is a
multiple of the constant one function, we conclude that W (x, z) = p for almost
every pair x, z ∈ [0, 1]2.

It remains to prove Lemma 9. The argument is essentially contained in the
proof of Lemma 3.3 in [38].

Lemma 9. If F : [0, 1]2 → [0, 1] satisfies
∫

[0,1]

F (x, z)F (y, z)dz = ξ

for almost every pair x, y ∈ [0, 1]2, then it holds that
∫

[0,1]

F (x, z)2dz = ξ

for almost every x ∈ [0, 1].
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Proof. Define Fx(z) = F (x, z). Let T be the set of functions f ∈ L2[0, 1] such
that the set

Nε(f) =











x ∈ [0, 1] such that

∫

[0,1]

|Fx(z)− f(z)|dz ≤ ε











has positive measure for every ε > 0. By the assumption of the lemma, it holds
for any two functions f, g ∈ T that

∫

[0,1]

f(z)g(z)dz = ξ .

In particular, it holds that
∫

[0,1]

f(z)2dz = ξ

for every function f ∈ T .
We finish the proof of the lemma by showing that Fx ∈ T for almost every

x ∈ [0, 1]. Fix a countable dense subset S of L2[0, 1] and consider the union U
of all the sets Nε(f) for f ∈ S and rational ε > 0 that have zero measure. The
set of all x ∈ [0, 1] such that Fx ∈ U has zero measure (it is a countable union of
zero measure sets). On the other hand, if Fx 6∈ T , then there exists ε > 0 such
that Nε(Fx) has zero measure. Since the set S is dense in L2[0, 1], there exists
f ∈ S and rational ε′ > 0 such that Fx ∈ Nε′(f) and Nε′(f) ⊆ Nε(Fx). It follows
that Fx ∈ U .

We finish this section with two exercises; hints how to solve the two exercises
can be found just after them.

Exercise 4. Prove that it holds that

1

3
d(K1,2,W ) + d(K3,W ) ≥ d(K2,W )2

for every graphon W .

Exercise 5. Prove that d(K3,W ) + d(K3,W ) ≥ 1/4 for every graphon W .

To solve Exercise 4, observe that

∫

[0,1]

w(z)2dz =
1

3
d(K1,2,W ) + d(K3,W )
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where w(z) is defined as in the proof of Theorem 8. To solve Exercise 5, expand
the integral on the right hand side of the following equality

d(K3,W ) =

∫

[0,1]3

(1−W (x, y))(1−W (x, z))(1−W (y, z))dxyz ,

express some of the obtained terms using d(K2,W ) and d(K3,W ) and bound the
remaining term using arguments analogous to those in the proof of Theorem 8.

4 The flag algebra method

The flag algebra method of Razborov [47] led to progress on many well-known
problems in extremal combinatorics. One of the first applications of the method
was a solution of a long-standing open problem on the minimum density of tri-
angles in a graph with given edge-density [49]. The method is closely related to
the concepts that we have presented in Sections 2 and 3 but it does not build on
these concepts directly. In particular, the flag algebra method can be applied to
any convergent sequence of dense objects regardless whether there is a suitable
analytic representation of the limit. To make our exposition more accessible, we
will introduce the method using the language that we have developed in Section 2
and 3.

Let A be the algebra of formal linear combinations of graphs with real coeffi-
cients with the natural operations of addition and multiplication by a scalar. If
W is a graphon and

∑

i αiHi ∈ A is an element of A, we can define a mapping
fW : A → R as

fW

(

∑

i

αiHi

)

:=
∑

i

αid(Hi,W ) .

Our aim is to define a multiplication between elements of A in a way that fW is
an algebra homomorphism of A preserving addition and multiplication, i.e., we
wish that fW (a× a′) = fW (a) · fW (a′) for any a, a′ ∈ A. To do so, we define the
product of two graphs H1 and H2 and extend the definition linearly to the whole
A.

We first motivate the definition. Suppose that G is a large graph. The
product d(H1, G) · d(H2, G) is the probability that |H1| randomly chosen vertices
of G induce H1 and |H2| randomly chosen vertices of G induce H2. If G is large,
the two sets of randomly chosen vertices are disjoint with probability close to one.
Consequently, we can approximate this probability by taking |H1|+|H2| randomly
chosen vertices, splitting them into |H1|-tuple and |H2|-tuple and considering the
probability that the first tuple induces H1 and the second tuple induces H2. This
leads us to the following definition of the product of H1 and H2:

H1 ×H2 :=
∑

H

|{(A,B)|V (H) = A ∪ B,H [A] ∼= H1 and H [B] ∼= H2}|
(

|H1|+|H2|
|H1|

) H

12



× = 2

6
+ 2

6
+ 2

6
+ 4

6
+ 4

6
+ 6

6

× = 1

6
+ 2

6
+ 3

6
+ 1

6
+ 3

6
+ 2

6
+ 1

6

Figure 4: Two examples of multiplication of graphs.

where the sum is taken over all graphs H with |H| = |H1| + |H2|. The product
operation is extended to the whole A linearly. See Figure 4 for examples. It is
routine to verify that fW (H1 ×H2) = fW (H1) · fW (H2) (the argument is similar
to the one presented in the proof of Lemma 10 further).

Exercise 6. Determine K2 ×K3 and K2 ×K3.

The algebra homomorphism fW satisfies another important property, which
we state in the next lemma.

Lemma 10. Let H be a graph with k vertices and W a graphon. For every graph
H ′ with ℓ > k vertices, define αH′ to be the number of induced copies of H in H ′.
It holds that

fW (H) = fW

(

∑

H′

αH′

(

ℓ
k

)H ′

)

where the sum runs over all graphs H ′ with ℓ vertices.

Proof. Let (Gn)n∈N be a convergent sequence of graphs such that W is its limit.
We will show that

d(H,Gn) =
∑

H′

αH′

(

ℓ
k

) d(H ′, Gn) (7)

for every graph Gn with at least ℓ vertices. By the definition of convergence, we
get that

d(H,W ) =
∑

H′

αH′

(

ℓ
k

) d(H ′,W ) ,

which implies the statement of the lemma.
To prove (7) consider the following way of choosing a random subset of k

vertices of Gn: first choose randomly ℓ vertices of Gn and among those choose
randomly k vertices. The subgraph induced by the ℓ randomly chosen vertices is
isomorphic to H ′ with probability d(H ′, Gn). The probability that the subgraph
induced by the final k vertices is isomorphic to H conditioned on the subgraph
induced by the ℓ vertices being isomorphic to H ′ is αH′/

(

ℓ
k

)

. Hence, the right
hand side of (7) is indeed the probability that a random subset of k vertices of
Gn induces a subgraph isomorphic to H .

13



= 1

4
+ 3

4
+ 2

4
+ 4

4
+ 2

4
+ 2

4

Figure 5: The graph K1,2 expressed as a combination of 4-vertex graphs.

Lemma 10 allows us to view the elements H and the sum
∑

H′

αH′

(

ℓ
k

)H ′

as the same elements of A since fW always has the same value for them. With
this view in mind, we can say that the sum

∑

H′

αH′

(

ℓ
k

)H ′

expresses H as a linear combination of ℓ-vertex subgraphs. See Figure 5 for an
example. It would also be possible to consider the subalgebra A′ generated by
expressions of the form

H −
∑

H′

αH′

(

ℓ
k

)H ′

for all k-vertex graphs H and all ℓ > k and consider the factor algebra A/A′.
Since A′ lies in the kernel of fW fW yields a homomorphism from the factor-
algebra A/A′ to R.

Exercise 7. Express K3 as a linear combination of 5-vertex graphs.

We now generalize the definition of the algebra A to rooted graphs. We first
deal with the case of graphs with a single root where it is simpler to explain
the main ideas. Let A• to be an algebra of formal linear combinations of rooted
graphs, i.e., graphs with a single distinguished vertex referred to as the root.
The mapping fW : A → R was defined using subgraph densities in a graphon
W , or equivalently subgraph densities in a large graph in a sequence of graphs
converging to W . In the case of A•, we will think of choosing a root vertex
randomly and defining an analogous mapping f •

W : A• → R. However, we will
now not deal with a single mapping f •

W but a probability distribution on such
mappings. For x0 ∈ [0, 1] and a rooted graph H with vertices v0, . . . , vk with v0
being the root, define

fx0

W (H) =
k!

|Aut•(H)|

∫

[0,1]k

∏

vivj∈E(H)

W (xi, xj)
∏

vivj 6∈E(H)

(1−W (xi, xj)) dx1 · · ·xk

and extend fx0

W to the whole A• linearly; here, Aut•(H) denotes the subgroup
of Aut(H) containing the automorphisms of H fixing the root. The probability

14



distributions on mappings from A• to R is obtained by choosing x0 ∈ [0, 1]
randomly.

To illustrate the just defined notion, let W be the third graphon in Figure 1.
Let e ∈ A• be K2 rooted at one of its vertices and let c ∈ A• be K1,2 rooted at
the vertex of degree two. Observe that f •

W (e) = 1/3 with probability 2/3 and
f •
W (e) = 2/3 with probability 1/3. Likewise, f •

W (c) = 1/9 with probability 2/3
and f •

W (c) = 4/9 with probability 1/3. However, f •
W (e+c) = 4/9 with probability

2/3 and f •
W (e+ c) = 10/9 with probability 1/3.

It is possible to define multiplication of rooted graphs such that f •
W : A• → R

respects both addition and multiplication, and to find an analogue of Lemma 10.
However, we do so later in a full generality considering graphs rooted at arbitrary
subgraphs. Our goal now is to compute the expected value of f •

W (H). More
precisely, for a ∈ A•, we would like to find a′ ∈ A such that fW (a′) = Exf

x
W (a);

such a′ will be denoted by JaK•. By linearity of expectations, it is enough to define
the JK• for rooted graphs. Let H be a rooted graph and H ′ the same graph but
with no vertex distinguished as a root. Following the definition of fx

W (H), the
value Exf

x
W (H) is the probability that a W -random graph of order |H| with its

first vertex distinguished as a root is isomorphic to H . This probability is equal
to the probability that a W -random graph of order |H| is H ′ and it becomes
H when a root is chosen randomly. In particular, JHK• = αH ′ where α is the
probability that H ′ becomes H when one of the vertices of H ′ is randomly chosen
as a root. For example, JeK• = K2 and JcK• = 1

3
K1,2.

The concepts that we have just introduced will now be treated in full gener-
ality considering graphs rooted at arbitrary subgraphs. Fix a labelled graph R
with r vertices, i.e., a graph with vertices labelled from 1 to r; we will think of
the vertices of R as the roots and refer to them as the first root, . . . , the r-th
root. Let AR be an algebra of formal linear combinations of R-rooted graphs,
i.e., graphs that have R distinguished vertices, which we refer to as the roots,
and the subgraph induced by them is R (preserving the order of the distinguished
vertices). We next define the probability distribution on mappings from AR to R

as follows. Generate a W -random graph HR of order r and let x1, . . . , xr ∈ [0, 1]
be the choices for its vertices. If HR is not R (preserving the order of the ver-
tices, i.e., the vertex corresponding to xi being the i-th root), then fR

W (H) = 0
for every H ∈ AR. Otherwise, fR

W (H) for an R-rooted graph H with k vertices
is the probability that if additional r − k vertices are chosen as in the definition
of a W -random graph and the edges between the vertices are chosen as when
generating a W -random graph, then the obtained graph with the vertices of HR

being the roots is isomorphic to H ; the function fR
W is extended to the whole

AR linearly. Note that the definition of fR
W coincides with that of f •

W in the case
when R is a single vertex. The mapping fR

W is an algebra homomorphism from
AR to R if fR

W (R) = 1. To simplify our presentation, we refer to all random
mappings fR

W as homomorphisms, which is technically incorrect in the case when
fR
W is identically equal to zero.
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Figure 6: Examples of operations with rooted graphs; the root vertices are la-
belled with numbers.

We now define a multiplication on AR. Our goal is that it holds that fR
W (H×

H ′) = fR
W (H) ·fR

W (H ′). We will define H×H ′ for two R-rooted graphs H and H ′

and linearly extend the definition to the whole AR. Let k and k′ be the number
of vertices of H and H ′, respectively. The product H ×H ′ is equal to the sum of
all R-rooted graphs H ′′ with k+k′− r vertices where the coefficient at the graph
H ′′ is the probability that a random partition of the non-root vertices to sets A
and A′ of k − r and k′ − r vertices, respectively, has the property that the roots
together with the vertices of A induce a subgraph isomorphic to H and the roots
together with the vertices of A′ induce a subgraph isomorphic to H ′.

In a similar way, one may consider the analogue of Lemma 10 and show
that if H is an R-rooted graph with k vertices and H ′ is the sum of all R-
rooted graphs H ′ with k′ > k vertices where the coefficient at the graph H ′

is the probability that H ′ becomes H after removing k′ − k random non-root
vertices, then fR

W (H) = fR
W (H ′). We can also define the operator JKR such that

ERf
R
W (H) = fW (JHKR). For an R-rooted graph H with k vertices, JHKR is equal

to the k-vertex graph H ′ obtained from H by undistinguishing the roots where
the coefficient at the graph H ′ is the probability that choosing r roots randomly
inH ′ yields an R-rooted graph and this graph is isomorphic to H . Some examples
of the just introduced definitions can be found in Figure 6.

We will now solve Exercise 5 using the language of flag algebras. Recall that
e is the graph obtained from K2 by choosing one of its vertices as the root; let f
be the graph obtained from K2 by choosing one of its vertices as the root. For
every graphonW , f •

W ((e−f)2) = f •
W (e−f)2 ≥ 0 with probability one. It follows

that
0 ≤ E•f

•
W ((e− f)2) = fW (

q
(e− f)2

y
•
) = fW (H)

where

H = K3 −
1

3
K1,2 −

1

3
K1,2 +K3 .

Since fW (K3 +K1,2 +K1,2 +K3) = 1, we get that

1

3
≤ fW

(

4

3
K3 +

4

3
K3

)

.
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It follows that fW (K3 +K3) is at least 1/4 as desired.
The just introduced arguments can be practiced while solving the next exer-

cise; a hint how to approach the exercise is given after it.

Exercise 8. Show that d(K3,W ) ≥ 2d(K2,W )(d(K2,W )−1/2) for every graphon
W .

To solve Exercise 8, use (Ef •
W (e))2 ≤ Ef •

W (e2) and express K2 as a linear
combination of 3-vertex graphs using Lemma 10.

The flag algebra method can be used in a computer assisted way to find
proofs of statements in extremal combinatorics. We will now sketch the main
ideas behind this approach. In the example above, we used that fW (JH2K•) is
always non-negative for every H ∈ A•. This can be generalized as follows. If
H1, . . . , Hm ∈ AR, A is an m×m positive semidefinite matrix and

H = (H1 · · ·Hm)A







H1
...
Hm






, (8)

then fW (JHK•) is non-negative.
Let G0, . . . , Gk ∈ A and α1, . . . , αk ∈ R. Suppose that we would like to

prove for every graphon W satisfying fW (Gi) ≥ αi for every i ∈ [k] that that
fW (G0) ≥ α0 for α0 as large as possible. For example, if G0 = K3, G1 = K2 and
α1 = 3/4, we are looking for a maximum value α0 such that every graphon with
edge density at least 3/4 has triangle density at least α0. If we had G0 = K3,
G1 = K2, G2 = −K2, α1 = 3/4 and α2 = 3/4, then we would be looking for a
maximum value α0 such that every graphon with edge exactly density 3/4 has
triangle density at least α0.

Let G′
1, . . . , G

′
ℓ be all graphs with a certain fixed number N of vertices. A

possible way of proving this is to find γ1, . . . , γk ≥ 0, δ0 ∈ R, δ1, . . . , δℓ ≥ 0, and
an m×m positive semidefinite matrix A such that

G0 =
k
∑

i=1

γiGi +
ℓ
∑

i=1

(δ0 + δi)G
′
i + JHKR and

α0 = δ0 +

k
∑

i=1

γiαi

where H is as in (8). For simplicity, we consider here that we use (8) for a single
choice of the root R but it is possible to work with matrices for several different
choices of the root. If such coefficients γi and δi exists, then fW (G0) ≥ α0 for
every graphon W satisfying fW (Gi) ≥ αi, i ∈ [k]. Indeed, note that

fW (G1) ≥ α1

17



...

fW (Gk) ≥ αk

ℓ
∑

i=1

fW (G′
i) = 1

fW (G′
1) ≥ 0

...

fW (G′
ℓ) ≥ 0

fW (JHKR) ≥ 0

where H is as in (8). Summing these inequalities and the equality with the
coefficients γ1, . . . , γk, δ0, . . . , δℓ, 1, respectively, and using that fW is an algebra
homomorphism from A to R, we get that

fW (G0) ≥ α0; .

The search for the coefficients γi and δi can be formulated as a semidefinite
program: one fixes a number of vertices N and expresses all the sides as com-
binations of N -vertex graphs using Lemma 10. For each such graph, one gets a
single equation that becomes part of the semidefinite program.

Let us demonstrate this approach on a specific example. Suppose that we aim
at proving fW (K3 + K3) ≥ α0 for α0 as large as possible, i.e., G0 = K3 + K3.
We fix N = 3, G′

1 = K3, G
′
2 = K1,2, G

′
3 = K1,2 and G′

4 = K3. Further,
we set R = K•

1 and (H1, H2) = (K2
•
, K•

2). This setting leads to the following
semidefinite program: maximize 〈C,X〉 subject to 〈Ai, X〉 = bi, i = 1, 2, 3, 4, and
X � 0, where the matrices A1, . . . , A4 and C are as follows.

A1 =

























1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

























b1 = 1

A2 =

























1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1/3 1/3
0 0 0 0 0 0 1/3 0

























b2 = 0

18



A3 =

























1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1/3
0 0 0 0 0 0 1/3 1/3

























b3 = 0

A4 =

























1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

























b4 = 1

C =

























1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























We remark that 〈M1,M2〉 is equal to trace ofM
T
1 M2, i.e., the sum of the products

of the corresponding entries of M1 and M2, and X � 0 means that X is a
symmetric positive semidefinite matrix. An optimal solution of the program is
formed by the following matrix.

X =

























1/4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 3/4 −3/4
0 0 0 0 0 0 −3/4 3/4

























This yields the following flag algebra proof of fW (K3 + K3) ≥ 1/4 for every
graphon W :

K3+K3 =
1

4

(

K3 +K1,2 +K1,2 +K3

)

+

t
(

K2
•

K•
2

)T (
3/4 −3/4
−3/4 3/4

)(

K2
•

K•
2

)

|

•
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Figure 7: Examples of step graphons.

≥
1

4
+ 0 =

1

4
.

We now return back to the general setting. Suppose that the value α0 pro-
duced by the semidefinite program solver is optimal. However, since the solution
found by the solver is numerical, it may be needed to round it to a rational so-
lution that will provide the actual proof of the desired inequality fW (G0) ≥ α0.
The most tricky part of this is to find the right matrix A for (8). Consider the
eigenvectors of the matrix A found by the semidefinite program solver; each such
eigenvector gives a linear combination of graphs H1, . . . , Hm, and let h ∈ AR

be this linear combination. If W is a graphon such that fW (G0) = α0 and
fW (Gi) ≥ αi for every i ∈ [k], then fR

W (h) = 0 with probability one for every
such h ∈ AR corresponding to a non-zero eigenvalue. Hence, we know that the
eigenvectors corresponding to the non-zero eigenvalues of A must lie in the hy-
perplane determined by h ∈ AR such that fR

W (h) = 0 with probability one for
any graphon W satisfying fW (G0) = α0 and fW (Gi) ≥ αi. After projecting the
eigenvectors of the matrix A found by the solver to this hyperplane, we may
obtain a proof of the optimal inequality fW (H0) ≥ α0.

5 Finitely forcible graphons

In this section, we study finitely forcible graphons, which are of particular interest
in relation to problems from extremal graph theory. A graphon W is finitely
forcible if there exist finitely many graphs H1, . . . , Hk such that every graphonW ′

satisfying d(Hi,W
′) = d(Hi,W ) for every i ∈ [k] is weakly isomorphic to W . We

will say that the graphon W is forced by the graphs H1, . . . , Hk. Since h(H,W )
can be expressed as a linear combination of d(H ′,W ), where H ′ ranges through
all supergraphs of H with the same number of vertices as H , Theorem 8 implies
that every constant graphon is finitely forcible; the theorem also implies that this
graphon is forced by 4-vertex graphs. Lovász and Sós [37] generalized Theorem 8
to step graphons. A step graphon is a graphon such that there exist disjoint
measurable sets J1, . . . , Jk satisfying J1∪· · ·∪Jk = [0, 1] and a symmetric matrix
D ∈ [0, 1]k×k such that W (x, y) = Dij for every x ∈ Ji and y ∈ Jj. Examples of
step graphons can be found in Figure 7.

Theorem 11 (Lovász and Sós [37]). Every step graphon is finitely forcible.
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We will prove two special cases of Theorem 11 as an illustration of the ap-
plication of the flag algebra method in the setting of finitely forcible graphons.
Before we do so, we would like to exhibit one of the links between finitely forcible
graphons and extremal graph theory.

Proposition 12. Every finitely forcible graphon W0 is the unique (up to a weak
isomorphism) minimizer of a linear combination of subgraph densities, i.e., there
exist α1, . . . , αk ∈ R and graphs H1, . . . , Hk such that the graphon W0 minimizes
the expression

min
W

k
∑

i=1

αid(Hi,W )

and any graphon minimizing this expression is weakly isomorphic to W0.

Proof. Let H ′
1, . . . , H

′
ℓ be the graphs forcing W0 and let βj = d(H ′

j,W0), j ∈ [ℓ].
Further, let

ℓ
∑

i=1

(H ′
j − βj)

2 =

k
∑

i=1

αiHi ∈ A .

Note that
k
∑

i=1

αid(Hi,W ) =
ℓ
∑

i=1

(d(H ′
j,W )− βj)

2

for every graphon W , in particular, the sum

k
∑

i=1

αid(Hi,W )

is always non-negative. If W = W0, then the sum

k
∑

i=1

αid(Hi,W )

is zero, i.e., W0 is a minimizer. Moreover, if

k
∑

i=1

αid(Hi,W ) = 0

for a graphon W , then d(H ′
j,W ) = d(H ′

j,W0) for every j ∈ [ℓ], which implies
that W is weakly isomorphic to W0 since W0 is forced by H ′

1, . . . , H
′
ℓ.

It was conjectured that the converse of Proposition 12 is also true.
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Figure 8: The graphon shown to be finitely forcible in Proposition 14.

Conjecture 13 (Lovász and Szegedy [38]). Let α1, . . . , αk be reals and H1, . . . , Hk

graphs. There exists a finitely forcible graphon that minimizes

min
W

k
∑

i=1

αid(Hi,W ) .

We now prove two special kinds of step graphons are finitely forcible.

Proposition 14. The graphon in Figure 8 is finitely forcible.

Proof. Let W0 be the graphon from Figure 8. We will show that W0 is forced by
5-vertex graphs. LetW be another graphon such that the densities of all 5-vertex
graphs are the same in W and W0, and define Wx(y) = W (x, y) for x ∈ [0, 1].
Further, let T be the set of all functions f ∈ L2[0, 1] such that the set

Nε(f) =











x ∈ [0, 1] such that

∫

[0,1]

|Wx(y)− f(y)|dy ≤ ε











has positive measure for every ε > 0.
We first observe that E•f

•
W (e − 1/2)2 = 0: indeed, the left hand side can be

expressed in terms of 4-vertex graph densities, which can then be expressed in
terms of 5-vertex graph densities by Lemma 10. This implies that f •

W (e) = 1/2
with probability one. It follows that

∫

[0,1]

f(y)dy = 1/2 (9)

for every f ∈ T .
Let s and t be the graphs K1,2 and K3, respectively, with two root vertices

such that the roots are non-adjacent in the case of s; let σ and τ be the subgraph
induced by the roots of s and t, respectively. Since d(K3,W0) = 0, we do not
have to consider the graph t here but we prefer presenting the arguments in a
full generality. Observe that

Eσf
σ
W (s(s− 1/4)2) = 0 and Eτf

τ
W (t(t− 1/4)2) = 0 .
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Since both the expected values can be expressed in terms of 5-vertex graph den-
sities, it follows that for any two functions f and g in T , it holds that

∫

[0,1]

f(y)g(y)dy = 0 or

∫

[0,1]

f(y)g(y)dy = 1/4 . (10)

Following the lines of the proof of Lemma 9, we derive using (9) and (10) that
∫

[0,1]

f 2(y)dy = 1/4

for every f ∈ T .
Since W is not a constant graphon (by Theorem 8), the set T contains two

functions f and g that differ on a set of non-zero measure. Let f and g be two
such functions. If

∫

[0,1]

f(y)g(y)dy = 1/4,

we use the Cauchy-Schwartz inequality together with the equalities
∫

[0,1]

f 2(y)dy = 1/4 and

∫

[0,1]

g2(y)dy = 1/4

to derive that f and g are multiple of each other almost everywhere, which yields
that they are equal almost everywhere, contradicting their choice. Hence, it holds
that

∫

[0,1]

f(y)g(y)dy = 0.

Consequently, the supports Sf and Sg of the functions f and g intersect at a set
of measure zero. Since the integral of f on [0, 1] is at most the measure of Sf and
the integral of g on [0, 1] is at most the measure of Sg, it follows from (9) that
both Sf and Sg has measure 1/2. Since the choice of f and g in T was arbitrary,
it follows that there exist disjoint subsets A and B of [0, 1], each of measure 1/2,
such that every function in T differ from the characteristic function χA of A or
from from the characteristic function χB of B on a set of measure zero.

Let A′ be the set of all x ∈ [0, 1] such that Wx differs from χA on a set of
measure zero, and let B′ be the set of all x ∈ [0, 1] such that Wx differs from
χB on a set of measure zero. Observe that A′ and B′ are disjoint and their
union has measure one. If A′ ∩ A had positive measure, then it would hold
that d(K3,W ) > 0. Likewise, if B′ ∩ B had positive, then d(K3,W ) > 0. We
conclude that A and B′ differ on a set measure zero, and A′ and B differ on a
set of measure zero. Hence, the graphon W is equal to one almost everywhere on
(A× B) ∪ (B × A) and equal to zero almost everywhere else. It follows that W
is weakly isomorphic to W0.
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In Proposition 14, we have shown that the graphon from Figure 8 is forced
by 5-vertex graphs. Using classical results from extremal graph theory, it would
be possible to argue that this graphon is forced by setting the density of K2 to
1/2 and the density of K3 to 0. This statment can also be established using the
graph limit language. However, we have intentionally decided to prove a weaker
statement to let ourselves to be less careful with some of the arguments.

Proposition 15. Let D ∈ [0, 1]k×k be a symmetric matrix, k ≥ 2, such that no
two rows of D have the same sum. Let W0 be the graphon such that

W0(x, y) = D⌊k·x⌋+1,⌊k·y⌋+1

for x, y ∈ [0, 1), and set W0(x, y) = 0 if x = 1 or y = 1. The graphon W0 is
finitely forcible.

Proof. We show that W0 is forced by densities of (8k − 4)-vertex graphs. Let W
be the a graphon such that d(H,W ) = d(H,W0) for every (8k− 4)-vertex graph,
and let Wx(z) =W (x, z) for x ∈ [0, 1]. Further, set

δi =
1

k

k
∑

j=1

Dij

for i ∈ [k]. Recall that e is the rooted graph obtained from K2 by choosing one
of its vertices to be the root. Since it holds that (note that the left hand can be
expressed in terms of 2k + 1-vertex graphs)

E•f
•
W

(

k
∏

i=1

(e− δi)
2

)

= 0

it follows that

fx
W (e) =

∫

[0,1]

Wx(z)dz ∈ {δ1, . . . , δk}

for almost every x ∈ [0, 1]. Let Aj , j ∈ [k], be the set of all x ∈ [0, 1] such that
fx
W (e) = δj . To simplify our presentation, we will assume that A1∪· · ·∪Ak = [0, 1];
since [0, 1]\ (A1 ∪ · · · ∪ Ak) has measure zero, this assumption does not affect the
generality of our arguments. Note that it holds

E•f
•
W

(

k
∏

i=1,i 6=j

(e− δi)
2

)

=
1

k

k
∏

i=1,i 6=j

(δj − δi)
2

for every j ∈ [k]. Consequently, it holds

f •
W

(

k
∏

i=1,i 6=j

(e− δi)
2

)

6= 0
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only for f •
W = δj , we obtain that the measure of the set Aj is 1/k for every

j ∈ [k]. We will think of Aj as corresponding to the interval [(j − 1)/k, j/k) in
the definition of W0 and refer to both Aj and to this interval as to the j-th part.

A graph H is decorated if each vertex of H is labelled with one of the numbers
between 1, . . . , k (different vertices may be assigned the same number). For a
decorated graph H , we define d(H,W ) to be the probability that a W -random
graph is isomorphic to H and the vertices belong to the parts corresponding to
their labels. We will show that d(H,W ) = d(H,W0) for every 4-vertex decorated
graph. Fix a 4-vertex decorated graph H and let H0 be the graph obtained from
H by making each of the four vertices to be a root. Further, let ℓ1, . . . , ℓ4 be
the labels of the roots of H , and let Hi, i = 1, . . . , 4, be the sum of all 5-vertex
H0-rooted graphs where the non-root vertex is adjacent to the i-th root (there
are exactly 23 = 8 such H0-rooted graphs). Observe that

fH0

W

(

4
∏

i=1

k
∏

j=1,j 6=ℓi

(Hi − δj)
2

)

6= 0

if and only if the i-th root is chosen from the i-th part of graphon, and if it is
non-zero, then it is equal to

4
∏

i=1

k
∏

j=1,j 6=ℓi

(δℓi − δj)
2 .

It follows that

EH0
fH0

W

(

4
∏

i=1

k
∏

j=1,j 6=ℓi

(Hi − δj)
2

)

= d(H,W ) ·

4
∏

i=1

k
∏

j=1,j 6=ℓi

(δℓi − δj)
2 .

Since the left hand side of this expression can be expressed in term of densities
of (8k − 4)-vertex graphs in W , it follows that d(H,W ) = d(H,W0) for every
4-vertex decorated graph H .

We now follow the lines of the proof of Theorem 8. Since the densities of
4-vertex decorated graphs are the same in W and W0, it holds for every i, j ∈ [k]
that

∫

Ai×Aj

W (x, z)dxz =
Dij

k2
and

∫

A2
i







∫

Aj

W (x, y)W (x, z)dz −
D2

ij

k







2

dxy = 0 .

The arguments given in the proof of Theorem 8 imply that
∫

Aj

Wx(z)dz =
Dij

k
and

∫

Aj

Wx(z)
2dz =

D2
ij

k

for almost every x ∈ Ai. We conclude that Wx(z) = Dij for almost every (x, y) ∈
Ai × Aj , which implies that W is weakly isomorphic to W0.
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Figure 9: The graphon from Exercise 9.

Figure 10: A graphon that is not finitely forcible.

The methods used in the proofs of Propositions 14 and 15 can be used to
solve the following three exercises.

Exercise 9. Show that the graphon in Figure 9 is finitely forcible.

Exercise 10. Let J1, . . . , Jk be disjoint measurable sets such that J1 ∪ · · · ∪ Jk =
[0, 1], and define W to be the graphon such that W (x, y) = 1 if x and y belongs
to the same set Jj, and W (x, y) = 0, otherwise. Show that W is finitely forcible.

Exercise 11. Let W be a step graphon and let J1, . . . , Jk be the measurable sets
from its definition. Suppose that

∫

[0,1]

W (x, z) dz 6=

∫

[0,1]

W (y, z) dz

for any x ∈ Ji and y ∈ Jj such that i 6= j. Show that W is finitely forcible.

Lovász and Szegedy carried a systematic study of finitely forcible graphons
in [38]. They conjectured that all finitely forcible graphons have simple structure,
which was disproved using the flag algebra method in [16, 17, 22, 23]. The most
general of these results asserts that every computable graphon is a subgraphon of
a finitely forcible graphon [17]. However, even some simple graphons need not be
finitely forcible. For example, the graphon in Figure 10 is not finitely forcible [21].

6 Sparse graph convergence

We finish with giving a brief overview of the main notions of convergence of
sparse graphs. We restrict our attention to graphs with bounded maximum degree
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though many of the presented concepts can be extended to more general settings.
We will also be less technical than in the previous sections, primarily focusing on
presenting the main ideas behind the relevant concepts.

The most used notion of convergence in relation to graphs with bounded de-
grees is the one defined by Benjamini and Schramm [6], known as the Benjamini-
Schramm convergence, shortly BS-convergence, and also as the left convergence.
Suppose that (Gn)n∈N is a sequence of graphs with maximum degree at most ∆.
For every d ∈ N, let G•(d,∆) be the set of all rooted graphs with maximum degree
∆ where all vertices has distance at most d from the root. Note that G•(d,∆) is
finite for every pair d and ∆. By choosing a root in Gn randomly and restricting
the graph Gn to the d-neighborhood of the root, i.e., the vertices at distance at
most d from the root, we get a probability distribution on graphs from G•(d,∆).
Let pn,d ∈ [0, 1]G

•(d,∆) be the corresponding vector of probabilities. We say that
the sequence (Gn)n∈N is BS-convergent if the sequence (pn,d)n∈N converges for
every d. Benjamini-Schramm convergent sequences of graphs can be associated
with an analytic representation called a graphing [18], however, we omit further
details here.

Every BS-convergent sequence yields a probability measure on the space
G•(∆) of (not necessarily finite) rooted graphs with maximum degree ∆. The
topology on G•(∆) is generated by clopen sets of rooted graphs with the same
d-neighborhood of the root for some d, and the limit probabilities from the defi-
nition of the Benjamini-Schramm convergence give a probability measure on the
corresponding σ-algebra on G•(∆) by Carathéodory’s Extension Theorem. In
what follows, we will just write G• instead of G•(∆) when ∆ is clear from the
context.

It is not true that every probability measures µ on G• corresponds to a BS-
convergent sequence of graphs. Let T be the infinite rooted tree where the vertices
at even levels (including the root) have degree three and the vertices at odd levels
have degree two. If ∆ = 3 and µ({T}) = 1, then there is no BS-convergent
sequence of graphs corresponding to µ. Indeed, graphs in such a sequence would
have almost all vertices of degree three but almost every vertex of degree three
would have neighbors of degree two only, which is impossible.

The following condition on a probability measure µ is necessary in order that µ
corresponds to a BS-convergent sequence of graphs. First, let µ′ be a probability
measure on G• defined as

µ′(S) =

∫

S

δ(G)dG

∫

G•

δ(G)dG

where δ(G) for G ∈ G• is the degree of the root of G (we may assume that
δ(G) > 0 with non-zero probability since otherwise µ clearly corresponds to a
BS-convergent sequence of graphs). We next define a probability measure µe on
rooted graphs Ge with one distinguished edge at the root. Choose a rooted graph
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G ∈ G• according to µ′ and make randomly one of the edges incident with the
root distinguished. This defines the probability measure µe on rooted graphs
Ge. Another probability measure µ′

e on Ge can be obtained from µe by choosing
a random graph G ∈ Ge and making the other end of the distinguished edge
to be the root. If µ corresponds to a BS-convergent sequence of graphs, then
the probability measures µe and µ

′
e are the same. The conjecture of Aldous and

Lyons [1] asserts that this necessary condition is also sufficient for a probability
measure µ on G• to correspond to a BS-convergent sequence of graphs.

The Benjamini-Schramm convergence have the following drawback. Let us
consider a setting of graphs with maximum degree three. A sequence of random
cubic graphs of increasing orders is BS-convergent with probability one since the
probability that a randomly chosen vertex is contained in a cycle of length k
tends to 0 for any fixed integer k. In particular, the corresponding probability
measure µ on G• satisfies that µ({T}) = 1 for the infinite rooted cubic tree T . By
the same argument, a sequence of random cubic bipartite graphs of increasing
orders is BS-convergent with probability one. Consequently, any sequence ob-
tained by mixing these two is BS-convergent with probability one. However, the
independence number of a random n-vertex cubic graph is bounded away from
n/2. Hence, the BS-convergence is not robust enough to distinguish bipartite
graphs from graphs that are far from being bipartite. Another example of the
same phenomenon is the following: consider a BS-convergent sequence of cubic
expanders and consider the same sequence where each graph is the union of two
copies of the corresponding graph in the former sequence. Any sequence obtained
by mixing these two sequences is BS-convergent despite of one of these two se-
quences being formed by well-connected graphs and the other by disconnected
graphs.

To overcome this, a finer notion of convergence called local-global convergence
was proposed in [7] and further studied in [27]. This notion of convergence takes
into account possible partitions of vertices of graphs in a sequence. Formally, let
G•(d, k,∆) be the set of all rooted k-vertex-colored graphs with maximum degree
∆ such that every vertex is at distance at most d from the root (the vertex coloring
need not be proper). For a graph G with maximum degree ∆, let Pd,k(G) be the
set of all vectors from [0, 1]G

•(d,k,∆) that corresponds to the probability distribution
on d-neighborhoods for at least one k-vertex-coloring of G. A sequence (Gn)n∈N
of graphs with maximum degree ∆ is local-global convergent if for every d ∈ N,
k ∈ N and ε > 0, there exists n0 such that the sets Pd,k(Gi) and Pd,k(Gj) are ε-
close for every i, j ≥ n0; two sets X, Y ⊆ R

m are ε-close if for every x ∈ X , there
exists y ∈ Y such that ||x−y||1 ≤ ε, and for every y ∈ Y , there exists x ∈ X such
that ||x − y||1 ≤ ε. If a sequence of graphs is local-global convergent, it is also
BS-convergent (set k = 1 in the definition) but the converse is not necessarily
true because of the examples given in the previous paragraph.

Another notion of convergence related to the BS-convergence is that of the
right convergence. Let H be a complete graph with a loop at each vertex such
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that all its vertices and edges are assigned positive weights. We refer to such a
graph H as to a target. The number of weighted homomorphisms from a graph
G to H , denoted by hom(G,H), is

∑

f :V (G)→V (H)

∏

v∈V (G)

w(f(v))
∏

vv′∈E(G)

w(f(v)f(v′))

where w is the weight function of H . A sequence of graphs (Gn)n∈N is right
convergent if the fraction

log hom(Gn, H)

|Gn|

convergences for every target H . It can be shown [9], also see [41], that if a
sequence (Gn)n∈N of graphs with bounded maximum degree is right convergent,
then it is also BS-convergent. The right convergence can distinguish graphs close
to being bipartite and those far from being bipartite but it cannot distinguish
connected and disconnected graphs. Let us also remark that the way we define
the right convergence is weaker than the original definition, which allows targets
with zero weights, but every sequence of graphs that is right convergent in the
definition we gave can be modified by changing sublinear number of edges to a
sequence of graphs convergent in the original (stronger) definition [8].

Another notion of convergence of sparse graphs, which is fully based on pos-
sible partitions, was proposed by Bollobás and Riordan [7]. A k-partition of a
graph G is a partition of its vertex set into k subsets. The statistic of a k-partition

P = (P1, . . . , Pk) is a vector s(P) ∈ R
k+(k+1

2 ) whose coordinates are the relative

sizes pi = |Pi|
|G

of the parts and the edge densities eij =
e(Pi,Pj)

|G|
between them,

where e(Pi, Pj) stands for the number of edges between parts Pi and Pj. Note
that the normalization here is different than the one used in Section 2 when
dealing with dense graphs. Let Pk(G) ⊆ R

k+(k+1

2 ) be the set of statistics s(P)
of at least one k-partition P of a graph G. A sequence of graphs (Gn)n∈N with
bounded maximum degree is partition convergent if for every k ∈ N and ε > 0,
there exists n0 such that the sets Pk(Gi) and Pk(Gj) are ε-close for all i, j ≥ n0.

Let U2 ⊆ R
5 be the set of all non-negative real vectors (p1, p2, e11, e12, e22) such

that p1+ p2 = 1, p1 = e11+ e12/2 and p2 = e22 + e12/2. Observe that P2(G) ⊆ U2

for every 2-regular graph G.

Exercise 12. Show that for every ε > 0, there exists n0 such that the sets P2(nC4)
and P2(nC6) are ε-close to U2 for every n ≥ n0.

Exercise 12 can be generalized to show that for every k ∈ N and every ε >
0, there exists n0 such that the sets Pk(nC4) and Pk(nC6) are ε-close [8]. In
particular, the sequence of graphs containing nC4 and nC6 in a mixed way is
partition convergent. Consequently, the partition convergence does not imply
any of the earlier mentioned notions of convergence. On the other hand, the local
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Figure 11: The relation between the presented notions of convergence of bounded
degree graphs. The bold arrows represent that the notion implies the other and
the dashed arrows that this is not the case in general. When an arrow is missing,
the relation between the notions is not known.

global convergence trivially implies the partition convergence but the connected
vs. disconnected example yield that neither the BS-convergence nor the right
convergence implies the partition convergence. We refer the reader to Figure 11
for the relation between the notions of convergence of sparse that we have already
introduced and the notion of large deviation convergence that we introduce next.

The recent notion of large deviation convergence, which was introduced in [8],
is a common refinement of the right convergence and partition convergence. A
sequence of graphs (Gn)n∈N with bounded maximum degree is LD-convergent if
the following limit exists (while possibly being infinite)

Ik(x) = lim
ε→0

lim
n→∞

−
log |{P such that ||s(P)−x||1≤ε}|

k|Gn|

|Gn|

for every k and x ∈ R
k+(k+1

2 ). Note that Ik(x) ∈ [0, log k]∪{∞}. On the intuitive
level, one can think that the number of k-partitions of Gn, if n is large, with
statistic close to x is approximately k|Gn| · e−Ik(x)|Gn|. If a sequence (Gn)n∈N is
LD-convergent, then it is also partition convergent. Indeed, Pk(Gn) is ε-close
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to the set {x | Ik(x) < ∞} when n is sufficiently large. A more involved argu-
ment shows that every LD-convergent sequence of graphs is right convergence [8],
which implies that it is also BS-convergent. However, there exist LD-convergent
sequences of graphs that are not right convergent when targets with zero weights
are allowed (e.g., the sequence of cycles of increasing lengths where the parities
of the cycle lengths alternate).

The last notion that we would like to mention is the notion of the first order
convergence introduced in [42, 43] and further studied in [14, 20, 32, 44]. This
notion is an attempt to provide a universal notion of graph convergence that can
be applied both in the sparse and in the dense settings. If ψ is a first order
formula with k free variables and G is a (finite) graph, then the Stone pairing
〈ψ,G〉 is the probability that a uniformly chosen k-tuple of vertices of G satisfies
ψ. A sequence (Gn)n∈N of graphs is first order convergent if the limit lim

n→∞
〈ψ,Gn〉

exists for every first order formula ψ. It is not hard to show that every first order
convergent sequence of dense graphs is convergent in the sense defined in Section 2
and every first order convergent sequence of graphs with bounded maximum
degree is Benjamini-Schramm convergent. Neither of the opposite implications
is true. Some of first order convergent sequence graphs can be represented by an
analytic object called a modeling but not every first order convergent sequence
of graphs has such a representation [43]. A conjecture of Nešetřil and Ossona de
Mendez [43] asserts that if G is a nowhere-dense class of graphs, then any first
order convergent sequence of graphs from G can be represented by a modeling.

Appendix: Probability theory tools

In this section, we provide a brief overview of the most important results from the
probability theory that are used in the lecture notes. We start with Borel-Cantelli
lemma.

Lemma 16 (Borel-Cantelli lemma). Let (En)n∈N be a sequence of probability
events. If the sum of probabilities of En, n ∈ N, is finite, i.e.,

∑

n∈N

P(En) <∞ ,

then the probability that infinitely many of the events occur is zero.

Several results in the lecture notes use the notion of martingales. Fix a prob-
ability space Ω and let (Xn)n∈N be a sequence of random real variables on Ω. The
sequence (Xn)n∈N forms a martingale if the expected value of each Xn is equal to
a real number X0 and

E(Xn+1|X1, . . . , Xn) = Xn for every n ∈ N,
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i.e., the expected value of Xn+1 conditioned on the values of X1, . . . , Xn is the
value of Xn. With a slight abuse of notation, X0 can be understood to be the
random variable on Ω equal to X0 everywhere. Martingales can be used to bound
the probability of a large deviation of Xn from its expected value.

Theorem 17 (Azuma-Hoeffding inequality). Let (Xn)n∈N be a martingale with
EXn = X0, and let (cn)n∈N be a sequence of reals. If holds for every n ∈ N that
|Xn −Xn−1| ≤ cn with probability one, then

P (|Xn −X0| ≥ t) ≤ 2e
−t2

2
∑n

k=1
c2
k

for every n ∈ N and every t ∈ R.

We also need the following corollary of Doob’s martingale convergence theo-
rem.

Corollary 18. Let (Xn)n∈N be a martingale on a probability space Ω with proba-
bility µ. If there exists K ∈ R such that E|Xn| < K, then there exists a random
variable X on Ω such that

lim
n→∞

Xn(ω) = X(ω)

for µ-almost all ω ∈ Ω.

Acknowledgment

The work of the author on the topics covered in these lecture notes has received
funding from the European Research Council (ERC) under the European Unions
Horizon 2020 research and innovation programme (grant agreement No 648509).
This publication reflects only its author’s view; the European Research Coun-
cil Executive Agency is not responsible for any use that may be made of the
information it contains.

References

[1] D. Aldous and R. Lyons: Processes on unimodular random networks , Elec-
tron. J. Probab. 12 (2007), no. 54, 1454–1508.

[2] R. Baber: Turán densities of hypercubes , preprint available as arXiv
1201.3587.

[3] R. Baber and J. Talbot: A solution to the 2/3 conjecture, SIAM J. Discrete
Math. 28 (2014), 756-766.

32



[4] R. Baber and J. Talbot: Hypergraphs do jump, Combin. Probab. Comput.
20 (2011), 161–171.
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