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Alexandr Kostochka

1 Introduction

This text together with the attached paper [8] surveys results on color-critical graphs, with emphasis

on sparse ones. The first two sections discuss the important contributions by Dirac and Gallai

and present proofs of some remarkable results of them. The next two sections discuss the later

progress and a number of applications of the recent results. We also use [8] for description of

some applications. In Section 6 we present a proof for 4-critical graphs of a conjecture of Gallai on

sparsest color-critical graphs. In the last section, we briefly survey similar problems for hypergraphs

and triangle-free graphs and mention some unsolved problems.

Recall that a (proper) k-coloring of a graph G is a mapping g : V (G) → {1, . . . , k} such that

g(v) 6= g(u) for each vu ∈ E(G). The minimum k such that G has a k-coloring is the chromatic

number of G, denoted by χ(G).

For a positive integer k, a graph G is k-critical if χ(G) = k, but every proper subgraph of G is

(k − 1)-colorable.

It is easy to check that the complete k-vertex graph Kk is k-critical and that each odd cycle is

3-critical.

Exercise 1. Let k ≥ 3. Prove that there are no k-critical (k + 1)-vertex graphs. Describe all

k-critical (k + 2)-vertex graphs.

2 Dirac

Dirac [10, 11, 12, 20, 15, 22, 19] introduced the notion of k-critical graphs and started a systematic

study of them.

Lemma 1 (Dirac [15]). Let k ≥ 3 and let G be a k-critical graph. Then G is (k−1)-edge-connected.

In particular, δ(G) ≥ k − 1.

Proof (Kopon). Suppose that V (G) has a partition V (G) = V1 ∪ V2 into nonempty sets such

that |EG(V1, V2)| = t ≤ k − 2. Let EG(V1, V2) = {x1y1, . . . , xtyt}, where {x1, . . . , xt} ⊆ V1 and

{y1, . . . , yt} ⊆ V2 (the vertices x1, . . . , xt (respectively, y1, . . . , yt) do not need to be distinct). For

i = 1, 2, let Gi = G[Vi]. Since G1 and G2 are proper subgraphs of G, by the definition of k-critical

graphs, for i = 1, 2, graph Gi has a proper (k − 1)-coloring gi with colors 1, . . . , k − 1.

There are (k − 1)! ways to rename the colors in g2 with 1, . . . , k − 1. For every 1 ≤ j ≤ t,

the number of color permutations such that g2(yj) = g1(xj) is (k − 2)!. Hence there are at least

(k − 1)!− t(k − 2)! = (k − 2)!(k − 1− t) ≥ (k − 2)! permutations such that g2(yj) 6= g1(xj) for all
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j = 1, . . . , t. Any such permutation yields a proper (k − 1)-coloring g of G; a contradiction. 2

Exercise 2 (Toft). Let k ≥ 3 and let G be a k-critical graph. Suppose V (G) has a partition V (G) =

V1 ∪ V2 into nonempty sets such that |EG(V1, V2)| = k− 1. Let EG(V1, V2) = {x1y1, . . . , xk−1yk−1},
where {x1, . . . , xk−1} ⊆ V1 and {y1, . . . , yk−2} ⊆ V2. For i = 1, 2, let Gi = G[Vi]. Then one of the

following holds:

(1) for each (k− 1)-coloring of G1, the colors of all x1, . . . , xk−1 are the same and for each (k− 1)-

coloring of G2, the colors of all y1, . . . , yk−1 are distinct;

(2) for each (k − 1)-coloring of G1, the colors of all x1, . . . , xk−1 are distinct and for each (k − 1)-

coloring of G2, the colors of all y1, . . . , yk−1 are the same.

Already this simple lemma yields the Heawood Formula for the chromatic number of graphs

embeddable into surfaces of a given genus.

Theorem 2 (Heawood, 1890). If G is graph embeddable into an orientable surface Sγ of genus

γ ≥ 1, then χ(G) ≤
⌊
7+
√
1+48γ
2

⌋
.

Proof. Let c := cγ := 7+
√
1+48γ
2 . Suppose χ(G) > c. Then G contains a (bcc + 1)-critical

subgraph G′. Let n = |V (G′)|, e = |E(G′)| and f be the number of faces in an embedding of G′

into Sγ . Then n > c. From the Euler Formula n− e+ f = 2(1− γ) and the fact that 3f ≤ 2e, we

obtain
2e

n
≤ 6 +

12(γ − 1)

n
≤ 6 +

12(γ − 1)

c
. (1)

Since c is a root of the equation c2 − 7c− 12(γ − 1) = 0, we have 6 + 12(γ−1)
c = c− 1, so (1) yields

2e
n ≤ c− 1. But by Lemma 1, 2e

n ≥ δ(G
′) ≥ bcc, a contradiction. 2

In a series of papers [13, 14, 16, 17, 18], Dirac sharpened Theorem 2 by showing that for γ ≥ 1

every graph embeddable into Sγ and having chromatic number bcγc contains the complete graph

with bcγc vertices. For this he used properties of critical graphs with few vertices, but a really

short proof he obtained in [18] by using the following general lower bound on the number of edges

in critical graphs.

Theorem 3 (Dirac [20]). If n > k ≥ 4 and G is an n-vertex k-critical graph, then

2|E(G)| ≥ (k − 1)n+ k − 3. (2)

Proof (Deuber, A.K., Sachs). For a graph F , let ε(F ) := 2|E(F )| − (k − 1)|V (F )|. Then the

theorem is equivalent to the assertion that if k ≥ 4, then

ε(G) ≥ k − 3 for each k-critical graph G 6∼= Kk. (3)

We will use induction on |V (G)| for a fixed k ≥ 4. So, let G be a smallest k-critical graph G

distinct from Kk for which (3) does not hold.
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If y, z ∈ V (G) and yz /∈ E(G), then H(G; y, z) is the graph obtained from G by gluing y and

z into one vertex. Then χ(H(G; y, z)) ≥ χ(G) = k. So, H(G; y, z) contains a k-critical subgraph

G∗ = G∗(y, z). Since G itself is k-critical,

y ∗ z ∈ V (G∗). (4)

Let H = H(G; y, z) and U = U(G∗) := V (G)− V (G∗)− y − z. If x ∈ V (G) with dG(x) = k − 1

and y, z ∈ NG(x), then dH(x) = k − 2 and hence by Lemma 1,

x ∈ U. (5)

The main idea of the proof is the following relation:

2e(G) ≥ 2e(G∗) +
∑
u∈U

dG(u) + eG(U, V (G)− U) + 2|(NG(y) ∩NG(z))− U |.

It implies that

ε(G) ≥ ε(G∗) +
∑
u∈U

(dG(u)− k + 1)− (k − 1) + eG(U, V (G)− U) + 2|(NG(y) ∩NG(z))− U |. (6)

We claim that

G∗ ∼= Kk for any x, y, z ∈ V (G) with dG(x) = k − 1, xy, xz ∈ E(G) and yz /∈ E(G). (7)

Indeed, if G∗ 6∼= Kk, then by the minimality of G, ε(G∗) ≥ k − 3. By (5), U 6= ∅, and so by

Lemma 1, eG(U, V (G)− U) ≥ k − 1. Then by (6),

ε(G) ≥ ε(G∗) +
∑
u∈U

(dG(u)− k + 1)− (k − 1) + (k − 1) ≥ ε(G∗) ≥ k − 3.

This proves (7).

Since |V (G)| ≥ k + 2 and ε(G) ≤ k − 4, there is v ∈ V (G) with dG(v) = k − 1. Then by (7),

there is W ⊂ V (G) with G[W ] = Kk−1. Again, since ε(G) ≤ k − 4, there are x1, x2, x3 ∈ W with

dG(xi) = k − 1 for 1 ≤ i ≤ 3. Let yi be the neighbor of xi in V (G) −W . Let W1 := W ∩ NG(1)

and W ′1 = W −W1. Choose W and x1 to maximize |W1|.
Let z1 be a vertex in W ′1 of minimum degree. Let H := H(G; y1, z1), G

∗ := G∗(y1, z1), U =

U(G∗) and UW := U ∩W . By the symmetry between x2 and x3, we may assume z1 6= x2. Since

dG−x1(x2) = k − 2, by (5), {x1, x2} ⊆ UW . So, by (4),

2 ≤ |UW | ≤ k − 2. (8)

Case 1: j := |UW | = k−2. Let S := V (G∗)−y1∗z1. By (7), G[S] = Kk−1. Let S′ := S∩N(y1),

s := |S′|, and S′′ = S − S′. Since G∗ = Kk, S
′′ ⊂ NG(z1) and so dG(z1) ≥ (|W | − 1) + |S′′| =

k − 2 + (k − 1− s). Thus if dG(v) ≥ k for each v ∈ S′, then ε(G) ≥ (dG(z1)− k + 1) + s ≥ k − 2,

a contradiction. Hence we may assume that S′ contains a vertex x′ with dG(x′) = k− 1 and hence

by the choice of W and x1,

s ≤ |W1|. (9)

3



Also, since G does not contain Kk, 1 ≤ s ≤ k−2 and 1 ≤ |W1| ≤ k−2. By the choice of z1 and (9),

ε(G) ≥ (dG(y1)− k + 1) + |W ′1|(dG(z1)− k + 1)

≥ (|W1|+ s− k + 1) + (k − 1− |W1|)(k − 2− s) = |W1| − 1 + (k − 2− |W1|)(k − 2− s)

≥ |W1| − 1 + (k − 2− |W1|)2 ≥ |W1| − 1 + (k − 2− |W1|) = k − 3;

a contradiction.

Case 2: 2 ≤ j ≤ k − 3. Each of the k − 2− j vertices in W − U − z1 has k − 2 neighbors in W

and j + 1 neighbors in V (G∗)−W . Thus

ε(G) ≥
∑

z∈W−U−z1

(dG(z)− k + 1) ≥ (k − 2− j)(k − 2 + j + 1− k + 1) = j(k − 2− j) ≥ k − 3;

a contradiction. 2

Example 1 (Dirac). Let k ≥ 4. Every graph G in the family D(k) has 2k − 1 vertices partitioned

into 3 sets: V0, V1 and V2, where |V0| = 2, |V1| = k − 1 and |V2| = k − 2. We have G[V1] = Kk−1,

G[V2] = Kk−2, each v ∈ V2 is adjacent to both vertices in V0, and each vertex in V1 is adjacent to

exactly one vertex in V0. Furthermore each of the two vertices in V0 has a neighbor in V1. There

are no other edges.

Exercise 3 (Dirac). Let k ≥ 5. Prove that each graph G ∈ D(k) is k-critical and has 0.5((k −
1)|V (G)|+ k − 3) edges, i.e., is a sharpness example for Theorem 3.

Exercise 4 (Dirac). Let k ≥ 5. Extending the ideas of a proof of Theorem 3, show that every

k-critical graph G distinct from Kk and not belonging to D(k) satisfies ε(G) ≥ k − 1.

Exercise 5. Using Theorem 3, mimic the proof of Theorem 2 to prove the Dirac’s result that for

γ ≥ 1, every graph embeddable into Sγ with chromatic number bcγc contains the complete graph on

bcγc vertices.

3 Gallai

In his fundamental papers [25] and [26], Gallai proved a series of important properties of color-

critical graphs.

Theorem 4 (Gallai). If k ≥ 4, k + 2 ≤ n ≤ 2k− 2 and G is an n-vertex k-critical graph, then the

complement of G is disconnected.

Theorem 5 (Gallai). Let k ≥ 4 and G be a k-critical graph. Let B = B(G) be the set of vertices

of degree k − 1 in G. Then each block of G[B] is a complete graph or an odd cycle.

Let f(n, k) denote the minimum number of edges in an n-vertex k-critical graph. Then f(k, k) =(
k
2

)
and f(k + 1, k) is not well defined. Theorem 3 states that if k ≥ 4 and n ≥ k + 2, then

f(n, k) ≥ 1
2((k − 1)n+ k − 3). Using Theorem 4, Gallai found exact values of f(n, k) for small n.
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Theorem 6 (Gallai). If k ≥ 4 and k + 2 ≤ n ≤ 2k − 1, then

f(n, k) =
1

2
((k − 1)n+ (n− k)(2k − n))− 1.

Note that the function is quadratic in k.

Theorem 5 in turn implies the following lower bound on f(n, k).

Theorem 7 (Gallai). If k ≥ 4 and k + 2 ≤ n, then

f(n, k) ≥ k − 1

2
n+

k − 3

2(k2 − 3)
n. (10)

For large n, this bound is much stronger than the bound in Theorem 3.

3.1 Deriving Theorem 7 from Theorem 5

A Gallai tree is a graph in which every block is a complete graph or an odd cycle.

Lemma 8. Let k ≥ 4 and let T be an n-vertex Gallai tree with maximum degree ∆(T ) ≤ k− 1 not

containing Kk. Then

2|E(T )| ≤
(
k − 2 +

2

k − 1

)
n. (11)

Proof. If T is a block, then, since T 6∼= Kk and k ≥ 4, ∆(T ) ≤ k−2 which is stronger than (11).

Suppose (11) holds for all Gallai trees with at most s blocks and T is a Gallai tree with s + 1

blocks. Let B be a leaf block in T and x be the cut vertex in V (B). Let D := ∆(B).

Case 1: D ≤ k − 3. Let T ′ := T − (V (B) − {x}). Then T ′ is a Gallai tree with s blocks. So

2|E(T )| = 2|E(T ′)| + D|V (B)| and, by induction, 2|E(T ′)| ≤
(
k − 2 + 2

k−1

)
(n − |V (B)| + 1). If

B = Kr, then r = D + 1 ≤ k − 2. So in this case

2|E(T )| −
(
k − 2 +

2

k − 1

)
n

≤
(
k − 2 +

2

k − 1

)
(n−D) +D(D + 1)−

(
k − 2 +

2

k − 1

)
n

=D

(
−k + 2− 2

k − 1
+D + 1

)
≤ −D 2

k − 1
< 0,

as claimed. Similarly, if B = Ct, then, by the case, k ≥ 5 and

2|E(T )| −
(
k − 2 +

2

k − 1

)
n

≤
(
k − 2 +

2

k − 1

)
(n− t+ 1) + 2t− n

(
k − 2 +

2

k − 1

)
= (t− 1)

(
−k + 2− 2

k − 1
+ 2

)
+ 2 < 2 (−k + 4) + 2 ≤ 0.

Case 2: D = k − 2. Since ∆(T ) ≤ k − 1, only one block B′ apart from B may contain x

and this B′ must be K2. Let T ′′ = T − V (B). Then T ′′ is a Gallai tree with s − 1 blocks. So
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2|E(T )| = 2|E(T ′′)|+D|V (B)|+2 and, by induction, 2|(T ′′)| ≤
(
k − 2 + 2

k−1

)
(n−|V (B)|). Hence

in this case, since |V (B)| ≥ D + 1 = k − 1,

2|E(T )| −
(
k − 2 +

2

k − 1

)
n

≤
(
k − 2 +

2

k − 1

)
(n− |V (B)|) + (k − 2)|V (B)|+ 2−

(
k − 2 +

2

k − 1

)
n

= |V (B)|
(
−k + 2− 2

k − 1
+ k − 2

)
+ 2 ≤ − 2

k − 1
|V (B)|+ 2 ≤ 0,

again. 2

Proof of Theorem 7. We use discharging. Let G be an n-vertex k-critical graph distinct from

Kk. By Lemma 1, the minimum degree of G is at least k − 1. The initial charge of each vertex

v ∈ V (G) is ch(v) := dG(v). The only discharging rule is this:

(R1) Each vertex v ∈ V (G) with dG(v) ≥ k sends to each neighbor the charge k−1
k2−3 .

Denote the new charge of each vertex v by ch∗(v). We will show that∑
v∈V (G)

ch∗(v) ≥
(
k − 1 +

k − 3

k2 − 3

)
n. (12)

Indeed, if dG(v) ≥ k, then

ch∗(v) ≥ dG(v)− k − 1

k2 − 3
· dG(v) ≥ k

(
1− k − 1

k2 − 3

)
= k − 1 +

k − 3

k2 − 3
. (13)

Also, if T is a component of the subgraph G′ of G induced by the vertices of degree k − 1, then∑
v∈V (T )

ch∗(v) ≥ (k − 1)|V (T )|+ k − 1

k2 − 3
|EG(V (T ), V (G)− V (T )| .

Since T is a Gallai tree and does not contain Kk, by Lemma 8,

|E(V (T ), V (G)− V (T )| ≥ (k − 1)|V (T )| −
(
k − 2 +

2

k − 1

)
|V (T )| = k − 3

k − 1
|V (T )|.

Thus for every component T of G′ we have∑
v∈V (T )

ch∗(v) ≥ (k − 1)|V (T )|+ k − 1

k2 − 3
· k − 3

k − 1
· |V (T )| =

(
k − 1 +

k − 3

k2 − 3

)
|V (T )|.

Together with (13), this implies (12). 2
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3.2 List coloring and proving Theorem 5

The original proof of Theorem 5 was difficult, but the notion of list coloring as a biproduct yields a

significantly simpler proof. This notion was introduced by Vizing [57] and independently by Erdős,

Rubin and Taylor [23].

A list L for a graph G is a map L : V (G) → Pow(Z>0) that assigns to each vertex v ∈ V (G)

a set L(v) ⊆ Z>0. An L-coloring of G is a mapping f : V (G) → Z>0 such that f(v) ∈ L(v) for

each v ∈ V (G) and f(v) 6= f(u) whenever vu ∈ E(G). The list chromatic number, χ`(G), is the

minimum k such that G has an L-coloring for each L satisfying |L(v)| = k for every v ∈ V (G).

Since G is k-colorable if and only if it is L-colorable with the list L : v 7→ [k], we have χ`(G) ≥
χ(G) for every G; however, the difference χ`(G)− χ(G) can be arbitrarily large. Moreover, graphs

with chromatic number 2 may have arbitrarily high list chromatic number. While 2-colorable

graphs may have arbitrarily high minimum degree, Alon [2] showed that χ`(G) ≥ (1/2−o(1)) log2 δ

for each graph G with minimum degree δ. On the other hand, some well-known upper bounds on

χ(G) in terms of vertex degrees hold for χ`(G) as well. For example, Brooks’ theorem [9] and the

degeneracy upper bound hold for χ`(G). The following simple fact also holds.

Lemma 9 (Vizing [57]). Suppose that G is a connected graph and L is a list for G such that

|L(v)| ≥ dG(v) for every v ∈ V (G), and there is x ∈ V (G) with |L(x)| > dG(v). Then G is

L-colorable.

Proof. Suppose the lemma does not hold and choose a counter-example (G,L) with smallest

|V (G)|. Consider (G − x, L). Then each component Ci of G − x has a vertex zi adjacent to x

and hence with |L(zi) > dG−x(zi). By induction, each of Ci and hence the whole G− x has an L-

coloring. We now can choose a color for x from L(x) distinct from the colors of all dG(x) neighbors

of x. 2

Furthermore, Borodin [4, 5] and independently Erdős, Rubin, and Taylor [23] generalized Brooks’

Theorem to degree lists. Recall that a list L for a graph G is a degree list if |L(v)| = dG(v) for

every v ∈ V (G).

Theorem 10 ([4, 5, 23]; a simple proof in [34]). Suppose that G is a connected graph. Then G is

not L-colorable for some degree list L if and only if each block of G is either a complete graph or

an odd cycle.

Proof. Suppose there exists a pair (G,L), where G is a connected graph that is not a Gallai

tree and L is a list for G with |L(v)| ≥ dG(v) for each v ∈ V (G) such that G is not L-colorable.

We may assume that (G,L) is such a pair with the smallest |V (G)|. If |V (G)| = 1, then G = K1,

i.e., is a Gallai tree. So |V (G)| ≥ 2.

Given y ∈ V (G) and α ∈ L(y), let (G′y, L
′
α) denote the pair such that G′y = G − y and L′α be

the list for G′(y) where L′α(v) =

{
L(v) if yv /∈ E(G);

L(v)− α if yv ∈ E(G).
Case 1: G is a block. First, we show that

L(x) = L(y) for all x, y ∈ V (G), and G is regular. (14)
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If there are vertices in G with distinct lists, then there are such vertices that are adjacent to each

other. Suppose that xy ∈ E(G) and α ∈ L(y)−L(x). Consider (G′y, L
′
α). Since G is a block, G′y is

connected. By construction, dG′
y
(v) ≤ |L′α(v)| for each v ∈ V (G′y). Moreover, by the choice of α,

dG′
y
(x) < |L′α(x)|. Thus, by Lemma 9, G′y has an L′α-coloring g. We extend g to an L-coloring of

G by letting g(y) := α. This proves the first part of (14). The second part follows from the first

and the fact that vertices of distinct degrees have distinct lists (of the size of the degrees).

So by (14), we are seeking an ordinary d-coloring of a d-regular graph G (for some d). Then G

is a complete graph or an odd cycle by Brooks’ Theorem (also by Theorem 3).

Case 2: G has a cut vertex. Let B1 and B2 be distinct leaf blocks. For i = 1, 2, let bi be the

cut vertex, let ai be a non-cut vertex in Bi, and let αi ∈ L(ai). Again for i = 1, 2, consider the

pair (G′ai , L
′
αi

). Since ai is a non-cut vertex, G′ai is connected. By definition, L′αi
is a degree list for

G′ai . Since G is not L-colorable, G′ai is not L′αi
-colorable. So by the minimality of G, each block of

G′ai is a complete graph or an odd cycle. In particular, this holds for each block of G distinct from

Bi. This implies the theorem. 2

Deriving Theorem 5 from Theorem 10: Let B1 be a component of G[B]. Since G is k-critical,

there is a (k − 1)-coloring g of G − B1. For every v ∈ B1, define L(v) := {1, . . . , k − 1} − {g(u) :

u ∈ N(v)}. Then L is a degree list for G[B1]. So Theorem 10 yields the claim. 2

Remark 1. Similarly to k-critical graphs, one can define list-k-critical graphs as the graphs

whose list chromatic number is k but the list chromatic number of any proper subgraph is less than

k. And similarly to f(n, k) one can define f`(n, k) - the minimum number of edges in an n-vertex

list-k-critical graph. Then the proof in the previous paragraph shows that the claim of Theorem 5

holds also for list-critical graphs. This in turn implies that similarly to (10) we have

f`(n, k) ≥ k − 1

2
n+

k − 3

2(k2 − 3)
n. (15)

Remark 2. Bounds (10) and (15) imply that

for every fixed γ and any k ≥ 6, there is a polynomial-time algorithm for checking any graph G

embeddable into Sγ whether G is k-colorable and whether G is list-k-colorable.

Exercise 6. Prove the claim in Remark 2.

3.3 Critical graphs with one high vertex and a conjecture

Theorem 5 allowed Gallai to describe for k ≥ 4 all k-critical graphs with exactly one vertex of degree

≥ k. Indeed, if G is a k-critical graph and x is the only vertex of degree ≥ k, then B(G) = V (G)−x.

By Theorem 5, G− x is a Gallai tree with maximum degree at most k− 1 and minimum degree at

least k−2. And for every such special Gallai tree T , the graph, obtained by adding an extra vertex

x adjacent to all vertices of degree k− 2 and only to them is k-critical. If k ≥ 5, then the blocks of

such special T are of only two types: Kk−1s and K2s. In particular, every k-critical graph G with

exactly one vertex of degree ≥ k has 1 (mod k − 1) vertices and (k+1)(k−2)|V (G)|−k(k−3)
2(k−1) edges.
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Gallai thought that for n ≥ k there are no k-critical n-vertex graphs with fewer edges and posed

the following.

Conjecture 11 (Gallai [25]). If k ≥ 4 and n ≡ 1 (mod k − 1), then

f(n, k) =
(k + 1)(k − 2)n− k(k − 3)

2(k − 1)
.

4 Ore and others

For a graph G and vertex u ∈ V (G), a split of u is a construction of a new graph G′ such

that V (G′) = V (G) − u + {u′, u′′}, where G − u ∼= G′ − {u′, u′′}, N(u′) ∪ N(u′′) = N(u), and

N(u′) ∩ N(u′′) = ∅. A DHGO-composition O(G1, G2) of graphs G1 and G2 is a graph obtained

as follows: Delete some edge yz from G2, split some vertex x of G1 into two vertices x1 and x2
of positive degree, and identify x1 with y and x2 with z. Note that DHGO-composition could be

found in Dirac’s paper [21] and has roots in [15]. It was also used by Gallai [25] and Hajós [28].

Ore [46] used it for a composition of complete graphs.

x

y

z

y

z

Figure 1: DHGO-composition O(K5,K5).

The mentioned authors observed that if G1 and G2 are k-critical and G1 is not k-critical after

x has been split, then O(G1, G2) also is k-critical. This observation implies

f(n+ k − 1, k) ≤ f(n, k) +
(k + 1)(k − 2)

2
= f(n, k) + (k − 1)

(k + 1)(k − 2)

2(k − 1)
, (16)

which yields that φk := limn→∞
fk(n)
n exists and satisfies

φk ≤
k

2
− 1

k − 1
. (17)

Gallai’s bound gives φk ≥ 1
2

(
k − 1 + k−3

k2−3

)
. Ore believed that using this construction starting

from an extremal graph on at most 2k vertices repeatedly with G2 = Kk at each iteration is best

possible for constructing sparse critical graphs.

9



Conjecture 12 (Ore [46]). If k ≥ 4, n ≥ k and n 6= k + 1, then

f(n+ k − 1, k) = f(n, k) + (k − 2)(k + 1)/2.

Note that Conjecture 11 is equivalent to the case n ≡ 1 (mod k − 1) of Conjecture 12.

Krivelevich [42, 43] improved the bound of Theorem 7 to

f(n, k) ≥ k − 1

2
n+

k − 3

2(k2 − 2k − 1)
n (18)

and demonstrated nice applications of his bound: he constructed graphs with high chromatic

number and low independence number such that the chromatic numbers of all their small subgraphs

are at most 3 or 4. We discuss a couple of his applications later. Then Kostochka and Stiebitz [36]

proved that for k ≥ 6 and n ≥ k + 2,

f(n, k) ≥ k − 1

2
n+

k − 3

k2 + 6k − 11− 6/(k − 2)
n. (19)

Farzad and Molloy [24] proved the claim of Conjecture 11 in the case when k = 4 and the subgraph

of G induced by the vertices of degree 3 is connected.

Some time ago, Kostochka and Yancey [39] proved Conjecture 11 valid.

Theorem 13 ([39]). If k ≥ 4 and G is k-critical, then |E(G)| ≥
⌈
(k+1)(k−2)|V (G)|−k(k−3)

2(k−1)

⌉
. In other

words, if k ≥ 4 and n ≥ k, n 6= k + 1, then

f(n, k) ≥ F (n, k) :=

⌈
(k + 1)(k − 2)n− k(k − 3)

2(k − 1)

⌉
.

The result also confirms Conjecture 12 in several cases.

Corollary 14 ([39]). Conjecture 12 is true if (i) k = 4, (ii) k = 5 and n ≡ 2 (mod 4), or (iii)

n ≡ 1 (mod k − 1).

Also, it determines φk:

Corollary 15. For every k ≥ 4 and n ≥ k + 2,

0 ≤ f(n, k)− F (n, k) ≤ k(k − 1)

8
− 1.

In particular, φk = k
2 −

1
k−1 .

A simple but helpful tool was the following claim.

Corollary 16. Let k ≥ 4 and G be a k-critical graph. Let disjoint vertex subsets A and B be such

that

(a) either A or B is independent;

(b) d(a) = k − 1 for every a ∈ A;

(c) d(b) = k for every b ∈ B;

(d) |A|+ |B| ≥ 3.

Then (i) e(G(A,B)) ≤ 2(|A|+ |B|)− 4 and (ii) e(G(A,B)) ≤ |A|+ 3|B| − 3.

10



Call a graph G k-extremal, if G is k-critical and |E(G)| = (k+1)(k−2)|V (G)|−k(k−3)
2(k−1) . By definition,

if G is k-extremal, then (k+1)(k−2)|V (G)|−k(k−3)
2(k−1) is an integer, and so |V (G)| ≡ 1 (mod k − 1). For

example, Kk is k-extremal. Another example of a 5-extremal graph is on the bottom of Fig. 1.

Suppose that G1 and G2 are k-extremal and G = O(G1, G2). Then

|E(G)| = |E(G1)|+ |E(G2)| − 1 =
(k + 1)(k − 2)(|V (G1)|+ |V (G2)|)− 2k(k − 3)

2(k − 1)
− 1

=
(k + 1)(k − 2)|V (G)| − k(k − 3)

2(k − 1)
.

After x is split, G1 will still have F (|V (G1)|, k) < F (|V (G1)| + 1, k) edges, and therefore will not

be k-critical. Thus the DHGO-composition of any two k-extremal graphs is again k-extremal.

A graph is a k-Ore graph if it is obtained from a set of copies of Kk by a sequence of DHGO-

compositions. By the above, every k-Ore graph is k-extremal. This yields an explicit construction

of infinitely many k-extremal graphs. Kostochka and Yancey [41] proved that there are no other

k-extremal graphs.

Theorem 17. Let k ≥ 4 and G be a k-critical graph. Then G is k-extremal if and only if it is

a k-Ore graph. Moreover, if G is not a k-Ore graph, then |E(G)| ≥ (k+1)(k−2)|V (G)|−yk
2(k−1) , where

yk = max{2k − 6, k2 − 5k + 2}. Thus y4 = 2, y5 = 4, and yk = k2 − 5k + 2 for k ≥ 6.

The message of Theorem 17 is that although for every k ≥ 4 there are infinitely many k-extremal

graphs, they all have a simple structure. In particular, every k-extremal graph distinct from Kk

has a separating set of size 2. The theorem gives a slightly better approximation for f(n, k) and

adds new cases for which we now know the exact values of f(n, k):

Corollary 18. Conjecture 12 holds and the value of f(n, k) is known if (i) k ∈ {4, 5}, (ii) k = 6

and n ≡ 0 (mod 5), (iii) k = 6 and n ≡ 2 (mod 5), (iv) k = 7 and n ≡ 2 (mod 6), or (v) k ≥ 4

and n ≡ 1 (mod k − 1).

This value of yk in Theorem 17 is best possible in the sense that for every k ≥ 4, there exist

infinitely many 3-connected graphs G with |E(G)| = (k+1)(k−2)|V (G)|−yk
2(k−1) . The idea of this construc-

tion and the examples for k = 4, 5 are due to Toft ([55], based on [54]). There are other examples

for k ≥ 6.

5 Some applications

5.1 Ore-degrees

The Ore-degree, Θ(G), of a graph G is the maximum of d(x) + d(y) over all edges xy of G. Let

Gt = {G : Θ(G) ≤ t}.

Exercise 7. Prove that χ(G) ≤ 1 + bt/2c for every G ∈ Gt.

Clearly Θ(Kd+1) = 2d and χ(Kd+1) = d+1. The graph O5 in Fig 2 is the only 9-vertex 5-critical

graph with Θ at most 9. We have Θ(O5) = 9 and χ(O5) = 5.

11



x y

Figure 2: The graph O5.

A natural question is to describe the graphs in G2d+1 with chromatic number d+1. Kierstead and

Kostochka [30] proved that for d ≥ 6 each such graph contains Kd+1. Then Rabern [50] extended

the result to d = 5. Each (d+ 1)-chromatic graph G contains a (d+ 1)-critical subgraph G′. Since

δ(G′) ≥ d and Θ(G′) ≤ Θ(G) ≤ 2d+ 1,

∆(G′) ≤ d+ 1, and vertices of degree d+ 1 form an independent set. (20)

Thus the results in [30] and [50] mentioned above could be stated in the following form.

Theorem 19 ([30, 50]). Let d ≥ 5. Then the only (d+ 1)-critical graph G′ satisfying (20) is Kd+1.

The case d = 4 was settled by Kostochka, Rabern, and Stiebitz [35]:

Theorem 20 ([35]). Let d = 4. Then the only 5-critical graphs G′ satisfying (20) are K5 and O5.

Theorem 13 and Corollary 16 yield simpler proofs of Theorems 19 and 20. The key observation

is the following.

Lemma 21. Let d ≥ 4 and let G′ be a (d+ 1)-critical graph satisfying (20). If G′ has n vertices of

which h > 0 vertices have degree d+ 1, then

h ≥
⌈

(d− 2)n− (d+ 1)(d− 2)

d

⌉
(21)

and

h ≤
⌊
n− 3

d− 1

⌋
. (22)

Proof. By definition, 2e(G′) = dn+ h. So, by Theorem 13 with k = d+ 1,

dn+ h ≥ (d+ 1− 2

d
)n− (d+ 1)(d− 2)

d
,

which yields (21).

Let B be the set of vertices of degree d+ 1 in G′ and A = V (G′)− B. By (20), e(G′(A,B)) =

h(d+ 1). So, by Corollary 16(ii) with k = d+ 1,

h(d+ 1) ≤ 3h+ (n− h)− 3 = 2h+ n− 3,

12



which yields (22). 2

Another ingredient is Exercise 1: Let k ≥ 3. There are no k-critical graphs with k + 1 vertices,

and the only k-critical graph (call it Dk) with k + 2 vertices is obtained from the 5-cycle by adding

k − 3 all-adjacent vertices.

Suppose G′ with n vertices of which h vertices have degree d + 1 is a counter-example to

Theorems 19 or 20. Since the graph Dd+1 from Exercise 1 has a vertex of degree d+ 2, n ≥ d+ 4.

So since d ≥ 4, by (21),

h ≥
⌈

(d− 2)(d+ 4)− (d+ 1)(d− 2)

d

⌉
=

⌈
3(d− 2)

d

⌉
≥ 2.

On the other hand, if n ≤ 2d, then by (22),

h ≤
⌊

2d− 3

d− 1

⌋
= 1.

Thus n ≥ 2d+ 1.

Combining (21) and (22) together, we get

(d− 2)n− (d+ 1)(d− 2)

d
≤ n− 3

d− 1
.

Solving with respect to n, we obtain

n ≤
⌊

(d+ 1)(d− 1)(d− 2)− 3d

d2 − 4d+ 2

⌋
. (23)

For d ≥ 5, the RHS of (23) is less than 2d+1, a contradiction to n ≥ 2d+1. This proves Theorem 19.

Suppose d = 4. Then (23) yields n ≤ 9. So, in this case, n = 9. By (21) and (22), we get h = 2.

Let B = {b1, b2} be the set of vertices of degree 5 in G′. By a theorem of Stiebitz [53], G′ − B
has at least two components. Since |B| = 2 and δ(G′) = 4, each such component has at least 3

vertices. Since |V (G′)−B| = 7, we may assume that G′ −B has exactly two components, C1 and

C2, and that |V (C1)| = 3. Again because δ(G′) = 4, C1 = K3 and all vertices of C1 are adjacent

to both vertices in B. So, if we color both b1 and b2 with the same color, this can extended to a

4-coloring of G′ − V (C2). Thus to have G′ 5-chromatic, we need χ(C2) ≥ 4 which yields C2 = K4.

Since δ(G′) = 4, e(V (C2), B) = 4. So, since each of b1 and b2 has degree 5 and 3 neighbors in C1,

each of them has exactly two neighbors in C2. This proves Theorem 20.

Remark. Recently Postle [47] and independently Kierstead and Rabern [31] have used Theo-

rem 17 to describe the infinite family of 4-critical graphs G with the property that for each edge

xy ∈ E(G), d(x)+d(y) ≤ 7. It turned out that such graphs form a subfamily of the family of 4-Ore

graphs.

5.2 Local vs. global graph properties

Krivelevich [42] presented several nice applications of his lower bounds on f(n, k) and related graph

parameters to questions of existence of complicated graphs whose small subgraphs are simple. We

indicate here how to improve two of his bounds using Theorem 13.

13



Let f(
√
n, 3, n) denote the maximum chromatic number over n-vertex graphs in which every√

n-vertex subgraph has chromatic number at most 3. Krivelevich proved that for every fixed ε > 0

and sufficiently large n,

f(
√
n, 3, n) ≥ n6/31−ε. (24)

For this, he used his result that every 4-critical t-vertex graph with odd girth at least 7 has at least

31t/19 edges. If instead of this result, we use our bound on f(n, 4), then repeating almost word

by word Krivelevich’s proof of (24) (Theorem 4 in[42]) and choosing p = n−4/5−ε
′
, we get that for

every fixed ε and sufficiently large n,

f(
√
n, 3, n) ≥ n1/5−ε. (25)

Another result of Krivelevich is:

Theorem 22 ([42]). There exists C > 0 such that for every s ≥ 5 there exists a graph Gs with at

least C
(
s

ln s

) 33
14 vertices and independence number less than s such that the independence number

of each 20-vertex subgraph is at least 5.

He used the fact that for every m ≤ 20 and every m-vertex 5-critical graph H,

|E(H)| − 1

m− 2
≥ d17m/8e − 1

m− 2
≥ 33

14
.

From Theorem 13 we instead get

|E(H)| − 1

m− 2
≥
⌈
9m−5

4

⌉
− 1

m− 2
≥ 43

18
.

Then repeating the argument in [42] we can replace 33
14 in the statement of Theorem 22 with 43

18 .

5.3 Coloring planar graphs

In the attached paper [8], we use Theorem 13 to give simple proofs of some well-known results on

3-coloring of planar graphs, in particular of the Axenov-Grünbaum Theorem, and an one-paragraph

proof of Grötzsch’s Theorem [27]. Note that although the proof of the general case of Theorem 13

is somewhat long, the proof of the used case k = 4 is quite reasonable, and we present it in the

next section.

In [7], Theorem 17 was used to describe the 4-critical planar graphs with exactly 4 triangles.

This problem was studied by Axenov [1] in the seventies, and then mentioned by Steinberg [52]

(quoting Erdős from 1990), and Borodin [6]. In particular, it was proved that the 4-critical planar

graphs with exactly 4 triangles and no 4-faces are exactly the 4-Ore graphs with exactly 4 triangles.

6 Proof of Case k = 4 of Theorem 13

Theorem 13 for k = 4 reads:

f(n, 4) =

⌈
5n− 2

3

⌉
. (26)

The proof in this section is from [40].
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Definition 1. For R ⊆ V (G), define the potential of R to be ρG(R) = 5|R|−3|E(G[R])|. When

there is no chance for confusion, we will use ρ(R). Let P (G) = min∅6=R⊆V (G) ρ(R).

Exercise 8. Calculate that ρK1(V (K1)) = 5, ρK2(V (K2)) = 7, ρK3(V (K3)) = 6, ρK4(V (K4)) = 2.

By definition, we have the following.

Exercise 9. Let G be a graph and A,B,C ⊆ V (G) be such that A ⊃ B and A ∩ C = ∅. Prove

that ρG(A−B) = ρG(A)− ρG(B) + 3|EG(A−B,B)| (equivalently, ρG(A∪C) = ρG(A) + ρG(C)−
3|EG(A,C)|).

Note that |E(G)| < 5|V (G)|−2
3 is equivalent to ρ(V (G)) > 2. Let G be a vertex-minimal 4-critical

graph with ρ(V (G)) > 2. This implies that

if |V (H)| < |V (G)| and P (H) > 2, then H is 3-colorable. (27)

Definition 2. For a graph G, a set R ⊂ V (G) and a 3-coloring φ of G[R], the graph Y (G,R, φ) is

constructed as follows. First, for 1 ≤ i ≤ 3, let R′i denote the set of vertices in V (G)−R adjacent

to at least one vertex v ∈ R with φ(v) = i. Second, let X = {x1, x2, x3} be a set of new vertices

disjoint from V (G). Now, let Y = Y (G,R, φ) be the graph with vertex set V (G)−R+X, such that

Y [V (G)−R] = G−R and N(xi) = R′i ∪ (X − xi) for 1 ≤ i ≤ 3.

Claim 1. Suppose R ⊂ V (G), and φ is a 3-coloring of G[R]. Then χ(Y (G,R, φ)) ≥ 4.

Proof. Let G′ = Y (G,R, φ). Suppose G′ has a 3-coloring φ′ : V (G′) → C = {1, 2, 3}. By

construction of G′, the colors of all xi in φ′ are distinct. So we may assume that φ′(xi) = i for

1 ≤ i ≤ 3. By construction of G′, for all vertices u ∈ R′i, φ′(u) 6= i. Therefore φ|R ∪ φ′|V (G)−R is a

proper 3-coloring of G, a contradiction. 2

Claim 2. There is no R ( V (G) with |R| ≥ 2 and ρG(R) ≤ 5.

Proof. Let 2 ≤ |R| < |V (G)| and ρ(R) = m = min{ρ(W ) : W ( V (G), |W | ≥ 2}. Suppose

m ≤ 5. Then by Exercise 8, |R| ≥ 4. Since G is 4-critical, G[R] has a proper coloring φ : R →
C = {1, 2, 3}. Let G′ = Y (G,R, φ). By Claim 1, G′ is not 3-colorable. Then it contains a 4-critical

subgraph G′′. Let W = V (G′′). Since |R| ≥ 4 > |X|, |V (G′′)| < |V (G)|. So, by the minimality of

G, ρG′(W ) ≤ 2. Let X ′ = W ∩ X. Since G is 4-critical by itself, every proper subgraph of G is

3-colorable and so X ′ 6= ∅. Since 0 < |X ′| ≤ 3, by Exercise 8, ρG′(X ′) ≥ 5. Since

|EG′(W −X ′, X ′)| ≤ |EG′(W −X ′, X)| = |EG(W −X ′, R)|,

by Exercise 9,

ρG((W −X ′) +R) = ρG(W −X ′) + ρG(R)− 3|EG(W −X ′, R)|

= ρG′(W −X ′) +m− 3|EG′(W −X ′, X)|

≤ ρG′(W )− ρG′(X ′) + 3|EG′(W −X ′, X ′)|+m− 3|EG′(W −X ′, X)|

≤ ρG′(W )− ρG′(X ′) +m ≤ 2− 5 +m.

(28)
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Since W − X + R ⊃ R, |W − X + R| ≥ 2. Since ρG(W − X + R) < ρG(R), by the choice of R,

W −X +R = V (G). But then ρG(V (G)) ≤ m− 3 ≤ 2, a contradiction. 2

Claim 3. If R ( V (G), |R| ≥ 2 and ρk(R) ≤ 6, then R is a K3.

Proof. Let R have the smallest ρ(R) among R ( V (G), |R| ≥ 2. Suppose m = ρ(R) ≤ 6 and

G[R] 6= K3. Then |R| ≥ 4. By Claim 2, m = 6.

Let R∗ = {u1, . . . , us} be the set of vertices in R that have neighbors outside of R. Because G is

2-connected, s ≥ 2. Let H = G[R] + u1u2. Since R 6= V (G), |V (H)| < |V (G)|. By the minimality

of ρ(R), for every U ⊆ R with |U | ≥ 2, ρH(U) ≥ ρG(U) − 3 ≥ ρG(R) − 3 ≥ 3. Thus P (H) ≥ 3,

and by (27), H has a proper 3-coloring φ with colors in C = {1, 2, 3}. Let G′ = Y (G,R, φ).

Since |R| ≥ 4, |V (G′)| < |V (G)|. By Claim 1, G′ is not 3-colorable. Thus G′ contains a 4-critical

subgraph G′′. Let W = V (G′′). By the minimality of |V (G)|, ρG′(W ) ≤ 2. Since G is 4-critical

by itself, W ∩ X 6= ∅. Let X ′ = W ∩ X. By Exercise 8, if |X ′| ≥ 2 then similarly to (28),

ρk,G(W −X ′+R) ≤ ρG′(W )−6+6 ≤ 2, a contradiction again. So, we may assume that X ′ = {x1}.
Then again as in (28),

ρG(W − {x1}+R) ≤ (ρG′(W )− 5) + ρG(R) ≤ ρG(R)− 3. (29)

By the minimality of ρG(R), W − {x1}+R = V (G). This implies that W = V (G′)−X + x1.

Let R1 = {u ∈ R∗ : φ(u) = φ(x1)}. If |R1| = 1, then ρG(W − x1 ∪ R1) = ρH(W ) ≤ 2, a

contradiction. Thus, |R1| ≥ 2. Since R1 is an independent set in H and u1u2 ∈ E(H), we may

assume that u2 /∈ R1. Then EG′(W − x1, X − x1) 6= ∅. So, in this case repeating the argument of

(28), instead of (29) we have

ρG(W − {x1}+R) ≤ ρG′(W )− 5 + ρG(R)− 3|EG′(W − x1, X − x1)| ≤ ρG(R)− 6 ≤ 0. 2

Claim 4. G does not contain K4 − e.

Proof. If G[R] = K4 − e, then ρG(R) = 5(4)− 3(5) = 5, a contradiction to Claim 3. 2

Claim 5. Each triangle in G contains at most one vertex of degree 3.

Proof. By contradiction, assume that G[{x1, x2, x3}] = K3 and d(x1) = d(x2) = 3. Let

N(x1) = X − x1 + a and N(x2) = X − x2 + b. By Claim 4, a 6= b. Define G′ = G− {x1, x2}+ ab.

Because ρG(W ) ≥ 6 for all W ⊆ G − {x1, x2} with |W | ≥ 2, and adding an edge decreases the

potential of a set by 3, P (G′) ≥ min{5, 6− 3} = 3. So, by (27), G′ has a proper 3-coloring φ′ with

φ′(a) 6= φ′(b). This easily extends to a proper 3-coloring of G. 2

Claim 6. Let xy ∈ E(G) and d(x) = d(y) = 3. Then both, x and y are in triangles.

Proof. Assume that x is not in a K3. Suppose N(x) = {y, u, v}. Then uv /∈ E(G). Let G′

be obtained from G − y − x by gluing u and v into a new vertex u ∗ v. Then |V (G′)| < |V (G)|.
If G′ has a 3-coloring φ′ : V (G′) → C = {1, 2, 3}, then we extend it to a proper 3-coloring φ
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of G as follows: define φ|V (G)−x−y−u−v = φ′|V (G′)−u∗v, then let φ(u) = φ(v) = φ′(u ∗ v), choose

φ(y) ∈ C − (φ′(N(y)− x)), and φ(x) ∈ C − {φ(y), φ(u)}.
So, χ(G′) ≥ 4 and G′ contains a 4-critical subgraph G′′. Let W = V (G′′). Since G′′ is smaller

than G, ρG′(W ) ≤ 2. Since G′′ is not a subgraph of G, u ∗ v ∈W . Let W ′ = W − u ∗ v+ u+ v+ x.

Then ρG(W ′) ≤ 2 + 5(2)− 3(2) = 6, since G[W ′] has two extra vertices and at least two extra

edges in comparison with G′′. Because y /∈W ′, we have W ′ 6= V (G), and therefore by Claim 3, W

induces a K3 in G. This contradicts our assumption that x is not in a K3. 2

By Claims 5 and 6, we have

Each vertex of degree 3 has at most one neighbor of degree 3. (30)

We will now use discharging to show that |E(G)| ≥ 5
3 |V (G)|, which will finish the proof to Case

k = 4 of Theorem 13. Each vertex begins with charge equal to its degree. If d(v) ≥ 4, then v gives

charge 1
6 to each neighbor with degree 3. Note that v will be left with charge at least 5

6d(v) ≥ 10
3 .

By (30), each vertex of degree 3 will end with charge at least 3 + 2
6 = 10

3 . 2

7 Triangle-free graphs, hypergraphs and unsolved problems

Kostochka and Stiebitz [37] proved that for large k and n > k, k-critical n-vertex triangle-free

graphs must have almost 2f(n, k) edges. Asymptotically (in k) this is best possible: Some simple

constructions of k-critical n-vertex graphs of arbitrary girth with average degree at most 2k − 1

one can find in [33]. For small k, Postle [48, 49] recently obtained nice results. He proved that the

asymptotical average degree for 4-critical graphs of girth 5 must be larger (not much, but larger)

than the bound in Theorem 13. In [49] he proved a similar result for triangle-free 5-critical graphs.

But these bounds most likely are not sharp, and finding exact bounds is a challenging problem.

The situation with hypergraphs with no graph edges is similar: it is proved in [37] that for large

k, k-critical n-vertex hypergraphs must have almost 2f(n, k) edges, and constructions in [33] show

that this bound for large k is asymptotically best. Again, exact bounds are not known, and values

for small k ≥ 4 are not known.

For list coloring, recently Kierstead and Rabern [32] and Rabern [51] using new ideas significantly

improved the lower bounds on f`(n, k). Still, asymptotics of f`(n, k) is not known.

Another challenge is to prove Ore’s Conjecture in full.

Many interesting unsolved problems on k-critical graphs are in [29]. In particular, there and

in [56] the following problem by Dirac and Erdős is stated:

What is the maximum number of edges h(n, k) in a k-critical n-vertex graph, when k is fixed

and n is large?

Even for k = 6, h(n, 6) is quadratic in n: for n = 4t + 2, take two disjoint cycles C1 and C2 of

length 2t + 1 and join by an edge each vertex of C1 with each vertex of C2. It is not proved that

this construction is best possible. Moreover, Toft [29][P. 97] conjectures that it is not best possible.

He has a construction of vertex-6-critical n-vertex graphs with at least 3n2/10 edges.

Acknowledgment. Many thanks to Anton Bernshteyn for many helpful comments.
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