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ABSTRACT

Szemer�edi�s Regularity Lemma is an important tool in discrete mathematics� It says that� in some

sense� all graphs can be approximated by random�looking graphs� Therefore the lemma helps in

proving theorems for arbitrary graphs whenever the corresponding result is easy for random graphs�

Recently quite a few new results were obtained by using the Regularity Lemma� and also some new

variants and generalizations appeared� In this survey we describe some typical applications and

some generalizations�
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Preface

Szemer�edi�s Regularity Lemma 	�
�� is one of the most powerful tools of �extremal
 graph
theory� It was invented as an auxiliary lemma in the proof of the famous conjecture of Erd�os
and Tur�an 	��� that sequences of integers of positive upper density must always contain long
arithmetic progressions� Its basic content could be described by saying that every graph can�
in some sense� be well approximated by random graphs� Since random graphs of a given
edge density are much easier to treat than all graphs of the same edge�density� the Regularity
Lemma helps us to carry over results that are trivial for random graphs to the class of all
graphs with a given number of edges� It is particularly helpful in �fuzzy� situations� i�e��
when the conjectured extremal graphs have no transparent structure�

This paper is partly a survey� partly an attempt to clarify some technical aspects of the
Regularity Lemma� It is not aiming at compiling all references on the subject� still we felt
that such a pseudo�survey may be useful for graph theorists� We will also provide some
proof�sketches to demonstrate how to apply the Regularity Lemma in various situations�
We also suggest reading the important paper of Alon� Duke� Le�man� R�odl� and Yuster 	��
about the algorithmic aspects of the Regularity Lemma�

Remark� Sometimes the Regularity Lemma is called Uniformity Lemma� see e�g� 	��� and
	���

Notation� In this paper we mostly consider simple graphs� graphs without loops and mul�
tiple edges�

v�G
 is the number of vertices in G �order
� e�G
 is the number of edges in G �size
� Gn

will always denote a graph with n vertices� deg�v
 is the degree of vertex v and deg�v� Y 

is the number of neighbours of v in Y � ��G
���G
 and t�G
 are the minimum degree�
maximum degree and average degree of G� ��G
 is the chromatic number of G� N�x
 is the
set of neighbours of the vertex x� and e�X�Y 
 is the number of edges between X and Y �
A bipartite graph G with color�classes A and B and edges E will sometimes be written as



� 
 �

G � �A�B�E
� E � A�B� For disjoint X�Y � we de�ne the density

d�X�Y 
 �
e�X�Y 


jXj � jY j �

The density of a bipartite graph G � �A�B�E
 is the number

d�G
 � d�A�B
 �
jEj

jAj � jBj �

G�U
 is the restriction of G to U and G � U is the restriction of G to V �G
 � U � For two
disjoint subsets A�B of V �G
� we write G�A�B
 for the subgraph with vertex set A � B
which has all edges of G with one endpoint in A and the other in B � when G is clearly
understood� we will just call this bipartite graph the pair �A�B
� As is customary in graph
theory� we will often identify a graph with its edge�set�

For graphs G�H� H � G means H is a subgraph of G� but often we will use this in the
looser sense that G has a subgraph isomorphic to H �H is embeddable into G
� that is�
there is a one�to�one map �injection
 � � V �H
 � V �G
 such that fx� yg � E�H
 implies
f��x
� ��y
g � E�G
� kH � Gk denotes the number of labelled copies of H in G� We say
that the graphs G� � �V�E�
 and G� � �V�E�
 pack �can be packed together
 if there is a
bijection � � V � V such that fx� yg � E� implies f��x
� ��y
g �� E�� In other words�

G� � G� ��

�
V�

�
V




�
� E�

�
�

	n� denotes the set f�� 
� � � � � ng� The cardinality of a set S will mostly be denoted by jSj�
but sometimes we write �S� We will be somewhat sloppy by often disregarding rounding�

� Introduction

��� The structure of this survey

Below we start with some historical remarks� then we state and sketch the proof of the
Regularity Lemma� After that we introduce the basic notion of the Reduced Graph of a
graph corresponding to a partition of the vertex�set� and state a simple but fairly useful tool
�Key Lemma
� Then in the body of the paper we show how it� or a stronger version of it
�Blow�up Lemma
� can be used for building bounded degree subgraphs H in a large dense
graph Gn� as well as for embedding trees� This will provide simple proofs for many classical
and new theorems of extremal graph theory�

We will also touch upon some algorithmic aspects of the Regularity Lemma� its relation to
quasi�random graphs and extremal subgraphs of a random graph� We also shortly mention
a sparse version and a hypergraph version�



� � �

��� Regular pairs

Regular pairs are highly uniform bipartite graphs� namely ones in which the density of any
reasonably sized subgraph is about the same as the overall density of the graph�

De�nition ��� �Regularity condition�� Let � � �� Given a graph G and two disjoint
vertex sets A � V � B � V � we say that the pair �A�B
 is ��regular if for every X � A and
Y � B satisfying

jXj � �jAj and jY j � �jBj
we have

jd�X�Y 
� d�A�B
j � ��

The following simple fact guarantees that it is su�cient to check the regularity condition for
sets of exact size jXj � b�jAjc� �� jY j � b�jBjc� ��

Fact ��� �Convexity of density�� Given a bipartite graph with colour classes A and B�
for all integers k � jAj and � � jBj�

d�A�B
 �
��

jAj
k

��
jBj
�

� X�d�X�Y 
 � X � A� jXj � k� Y � B� jY j � �
�

The next one is the most important property of regular pairs�

Fact ���� �Most degrees into a large set are large
 Let �A�B
 be an ��regular pair with
density d� Then for any Y � B� jY j � �jBj we have

�fx � A � deg�x� Y 
 � �d � �
jY jg � �jAj�

More generally� if we �x a Y � B� and � vertices xi � A� then �typically� they have at least
the expected d�jY j neighbours in common�

Fact ��� �Intersection Property�� If Y � B and �d� �
���jY j � �jBj� �� 	 �
� then

�
�
�x�� x�� � � � � x�
 � xi � A�

����Y ��
�


i��
N�xi


����� � �d� �
�jY j
	
� ��jAj��

The last two properties have corresponding upper parts �e�g� deg�x� Y 
 � �d��
jY j replaced
by deg�x� Y 
 	 �d � �
jY j
� but we usually use them the way we stated them� and in these
forms they also hold for somewhat weaker structures�

The next property says that subgraphs of a regular pair are regular�

Fact ��� �Slicing Lemma�� Let �A�B
 be an ��regular pair with density d� and� for some
	 � �� let A� � A� jA�j 	 	jAj� B� � B� jB�j 	 	jBj� Then �A�� B�
 is an ���regular pair with
�� � maxf�
	� 
�g� and for its density d� we have jd� � dj � ��
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Later we will also use a one�sided version of regularity�

De�nition ��	 �Super
regularity�� Given a graph G and two disjoint vertex sets A � V �
B � V � we say that the pair �A�B
 is ��� �
�super�regular if for every X � A and Y � B
satisfying

jXj � �jAj and jY j � �jBj
we have

e�X�Y 
 � �jXjjY j�
and furthermore�

deg�a
 � �jBj for all a � A� and deg�b
 � �jAj for all b � B�

��� The Regularity Lemma

The Regularity Lemma says that every dense graph can be partitioned into a small number of
regular pairs and a few leftover edges� Since regular pairs behave as random bipartite graphs
in many ways� the Regularity Lemma provides us with an approximation of an arbitrary
dense graph with the union of a constant number of random�looking bipartite graphs�

Theorem ��� �Regularity Lemma� Szemer
edi ���� ������� For every � � � and m
there exist two integers M���m
 and N���m
 with the following property� for every graph G
with n 	 N���m
 vertices there is a partition of the vertex set into k � � classes

V � V� � V� � V� � � � �� Vk

such that

� m � k �M���m
�

� jV�j � �n�

� jV�j � jV�j � � � � � jVkj�
� all but at most �k�� of the pairs �Vi� Vj
 are ��regular�

The classes Vi will be called groups or clusters� The role of the exceptional set V� is purely
technical� to make possible that all other classes have exactly the same cardinality� Indeed�
having an m and choosing m� � m� ��� and applying the Regularity Lemma with this new
m� one can distribute the vertices of V� evenly among the other classes so that jVij � jVjj
and ��regularity is preserved with a slightly larger �� In other words� we may assume that
V� � 
 if the conditions jVij � jVjj are relaxed to jjVij � jVjjj � ��

The role of m is to make the classes Vi su�ciently small� so that the number of edges inside
those classes are negligible� Hence� the following is an alternative form of the Regularity
Lemma�
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Theorem ���� �Regularity Lemma � alternative form
 For every � � � there exists an M��

such that the vertex set of any n�graph G can be partitioned into k sets V�� � � � � Vk� for some
k �M��
� so that

� jVij � d�ne for every i�
� jjVij � jVjjj � � for all i� j�

� �Vi� Vj
 is ��regular in G for all but at most �k� pairs �i� j
�

If we have a sequence �Gn
 of graphs with e�Gn
 � o�n�
� the Regularity Lemma becomes
trivial� Gn is approximated by the empty graph� Thus the Regularity Lemma is useful only
for large� dense graphs�

De�nition ��� ����	��� Given an r � r symmetric matrix �pij
 with � � pij � �� and
positive integers n�� � � � � nr� we de�ne a generalized random graph Rn �for n � n� �
� � � � nr
 by partitioning n vertices into classes Vi of size ni and then joining the vertices
x � Vi� y � Vj with probability pij � independently for all pairs fx� yg�

Now� Szemer�edi�s Lemma asserts in a way that every graph can be approximated by gener�
alized random graphs�

��� A more applicable form of the Regularity Lemma

Most applications of the Regularity Lemma deal with monotone problems� when throwing
in more edges can only help� In these applications� one starts with applying the original
form of the Regularity Lemma to create a regular partition� then gets rid of all edges within
the clusters of the partition� also the edges of non�regular pairs as well as those of regular
pairs with too low densities� The leftover �pure� graph is much easier to handle and it still
contains most of the original edges� The following precise formulation of this process is a
simple consequence of the Regularity Lemma

Theorem ���� �Degree Form�� For every � � � there is an M � M��
 such that if
G � �V�E
 is any graph and d � 	�� �� is any real number� then there is a partition of the
vertex�set V into k � � clusters V�� V�� � � � � Vk� and there is a subgraph G� � G with the
following properties�

� k �M �

� jV�j � �jV j�
� all clusters Vi� i 	 �� are of the same size m � d�jV je�
� degG��v
 � degG�v
� �d� �
jV j for all v � V �

� e�G��Vi

 � � for all i 	 ��



� � �

� all pairs G��Vi� Vj
 �� � i � j � k
 are ��regular� each with a density either � or greater
than d�

Remark� In a typical application of the Degree Form� we start o� with a graph Gn and
appropriate parameters � and d� and then obtain a partition V�� V�� � � � � Vk of V � Then we
usually drop the set V� to get a �pure� graph G�� � G� � V�� This pure graph G�� is much
easier to deal with� and it still contains most of the original edges�

degG���v
 � degG�v
� �d� �
n� jV�j 	 degG�v
� �d � 
�
n for all v � V �G��
�

whence
e�G��
 � e�G
� �d� ��
n�

�

��� The road to the Regularity Lemma

The following is a basic result in combinatorial number theory�

Theorem ���� �van der Waerden ���� ������� Let k and t be arbitrary positive inte�
gers� If we color the integers in t colors� at least one color�class will contain an arithmetic
progression of k terms�

A standard compactness argument shows that the following is an equivalent form�

Theorem ���� �van der Waerden 
 �nite version�� For any integers k and t there
exists an n such that if we color the integers f�� � � � � ng with t colors� then at least one
color�class will contain an arithmetic progression of k terms�

This is a Ramsey type theorem in that it only claims the existence of a given con�guration
in one of the color classes without getting any control over which class it is� It turns out
that the van der Waerden problem is not a true Ramsey type question but of a density type�
the only thing that matters is that at least one of the color classes contains relatively many
elements� Indeed� answering a very deep and di�cult conjecture of P� Erd�os and P� Tur�an
from ���� 	���� Endre Szemer�edi proved that positive upper density implies the existence of
an arithmetic progression of k terms�

Theorem ���� �Szemer
edi ���� ������� For every integer k � 
 and � � � there exists
a threshold n� � n��k� �
 such that if� for some n 	 n�� A � f�� � � � � ng and jAj � �n� then
A must contain an arithmetic progression of k terms�

Remark� For k � � this is a theorem of K�F� Roth 	���� that dates back to ����� and it
was already an important breakthrough when Szemer�edi succeeded in proving the theorem in
���� for k � � 	�� �� One of the interesting questions in this �eld is the speed of convergence
to � of rk�n

n� where rk�n
 is the maximum size of a subset of 	n� not containing an
arithmetic progression of length k� Szemer�edi�s proof used van der Waerden�s theorem and
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therefore gave no reasonable bound on the convergence rate of r��n

n� Roth found an
analytical proof a little later 	��
� ���� not using van der Waerden�s theorem and thus
providing some weak estimates on the convergence rate of r��n

n 	��
�� which � probably �
imply that

r��n
 � O

�
n

log� n

�

for some su�ciently large �� where log� n denotes the ��times iterated logarithm�

Szemer�edi�s theorem was also proved by F�urstenberg 	�!� in ��!! using ergodic theoretical
methods� It was not quite clear �rst if the F�urstenberg proof was really di�erent from that
of Szemer�edi� but subsequent generalizations due to F�urstenberg and Katznelson 	��� and
later by Bergelson and Leibman 	��� convinced the mathematical community that Ergodic
Theory is a natural tool to attack combinatorial questions� The scope of this survey does
not allow us to explain these generalizations� We refer the reader to the book of R�L�
Graham� B� Rothschild and J� Spencer� Ramsey Theory 	!��� which describes the Hales�
Jewett theorem and how these theorems are related� and its chapter �Beyond Combinatorics�
gives an introduction into related �elds of topology and ergodic theory� Another good source
is the paper of F�urstenberg in this very volume 	� ��

��� A historical detour	 the Original Szemer
edi Lemma

To prove his theorem rk�n
 � o�n
� Szemer�edi used a weaker version of his lemma 	�
���
which was formulated only for bipartite graphs�

Theorem ���� �The Old Szemer
edi Lemma�� For every ��� ��� �� �� � � � there exist
n��m�� N�M� such that for every bipartite graph �A�B�E
 with jAj � n 	 N � jBj � m 	M
there exist sets Vi � A �i � n�
 and Vij � B �i � n�� j � m�
 for which
�a
 jA� �i�n�Vij � �n� and jB � S

j�m�
Vij j � �m� for every i � n�� and

�b
 for every i � n�� j � m� and for every T � Vi� S � Vij � if jT j � ��jVij and jSj � ��jVijj�
then

d�T� S
 � d�Vi� Vij
� �

and
jN�u
 
 Vij � �d�Vi� Vij
 � �
jVij for each u � Vij�

The Old Szemer�edi Lemma is weaker than the new version not because it refers to bipartite
graphs but because for each Vi of the partition we have to choose its own partition Vij of the
set V �Gn
� Vi� Still there are many cases where the Old Szemer�edi Lemma is as applicable
as the new one� see 	���� �� ��

In this paper we consider almost exclusively graph theoretical applications� However� the
lemma was invented to solve number�theoretical problems� and it is still used for this purpose
also� For a recent number theoretical application see the paper of Balog and Szemer�edi 	���
There are also many applications in combinatorial geometry� We refer the reader to a
forthcoming book of Pach and Agarwal 	���� and to the paper of Erd�os� Makai and Pach
	����
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��� Proof of the Regularity Lemma

We only sketch the proof and emphasize its main features�

First a measure called index is de�ned for every partition of V �G
 measuring in a way how
regular the pairs are in the partition� Let P be a partition of V into V�� V�� � � � � Vk and let

ind�P 
 �
�

k�

kX
i��

kX
j�i��

d��Vi� Vj
�

Obviously�

ind�P 
 � �



�

Now the basic idea is that if a partition violates the regularity conditions of the Regularity
Lemma then one can re�ne this partition so that the index will grow signi�cantly�

Lemma ����� Let G � �V�E
 be a graph with n vertices� Let P be a partition of V into
k � � classes V�� V�� � � � � Vk �where k 	 k�� so that jV�j � �n and the Vi	s have the same size
for � � i � k� If for a given � � � more than �k� classes are ��irregular �� then there exists
a re�nement Q of P � into � � k�k classes such that

ind�Q
 	 ind�P 
 �
��


�
��


and the size of the exceptional class V� increases by at most n
�k�

Iterating this re�nement in t steps and using ��
 we get for the t�th new partition Pt�

�



	 ind�Pt
 	 ind�P 
 �

t��


�

implying

t � ��

��
�

Hence in at most ����� improvement steps we arrive at a partition which satis�es the con�
ditions of the lemma� This means that the number of classes �disregarding the exceptional
class V�
 will be �t�times iterated exponentiation�� De�ne f��
 � m� f�t��
 � ��f�t
��f�t��
Then the number of classes will be at most f���
��
�

The proof of Lemma ���� uses the following defect form of the Cauchy�Schwarz inequality�

Lemma ���	 �Improved Cauchy
Schwarz inequality�� If for the integers � � m � n�

mX
k��

Xk �
m

n

nX
k��

Xk � ��

then
nX

k��

X�
k 	

�

n

�
nX

k��

Xk

��

�
��n

m�n�m

�

�i�e�� not �	regular
�More precisely� Q is a re�nement if we disregard the exceptional class V�
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The following simple property of density is also used�

Fact ���� �Continuity of density��

jd�X�Y 
� d�A�B
j � �� � jXj
jAj
 � �� � jY j
jBj
 for all X � A� Y � B�

One remark should be made here� As we have seen� the proof of the Regularity Lemma
involved ������times iterated exponentiation� Hence the estimates in many applications of
Regularity Lemma seem to be too weak� But in the original application� namely in the
proof of rk�n
 � o�n
� this is not the weakest point� Szemer�edi applied the van der Waerden
Theorem where the estimates are much�much weaker� For a much weaker but quantitatively
more e�cient statement� see Lemma !���

��� Are there exceptional pairs 


The Regularity Lemma does not assert that all pairs of clusters are regular� In fact� it allows
�k� pairs to be irregular� For a long time it was not known if there must be irregular pairs at
all� It turned out that there must be at least ck irregular pairs� Alon� Duke� Le�man� R�odl
and Yuster 	�� write� �In 	�
�� the author raises the question if the assertion of the lemma
holds when we do not allow any irregular pairs in the de�nition of a regular partition� This�
however� is not true� as observed by several researchers� including L� Lov�asz� P� Seymour�
T� Trotter and ourselves� A simple example showing that irregular pairs are necessary is a
bipartite graph with vertex classes A � fa�� � � � � ang and B � fb�� � � � � bng in which aibj is
an edge i� i � j�� 	

��� The Regularity Lemma with many colors

Some generalizations use an extension of the Regularity Lemma for many colors� This asserts
that if the edges are r�colored� then we may partition the vertex�set into a bounded number
of classes so that almost all pairs of classes are ��regular in each color simultaneously� If the
edges of a graph are r�colored� we will write d� for the edge�density in the 
�th color�

Theorem ���� �Many
Color Regularity Lemma�� For any � � � and integers r� �
there exists an M such that if the edges of a graph Gn are r�colored then the vertex set
V �Gn
 can be partitioned into sets V�� V�� � � � � Vk � for some � � k �M � so that jV�j � �n�
jVij � m �the same� for every i 	 �� and all but at most �k� pairs �Vi� Vj
 satisfy the following
regularity condition� for every X � Vi and Y � Vj of size jXj� jY j � �m we have

jd��X�Y 
� d��Vi� Vj
j � � �
 � �� � � � � r
�

Proof� Use the original proof� but modify the de�nition of index by summing the indices
for each color� for a partition P of V into V�� V�� � � � � Vk� let

ind�P 
 �
�

k�

X
�

kX
i��

kX
j�i��

d���Vi� Vj
�

�This important graph is called the half�graph�
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� How to apply the Regularity Lemma

��� Building up small subgraphs

It is well�known that a random graph Gn with �xed edge�density p � � contains any �xed
graph H almost surely �as n � �
� In some sense this is trivial� we can build up this H
vertex by vertex� If we have already �xed � vertices ofH then it is easy to �nd an appropriate
�� � �
�th vertex with the desired connections� The Regularity Lemma achieves the same
e�ect� To formulate this we introduce the notion of Reduced Graph�

��� The Reduced Graph

Given an arbitrary graph G � �V�E
� a partition P of the vertex�set V into V�� � � � � Vk� and
two parameters �� d� we de�ne the Reduced Graph �or Cluster graph
 R as follows� its
vertices are the clusters V�� � � � � Vk and Vi is joined to Vj if �Vi� Vj
 is ��regular with density
more than d� Most applications of the Regularity Lemma use Reduced Graphs� and they
depend upon the fact that many properties of R are inherited by G� Typically� we start with
�purifying the graph� as described after Theorem ����� that is� we pass from the graph G
to G�� �or G�
 of the Degree Form� and study the Reduced Graph of that latter graph� The
most important property of Reduced Graphs is mentioned in the following section�

��� A useful lemma

Many of the proofs using the Regularity Lemma struggle through similar technical details�
These details are often variants of an essential feature of the Regularity Lemma� If G has a
reduced graph R and if the parameter � is small enough� then every small subgraph H of R
is also a subgraph of G� In the �rst applications of the Regularity Lemma the graph H was
�xed� but the greedy algorithm outlined in the section �Building up small subgraphs� works
smoothly even when the order of H is proportional with that of G as long as H has bounded
degrees� �Another standard class of applications � embedding trees into dense graphs � will
be discussed later�


The above mentioned greedy embedding method for bounded degree graphs is so frequently
used that� just to avoid repetitions of technical details� it is worth while spelling it out in a
quotable form�

For a graph R and positive integer t� let R�t
 be the graph obtained from R by replacing
each vertex x � V �R
 by a set Vx of t independent vertices� and joining u � Vx to v � Vy i�
�x� y
 is an edge of R� In other words� we replace the edges of R by copies of the complete
bipartite graph Ktt�

Theorem ��� �Key Lemma�� Given d � � � �� a graph R� and a positive integer m�
let us construct a graph G by replacing every vertex of R by m vertices� and replacing the
edges of R with ��regular pairs of density at least d� Let H be a subgraph of R�t
 with h



� �� �

vertices and maximum degree � � �� and let � � d� � and �� � �

�
 � �
� If � � �� and
t� � � ��m� then H � G� In fact�

kH � Gk � ���m
h�

Remark� Note that v�R
 didn�t play any role here�

Remark� Often we use this for R itself �that is� for t � �
� If � � �
�R�
�
 � ��R

 then
R � G� in fact� kR� Gk 	 ��m
v�R��

Remark� Using the Slicing Lemma �and changing the value of ��
� it is easy to replace the
condition H � R���m
 with the assumptions

�"
 every component of H is smaller than ��m�

�""
 H � R��� � ��
m
�

One can strengthen this tremendously by proving the same for all bounded degree subgraphs
H of the full R�m
� This provides a very powerful tool �Blow�up Lemma
� and it is described
in Section ��

Proof of the Key Lemma� We prove the following more general estimate�

If t� � � ��
 ���
m then kH � Gk �
h
��
 ���
m� �t� �


ih
�

We embed the vertices v�� � � � � vh of H into G by picking them one�by�one� For each vj not
picked yet we keep track of an ever shrinking set Cij that vj is con�ned to� and we only make
a �nal choice for the location of vj at time j� At time �� C�j is the full m�set vj is a priori
restricted to in the natural way� Hence jC�jj � m for all j� The algorithm at time i 	 �
consists of two steps�

Step � � Picking vi� We pick a vertex vi � Ci���i such that

degG�vi� Ci���j
 � �jCi���jj for all j � i such that fvi� vjg � E�H
� ��


Step 
� � Updating the Cj	s� We set� for each j � i�

Cij �



Ci���j 
N�vi
 if fvi� vjg � E�H

Ci���j otherwise�

For i � j� let dij � �f� � 	i� � fv�� vjg � E�H
g�

Fact� If dij � � then jCijj � �dijm� �If dij � � then jCijj � m�


Thus� for all i � j� jCijj � �
m 	 �m� and hence� when choosing the exact location of vi�
all but at most ��m vertices of Ci���i satisfy ��
� Consequently� we have at least

jCi���ij ���m� �t� �
 � ��
 ���
m� �t� �




� �
 �

free choices for vi� proving the claim�

Remark� We did not use the full strength of ��regularity for the pairs �A�B
 of m�sets
replacing the edges of H� only the following one�sided property�

X � A� jXj � �jAj� Y � B� jY j � �jBj imply e�X�Y 
 � �jXjjY j�

Now most applications start with applying the Regularity Lemma for a graph G and �nding
the corresponding Reduced Graph R� Then usually a classical extremal graph theorem �like
the K�onig�Hall theorem� Dirac�s theorem� Tur�an�s theorem or the Hajnal�Szemer�edi theorem

is applied to the graph R� Then an argument similar to the Key Lemma �or its strengthened
version� the Blow�up Lemma
 is used to lift the theorem back to the graph G�

��� Some classical extremal graph theorems

This is only a brief overview of the standard results from extremal graph theory most often
used in applications of the Regularity Lemma� For a detailed description of the �eld we refer
the reader to 	��� ���� ����

The �eld of extremal graph theory started with the historical paper of P�al Tur�an in ����� in
which he determined the minimal number of edges that guarantees the existence of a p�clique
in a graph� The following form is somewhat weaker than the original theorem of Tur�an� but
it is perhaps the most usable form�

Theorem ��� �Tur
an ���� ������� If Gn is a graph with n vertices and

e�G
 �

�
� � �

p� �

�
n�



�

then Kp � Gn�

In general� given a family L of excluded graphs� one would like to determine the maximum
number of edges a graph Gn can have without containing any subgraph L � L� This
maximum is denoted by ex�n�L
 and the graphs attaining the maximum are called extremal
graphs� �We will use the notation ex�n�L
 for hypergraphs� too�
 These problems are often
called Tur�an type problems� and are mostly considered for simple graphs or hypergraphs�
but there are also many results for multigraphs and digraphs of bounded edge� or arc�
multiplicity �see e�g� 	� � ��� 
�� 
�� ��
�
�

Using this notation� the above form of Tur�an�s theorem says that

ex�n�Kp
 �
�
� � �

p � �

�
n�



�

The following theorem of Erd�os and Stone determines ex�n�Kp�t� � � � � t

 asymptotically�



� �� �

Theorem ��� �Erd�os
Stone ���	 ���� � Weak Form�� For any integers p 	 
 and
t 	 ��

ex�n�Kp�t� � � � � t

 �

�
�� �

p � �

��
n




�
� o�n�
�

�For strengthened versions� see 	
 � 
���
 This is� however� much more than just another
Tur�an type extremal result� As Erd�os and Simonovits pointed out in 	�
�� it implies the
general asymptotic description of ex�n�L
�

Theorem ���� If L is �nite and min
L�L

��L
 � p � �� then

ex�n�L
 �
�
� � �

p � �

��
n




�
� o�n�
�

So this theorem plays a crucial role in extremal graph theory� �For structural generalizations
for arbitrary L see 	��� �!� �����
 Its basic message is that the critical parameter determining
whether a graph L is a subgraph of all graphs Gn with a given edge density� is the chromatic
number of L� Contrast this with the well�known fact that the corresponding parameter for
random Gn is the average degree of L �more precisely� the maximum of the average degrees
of all subgraphs of L
�

The following is a generalization of the Erd�os�Stone theorem for hypergraphs� where L�t
 is
the hypergraph obtained from L as described for graphs in the paragraph preceding the Key
Lemma�

Theorem ��� �Erd�os ����� Brown
Simonovits ������ For r�uniform hypergraphs

ex�n�L�t

 � ex�n�L
 � o�nr
�

Another classical theorem often applied in proofs employing the Regularity Lemma is Dirac�s
theorem�

Theorem ��	 �Dirac ���� ������ If an n�graph G has minimum degree at least n

 then
G is Hamiltonian�

Just as Tur�an�s theorem or Dirac�s theorem are the standard tools in simple applications
of the Regularity Lemma� the following deep theorem of Hajnal and Szemer�edi is the key
element in sophisticated applications�

Theorem ��� �Hajnal
Szemer
edi ��	� ����� � Complementary Form�� If ��Gn
 	
��� �
r
n then Gn contains bn
rc vertex�disjoint copies of Kr�



� �� �

��� Two short proofs

While the Erd�os�Stone theorem has numerous classical proofs� just for demonstrating the
standard Regularity Lemma argument let us show how the Erd�os�Stone theorem follows
quite easily from Tur�an�s theorem and the Regularity Lemma�

Let � � �� and let Gn have more than ��� �
p��

��

�
n
�

�
edges� where n is large enough� Apply

the Degree Form of the Regularity Lemma �Theorem ����
 with d � �

 and � � ��
�
pt�
Let G�� � G� � V�� and let R be the Reduced Graph of G�� with parameters �� k� d� It is easy
to see that

e�R


k�


	 e�G��


n�


� �� �

p � �
�

Thus� by Tur�an�s theorem� R contains a p�clique� Hence the Key Lemma guarantees that
Gn contains Kp�t� � � � � t
 provided n is large in terms of t�

It is easy to see that we� in fact� proved the following stronger statement� �See also Frankl�
Pach 	���� and 	�����


Theorem ��� �Number of copies of H�� Let H be a graph with h vertices and chromatic
number p� Let � � � be given and write � � ��
�
h� If n is large enough and a graph Gn has

e�Gn
 �

�
�� �

p � �
� �

�
n�




then

kH � Gnk �
�

�n

M��


�h

�

It is interesting to contrast this with the following peculiar fact observed by F�uredi� If a
graph has few copies of a sample graph �e�g� few triangles
� then they can all be covered by
a few edges�

Theorem ��� �Covering copies of H�� For every � � � and sample graph H there is a
� � ����H
 � � such that if Gn is a graph with at most �nv�H� copies of H� then by deleting
at most �n� edges one can make Gn H�free�

Proof� Write h � v�H
 and � � ��
�
h� and select � � ��
M��

h� Assume �without loss
of generality
 that n is large enough� and apply the Degree Form of the Regularity Lemma
with d � � and� as before� let G�� be G� � V�� We claim that the graph G�� is H
free� Let
R be the Reduced Graph of G��� If G�� contained a copy of H� then R itself would have to
contain either H or at least a graph H � such that H � H ��h
� But then� by the Key Lemma�
we would have

kH � Gnk � ��m
h � ��n
k
h 	 ��n
M��

h � �nh�

a contradiction�

The above mentioned theorems can be proved directly without the Regularity Lemma� e�g�
using sieve�type formulas� see 	��� �
� ��� 
���



� �� �

� Early applications

Among the �rst graph theoretical applications� the Ramsey�Tur�an theorem for K� and the
��� �
�theorem of Ruzsa and Szemer�edi were proved using the Old Szemer�edi Lemma�

��� The ��� ���problem

The ��� �
�problem is a special hypergraph extremal problem� Brown� Erd�os and S�os asked
for the determination of the maximum number of hyperedges an r�uniform hypergraph can
have without containing � hyperedges the union of which is at most k� One of the simplest
cases they could not settle was this ��� �
�problem�

Theorem ��� �The ��� �

theorem� Ruzsa
Szemer
edi ���	 ������� If Hn is a 
�uniform
hypergraph on n vertices not containing � points with 
 or more triangles� then e�Hn
 � o�n�
�

It is easy to see that this theorem is equivalent to the following� �A matching M in G is
induced if the only edges of G connecting vertices ofM are those ofM � i�e� �no cross edges��


Theorem ��� �Induced matchings�� If Gn is the union of n induced matchings� then
e�Gn
 � o�n�
�

�The condition can be reformulated by saying that the edges of Gn are T �colored so that
every path P� � Gn is ��colored� Determine the maximum of e�Gn
� Such problems were
investigated among others by Burr� Erd�os� Graham and S�os in 	
��� Burr� Erd�os� Frankl�
Graham and S�os in 	

�� and the analogous problems for C� were solved by Erd�os and
Simonovits in 	����


It is interesting to note the following relation of the induced matching theorem �or the ��� �
�
theorem
 to r	�n
 � the length of the longest sequence of integers up to n not containing a
three�term arithmetic progression�

If f�k� n
 is the maximum number of edges an n�graph can contain if it is the union of k
induced matchings� then r	�n
 � f�n� �n

n� Indeed� let R � r	�n
� and let a�� � � � � aR �� n

be a maximum length sequence without a three�term arithmetic progression� De�ne the
bipartite graph G�n � �A�B�E
 as follows� A � 	
n�� B � 	�n�� and

E � A�B� E � f�x� ai� x� 
ai
 � x � 	n�� i � 	R�g�

Then G�n has exactlyRn edges� and it is the union of the nmatchingsMx � f�x�ai� x�
ai
 �
i � 	R�g� It remains to note the simple fact that the matchings Mx are induced in G�n�

Thus� the estimate
f�k� n
 � 
�n� � k�n for all large enough n

proven below gives perhaps the simplest proof so far for Roth�s theorem r	�n
 � o�n
� �Frankl
and R�odl think that perhaps the general rk�n
 � o�n
 theorem also has a similar proof� where�



� �� �

for some extremal hypergraph problem EXT�PR�k
 we have an upper bound o�n�
 and a
lower bound cn���rk�n
� They claim that this program works for proving r��n
 � o�n
�


Proof� We prove the following statement� Let � � � be arbitrary and n 	 
M��

��� If Gn

is the union of k induced matchings� then e�Gn
 � 
�n� � k�n�

Indeed� let us apply the Degree Form of the Regularity Lemma with parameter d � 
�� and
let G�� � G� � V�� We claim that any induced matching in G�� has at most �n edges�

Let IM be an induced matching in G��� and write U � V �IM
 for the vertex set of IM �
and Ui � U 
 Vi� De�ne I � fi � jUij � �jVijg� and set L � �i�IUi and S � U n L� Clearly
jSj � �n� Hence� if we had jU j � 
�n� then we would have jLj � jU j

� and thus there
would exist two vertices u� v � L adjacent in IM � Let u � Vi and v � Vj � We would thus
have an edge between Vi and Vj in the reduced graph R of G��� and hence a density more
than 
� between them� The sets Ui and Uj� being of size larger than �m each� would have a
density more than � between them� This means more than �jUijjUjj 	 minfjUij� jUjjg edges�
a contradiction with IM being induced�

�Since the function M��
 grows increadibly fast� this would only give an upper bound
r	�n
 � O�n
 log� n
� much weaker than Roth�s r	�n
 � O�n
 log log n
� let alone the
often conjectured r	�n
 � O�n
 log n
� The best known upper bound is due to Heath�
Brown 	! � and to Szemer�edi 	�

� improving Heath�Brown�s result� according to which
r	�n
 � O�n
 log����� n
�


��� Applications in Ramsey�Tur
an theory

Theorem ��� �Ramsey
Tur
an for K�� Szemer
edi ���� ������� If Gn contains no K�

and only contains o�n
 independent vertices� then e�Gn
 �
�
�n

� � o�n�
�

Proof� �Sketch
 The proof is based on the following three simple statements �stated infor�
mally �rst
 which we will not prove�

	�� If 	�G
 � t�G
 then K	 � G �This is trivial�

	
� If Gn is an ��regular pair with d�Gn
 � �

 and 	 � o�n
� then K� � Gn�
	�� If Gn is an ��regular triangle with 	 � o�n
� then K� � Gn�

The precise forms of 	
� and 	�� are as follows� A�B�C denote disjoint sets�

	
� Let G � �A �B�E
� jAj � jBj � m� and assume that
�i
 G�A�B
 is ��regular with density at least � � �� with some � � �

� � � ��
�ii
 	�G
 � �
� � �
m�
Then K� � G�

	�� Let G � �A �B � C�E
� jAj � jBj � jCj � m� and assume that
�i
 G�A�B
 is ��regular with density at least ���� with some � 	 � � �� and the same holds
for the pairs �A�C
� �B�C
�



� �! �

�ii
 	�G
 � ��m�
Then K� � G�

Now the proof of Theorem ��� goes as follows� Let

e�Gn
 � ��
 � ��
n�� 	�Gn
 � ��

M��

n � �� and n 	M��

��

Claim� K� � Gn�

Apply the Degree Form with parameters d � 
�� Let G�� � G� � V� be the usual pure graph
with Reduced Graph R� We have e�G��
 � ��
 � �
n��

Also note that

	�Gn
 � ��
�

n

M��

� �

�
� ��

�
n

k
� �

�
� ��m�

We will use the fact that we did not kill any edges in regular pairs of density greater than
� � � � 
� �we can�t a�ord decreasing 	 even within these pairs#
� and the edges inside
clusters will be put back later on�

Case I� If more than k�
� edges in R are present� then� by Tur�an�s theorem� R has a triangle�
We can use 	�� �with � � �
 to show that K� � G���

Case II� X
��i�j�k

d�Vi� Vj
 � e�G��

m� 	 e�G��
k�
n� � ��
 � �
k��

Hence� if at most k�
� of these densities are non�zero� then their average is greater than
d � �

 � ��� Thus� at least one of them has a density greater than d� Let H be the graph
consisting of this regular pair with the edges inside the two clusters put back� To show that
K� � G�� we can apply 	
� to H with � � d� � � �

 � ��� since

	�H
 � 	�Gn
 � �m � ��m � �
� � �
m�

Remark� Most people believed that in Theorem ��� the upper bound n�
 can be improved
to o�n�
� To their surprise� in ��!� Bollob�as and Erd�os 	��� came up with an ingenious
geometric construction that showed that the constant �
 in the theorem is best possible�
That is� they show the existence of a graph sequence �Hn
 for which

K� �� Hn� 	�Gn
 � o�n
 and e�Hn
 �
n�

 
� o�n�
�

Remark� A typical feature of the application of the regularity lemma can be seen above�
namely that we do not distinguish between o�n
 and o�m
� since the number k of clusters is
bounded and m � n
k�

Remark� The problem of determining max e�Gn
 under the condition

Kp �� Gn and 	�Gn
 � o�n




� � �

is much easier for odd p than for even p� A theorem of Erd�os and S�os describing the
odd case was a starting point of the so�called Theory of Ramsey
Tur
an problems�
The next important contribution was just the above�mentioned theorem of Szemer�edi �and
then the counterpart due to Bollob�as and Erd�os
� Finally the paper of Erd�os� Hajnal� S�os
and Szemer�edi 	��� completely solved the problem for all even p by generalizing the above
Szemer�edi and Bollob�as�Erd�os theorems� It again used the Regularity Lemma� There are
many related Ramsey�Tur�an theorems� we refer the reader to 	�!� and 	� �� The very �rst
Ramsey�Tur�an type problem can be found in the paper 	��!� of Vera S�os�

��� Other early applications

There are many applications where the Regularity Lemma is only as good as the old version�
Perhaps one of the �rst applications where the new version was used is the paper of Bollob�as�
Erd�os� Simonovits and Szemer�edi 	���� where various theorems on extremal graph problems
with large forbidden graphs were discussed� and in two cases the new Regularity Lemma
was used� One of these applications was an Erd�os�Stone type application that we skip here�
To state the other one we need a de�nition� Just as we de�ned the �blown�up� graph
H�t
� we de�ne H�t�� t�� � � � � tr
 similarly by replacing the i�th vertex of H by ti independent
vertices� and replacing an edge �vi� vj
 of H by the complete bipartite graph Kti�tj �

Theorem ���� Let t be an arbitrary natural number and c an arbitrary positive real number�
Then there exists an n� such that if n 	 n�� and Gn is a graph of order n then either Gn can
be turned into a bipartite graph by deleting cn� edges or C�k���t
 � Gn for some k satisfying

k � � � �
c�

Remark� In the above theorem it is not too important if we use C�k�� or C�k���t
� most
applications of Szemer�edi Lemma are such that whenever we can ensure the occurence of
a small subgraph L then we can also ensure the occurence of the blown�up graph L�t
�
Similarly� in most applications of the Regularity Lemma it does not make any di�erence if
we exclude L � Gn or if we replace this condition by the weaker one that Gn contains at
most o�nv�L�
 copies of L�

Remark� Theorem ��� has two proofs in 	���� one with and one without the Regularity
Lemma� In many cases� the application of the Regularity Lemma makes things transparent
but the same results can be achieved without it equally easily� One would like to know
when one can replace the Regularity Lemma with �more elementary� tools and when the
application of the Regularity Lemma is unavoidable� The basic experience is that when in
the conjectured extremal graphs for a problem the densities in the Szemer�edi partition are
all near to � or �� then the Szemer�edi lemma can probably be eliminated� On the other
hand� if these densities are strictly bounded away from � and � then the application of the
Szemer�edi lemma is typically unavoidable�



� �� �

��� Generalized random graphs

We already mentioned that in a sense the Regularity Lemma says that all graphs can be
approximated by generalized random graphs� The following observation was used in the
paper of Simonovits and S�os 	���� to characterize quasi�random graphs�

Theorem ���� Let � � � be arbitrary� and let V�� V�� � � � � Vk be a Szemer�edi partition of an
arbitrary graph Gn with � � �� and each cluster size less than �n� Let Qn be the random graph
obtained by replacing the edges joining the classes Vi and Vj �for all i �� j� by independently
chosen random edges of probability pi�j �� d�Vi� Vj
� and let H be any graph with � vertices�
If n 	 n�� then

kH � Qnk � C��n
� � kH � Gnk � kH � Qnk� C��n

��

almost surely� where C� is a constant depending only on ��

��� Building small induced subgraphs

While the reduced graph R of G certainly re$ects many aspects of G� when discussing induced
subgraphs the de�nition should be changed in a natural way� Given a partition V�� � � � � Vk
of the vertex�set V of G and positive parameters �� d� we de�ne the induced reduced graph
as the graph whose vertices are the clusters V�� � � � � Vk and Vi and Vj are adjacent if the pair
�Vi� Vj
 is ��regular in G with density between d and � � d� Then the following analogue of
the Key Lemma �stated in a less quantitative manner
 holds�

Theorem ��	� If the induced reduced graph of G contains an induced subgraph H� then so
does G� provided that � is small enough in terms of H� G even contains an induced copy of
H�r
 provided that � is small enough in terms of H and r�

Below we will describe an application of the regularity lemma to ensure the existence of
small induced subgraphs of a graph� not by assuming that the graph has many edges but by
putting some condition on the graph which makes its structure randomlike� fuzzy�

De�nition ���� A graph G � �V�E
 has the property ��� �� �
 if for every subset S � V
with jSj � �jV j the induced graph G�S
 satis�es

�� � �


�jSj



�
� e�G�S

 � �� � �


�jSj



�
�

Theorem ��� �R�odl ���	 ������� For every positive integer k and every � � � and � � �
such that � � � � � � � there exists a � and a positive integer n� such that every graph Gn

with n 	 n� vertices satisfying the property ��� �� �
 contains all graphs with k vertices as
induced subgraphs�



� 
� �

R�odl also points out that �this theorem yields an easy proof �see 	���
 of the following
generalization of a Ramsey theorem �rst proved in 	��� ��� and 	�����

Theorem ���� For every graph L there exists a graph H such that for any 
�coloring of
the edges of H� H must contain an induced monochromatic L�

The next theorem of R�odl answers a question of Erd�os 	��� ����

Theorem ����� For every positive integer k and positive � and � there exists a � � � and a
positive integer n� such that every graph Gn with at least n� vertices having property ��� �� �

contains all graphs with k vertices as induced subgraphs�

�Erd�os asked if the above theorem holds for �
�
� �� �

�
and Kk�


The reader later may notice the analogy and the connection between this theorem and some
results of Chung� Graham and Wilson on quasi�random graphs �see Section ��
�

��� Diameter�critical graphs

Consider all graphs Gn of diameter 
� The minimum number of edges in such graphs is
attained by the star K��� n � �
� There are many results on graphs of diameter 
� An
interesting subclass is the class of 
�diameter�critical graphs� These are minimal graphs of
diameter 
� deleting any edge we get a graph of diameter � 
� C� is one of the simplest

�diameter�critical graphs� If H is a 
�diameter�critical graph� then H�a�� � � � � ak
 is also

�diameter�critical� So Tn��� and more generally of K�a� b
� are 
�diameter�critical� Indepen�
dently� Murty and Simon �see in 	
��
 formulated the following conjecture�

Conjecture ����� If Gn is a minimal graph of diameter 
� then e�G
 � bn�
�c� Equality
holds if and only if Gn is the complete bipartite graph Kbn��c�dn��e�

F�uredi used the Regularity Lemma to prove this�

Theorem ���� �F�uredi ���� �		��� Conjecture 
��� is true for n 	 n��

Here is an interesting point� F�uredi did not need the whole strength of the Regularity
Lemma� only a consequence of it� the ��� �
�theorem�

� Building large subgraphs

Most of the proofs presented here and in the subsequent sections will be simpli�ed by the
application of the Key Lemma� While this is something of an anachronism the original proof
ideas are not lost� they are just basically summarized in the Key Lemma�



� 
� �

��� Packing with small graphs

Theorem ��� �Alon
Yuster ���� �	��� For any 	 � � and H there is an n� such that

n 	 n�� ��Gn
 �

�
� � �

��H

� 	

�
n

imply that there are �� � 	
n
jV �H
j vertex�disjoint copies of H in Gn�

In other words� Gn can be almost completely covered by copies of H�

Proof� Let r � ��H
� and apply the Degree Form with d � 	

 and a very small � to
get the usual pure graph G�� with reduced graph R� Then apply the Hajnal and Szemer�edi
theorem �Theorem 
�!
 for the graph R� Thus R is covered by ���regular r�cliques��

Let h � v�H
 and notice that Kr�h
 contains the union of r vertex�disjoint copies of H�
�That is� we could assume that H has the same number of vertices in each of the r color
classes�
 The Key Lemma �and the remark after that
 implies that an ��regular r�clique
with density greater than d on each edge can be covered almost perfectly by vertex�disjoint
copies of Kr�h
 �and hence those of H
� since the union of vertex�disjoint copies of Kr�h

has bounded degree�

Recently� Alon and Yuster 	!� improved on their own result by showing that the tiling of Gn

with copies of H is perfect �provided� of course� that v�H
 divides n
� For their beautiful
conjecture �that even 	 � � works
 see Section ��

��� Large subgraphs with bounded degrees

The following theorem is implicit in Chv�atal�R�odl�Szemer�edi�Trotter �� � 	
!� �according to
Alon� Duke� Le�man� R�odl and Yuster 	��
�

Theorem ���� For any �� � � � there is a c � � such that if e�Gn
 � �n�� then Gn

contains as subgraphs all bipartite graphs H with jV �H
j � cn and ��H
 � ��

Proof� It is enough to pick one single ��regular pair �with a su�ciently small �
 from a
regular partition of the host graph Gn� and then apply the Key Lemma�

The next theorem is central in Ramsey theory� It says that the Ramsey number of a bounded
degree graph is linear in the order of the graph�

Theorem ��� �Chv
atal
R�odl
Szemer
edi
Trotter ���� ������ For any � � � there is
a c � � such that if G is any n�graph� and H is any graph with jV �H
j � cn and ��H
 � ��
then either H � G or H � G�

Proof� Let r � ��H
� and let us start again with a regular partition of Gn �with a small �
�
Throw away all edges in non�regular pairs and form the Reduced Graph R of the leftover�



� 

 �

Color an edge of R BLUE if the density in Gn between the corresponding clusters is at least
�%
� otherwise color it RED� The application of the following trivial observation will lead to
either a BLUE r�clique or to a RED r�clique in R�

Fact� For every r there is an � � � and an n� such that if we two�color the edges of a graph
with n 	 n� vertices and at least ����


�
n
�

�
edges� then it contains a monochromatic r�clique�

An application of the Key Lemma completes the proof of Theorem ����

� Embedding trees

So far all embedding questions we discussed dealt with embedding bounded degree graphs
H into dense graphs Gn� General Ramsey theory tells us that this cannot be relaxed sub�
stantially without putting strong restrictions on the structure of the graph H� �Even for
bipartite H� the largest complete bipartite graph K�� that a dense graph Gn can be expected
to have is for � � O�log n
�
 A frequently used structural restriction on H is that it is a tree
�or a forest
� Under this strong restriction even very large graphs H can be embedded into
dense graphs Gn�

The two extremal cases are when H is a large star� and when H is a long path� Both cases
are precisely and easily handled by classical extremal graph theory �Tur�an theory or Ramsey
theory
� The use of the Regularity Lemma makes it possible� in a sense� to reduce the case
of general trees H to these two special cases by splitting the tree into �long� and �wide�
pieces� After an application of the Regularity Lemma one applies� as always� a classical graph
theorem� which in most cases is the K�onig�Hall matching theorem� or the more sophisticated
Tutte�s theorem �more precisely� the Gallai�Edmonds decomposition
�

��� The Erd�os�S
os conjecture for trees

Conjecture ��� �Erd�os
S
os ��	� ������ Every graph on n vertices and more than
�k � �
n

 edges contains� as subgraphs� all trees with k edges�

In other words� if the number of edges in a graph G forces the existence of a k�star� then it
also guarantees the existence of any other subtree with k edges� The theorem is known for
k�paths �Erd�os�Gallai ���� 	���
�

Remark� The assertion is trivial if we put up with loosing a factor of 
� If G has average
degree at least 
k � �� then it has a subgraph G� with ��G�
 � k� but then the greedy
algorithm guarantees that G� contains all k�trees�

Here we formulate the following result of Ajtai� Koml&os and Szemer�edi�

Theorem ��� �Erd�os
S
os conjecture 
 approximate form ���� ����� For every � �
� there is a threshold k� such that the following statement holds for all k 	 k�� Every graph
with average degree more than �� � �
k contains� as subgraphs� all trees with k edges�
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It is important to note that the authors� ���� manuscript contains only the �dense case��
that is� when n � Ck� The �sparse case� needs a modi�ed form of the Regularity Lemma
that is not as compact and as generally applicable as the original Regularity Lemma�

��� The Loebl conjecture

In their paper about graph discrepancies P� Erd�os� Z� F�uredi� M� Loebl and V� S�os 	���
reduced some questions to the following conjecture of Loebl�

Conjecture ��� �Martin Loebl�� If G is a graph on n vertices� and at least n

 vertices
have degrees at least n

� then G contains� as subgraphs� all trees with at most n

 edges�

In fact� the following approximation result proved by Ajtai� Koml�os and Szemer�edi was
enough for 	����

Theorem ��� �Loebl conjecture 
 approximate form� ����� For every � � � there is
a threshold n� such that for all n 	 n�� if Gn has at least ��� �
n

 vertices of degre at least
�� � �
n

� then Gn contains� as subgraphs� all trees with at most n

 edges�

Note that Conjecture ��� has a strong similarity to the celebrated Erd�os�S�os conjecture�
though it is probably much easier� The main tool used for the proof of this approximate
form was again the Regularity Lemma� J� Koml�os and V� S�os generalized Loebl�s conjecture
for trees of any size� It says that any graph G contains all trees whose number of edges do
not exceed the medium degree of G�

Conjecture ���� If G is a graph on n vertices� and at least n

 vertices have degrees greater
than or equal to k� then G contains� as subgraphs� all trees with k edges�

In other words� the condition in the Erd�os�S�os conjecture that the average degree be greater
than k � �� would be replaced here with a similar condition on the median degree�

The following example shows that the conjecture � if true � is close to best possible�

Let n � k � � and partition the vertex�set into parts V�� V�� where jV�j � bk��
� c� Make all

edges within V� and also between V� and V�� While all vertices in V� have degree k� the
graph does not contain a path of length k� Use disjoint copies of this graph to get

lim inf
n��

�

n
fk�n
 	 bk � �



c 
 �k � �
�

where fk�n
 is the maximum number of vertices of degree k or more an n�graph can have
without having all trees of size k as subgraphs� This general conjecture is probably not much
easier than the Erd�os�S�os conjecture�

Koml�os and Szemer�edi announced that they can prove an approximate version of Conjec�
ture ���� It needs an auxiliary lemma they already developed for attacking the Erd�os�S�os
conjecture� and again a sparse form of the Regularity Lemma�
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��� A Bollob
as conjecture on spanning trees

De�nition ��	� Given a set of graphs G�� G�� � � � � G�� we say that G�� G�� � � � � G� can be
packed into G if we can �nd embeddings �i of Gi into G such that the edge�sets �i�E�Gi


are pairwise disjoint� If G � Kn� the complete graph on n vertices� then we simply say that
there is a packing of G�� G�� � � � � G��

The notion of packing plays an important role in the investigation of computational com�
plexity of graph properties among other things� Thus it is not surprising that in recent
research literature there is considerable interest in packing�type results and problems �see
e�g� 	��� ��� !�� ����
�

Bollob�as 	��� conjectured that trees of bounded degrees can be embedded into graphs of
degree roughly n

� It was recently proved by J� Koml�os� G� N� S�ark�ozy and E� Szemer�edi�

Theorem ��� �Koml
os
S
ark�ozy
Szemer
edi ���� ������ For every � � � and � there
is a threshold n� such that the following statement holds for all n 	 n�� If T is a tree of
order n and maximum degree �� and Gn has minimum degree at least �� � �
n

� then T is
a subgraph of Gn�

The theorem is actually true even for trees of maximum degree cn
 log n with a small enough
c � �� and this is sharp� We remark that S�ark�ozy gave an NC� algorithm that actually
exhibits such a tree�embedding� His algorithm also �nds Hamiltonian cycles in so�called
��P�osa graphs� n�graphs in which the degree sequence d� � d� � � � � � dn satis�es the
following P�osa type condition�

dk 	 min
�
k � �n�

n




	
for � � k � n�

Note that the critical point in the Bollob�as conjecture is that the tree is a spanning tree�
For somewhat smaller trees everything is much simpler� The following is an easy exercise in
the use of the Regularity Lemma� For each � � � there is an 	 � � and a threshold n� such
that if ��Gn
 	 n

� where n 	 n���
� then Gn contains as subgraphs all trees of order at
most �� � �
n with maximum degree at most 	n�

The Bollob�as conjecture was proved using the Regularity Lemma and the following interest�
ing lemma about disjoint connections�

Lemma ��� �Koml
os
S
ark�ozy
Szemer
edi ���� ������ Let G contain �n vertices� V �
V� � V� � V	 � V� with each jVij � n� Assume that� for i � �� 
� �� the edges between Vi and
Vi�� form an ��regular pair of density at least d � �� If � � ���d
 and n 	 n��d
� and if �
is any bijection from V� to V�� then there is a collection of n pairwise vertex�disjoint paths
of order � connecting v with ��v
 for all v � V��

This last lemma combined with the Key Lemma were the germs of the general tool formulated
below as Blow�up Lemma�
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� Bounded degree spanning subgraphs

This is probably the most interesting class of embedding problems� Here the proofs �when
they exist
 are too complicated to quote here� but they follow a general pattern� When
embedding H to G �they have the same order now#
� we �rst prepare H by chopping it into
�a constant number of
 small pieces� then prepare the host graph G by �nding a regular
partition of G� throw away the usual atypical edges� and de�ne the reduced graph R� Then
typically we apply to R the matching theorem �for bipartite H
 or the Hajnal�Szemer�edi
theorem �for r�partite H
� At this point� we make an assignment between the small pieces
of H and the �regular r�cliques� of the partitioned R� There are two completely di�erent
problems left� Make the connections between the r�cliques� and embed a piece of H into
an r�clique� The �rst one is sometimes easy� sometimes very hard� but there is no general
recipe to apply here� The second part� however� can typically be handled by referring to the
so�called Blow�up Lemma � a new general purpose embedding tool discussed below�

��� The Bollob
as�Eldridge conjecture

The next conjecture is perhaps the most beautiful one in the �eld of packing�

Conjecture 	�� �Bollob
as
Eldridge ���� ���� ����� If ���Gn
��
���G�
n
��
 � n��

then Gn and G�
n can be packed�

Note that the celebrated Hajnal�Szemer�edi theorem is a special instance of this conjecture�
namely when G�

n is a union of cliques �it was stated in an earlier section in a complementary
form
�

The particular case when G�
n has maximum degree 
 was separately conjectured by Sauer

and Spencer in ��! 	���� �disjoint union of cycles
 and was recently solved for large n by
Noga Alon and Eldar Fischer 	��� �Note that the hardship again comes from the fact that
the graph H to be embedded is spanning� Embedding into a Gn with ��Gn
 	 �

�
n unions
of cycles with total order ��� �
n is a routine exercise in the use of the Regularity Lemma�


The Erd�os�Stone theorem� as well as the Alon�Yuster theorem �see below
 suggest that
the critical parameter should be ��G�

n
 rather than ��G�
n
� Thus the following conjecture

would be natural� Let � � � be given� let G� and G� be two n�graphs� and let G� have
bounded degrees� If ��G�
��G�
 � �� � �
n� then G� and G� can be packed� Or using
the complementary form �embedding rather than packing
 with H � G� and G � G�� If

��G
 	
�
� � �

��H�
� �

�
n� then H � G� Unfortunately� this is false even for ��H
 � 
 as the

following example shows� Let H be a random bipartite graph and G be the union of two
equal size cliques sharing only �n vertices� Since H is an expander but G is not� we cannot
have H � G� The narrow communication bottleneck between the two cliques of G suggests
a technical condition that may help� small bandwidth w�H
�
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Conjecture 	�� �Bollob
as
Koml
os ������ For each ��� � � and r there is an 	 � �
and an n� such that if v�H
 � v�G
 � n 	 n�� ��H
 � r� ��H
 � �� w�H
 � 	n� and

��G
 	
�
� � �

r
� �

�
n�

then H is a subgraph of G�

��� The P
osa�Seymour conjecture

Paul Seymour conjectured in ��!� that any graph G of order n and minimum degree at least
k

k��
n contains the k�th power of a Hamiltonian cycle� For k � �� this is just Dirac�s theorem�

For k � 
� the conjecture was made by P�osa in ���
� Note that the validity of the general
conjecture would imply the notoriously hard Hajnal�Szemer�edi theorem�

The following approximate version was recently proved�

Theorem 	�� �P
osa
Seymour conjecture 
 approximate form� ���� ���� �� For any
� � � and positive integer k there is an n� such that if G has order n 	 n� and minimum
degree at least

�
� � �

k�� � �
�
n� then G contains the k�th power of a Hamilton cycle�

The authors of the last theorem announced that they can also prove the precise P�osa conjec�
ture� For partial results� see the papers of Jacobson �unpublished
� Faudree� Gould� Jacobson
and Schelp 	���� H�aggkvist �unpublished
� Fan and H�aggkvist 	�!�� Fan and Kierstead 	� ��
Faudree� Gould and Jacobson 	���� and Fan and Kierstead 	���� Fan and Kierstead also
announced a proof of the P�osa conjecture if the Hamilton cycle is replaced by Hamilton
path� �Noga Alon observed that this already implies the Alon�Fischer result mentioned in
the previous subsection� for the square of a Hamilton path contains all unions of cycles�

We do not detail the exact statements in these papers� since none of the papers employ the
Regularity Lemma�

��� The Alon�Yuster conjecture

The beautiful conjecture of Alon and Yuster ���
 	�� generalizes the celebrated Hajnal�
Szemer�edi theorem from covering with cliques to covering with copies of an arbitrary ��xed

graph H� A solution has been announced recently�

Theorem 	�� �Koml
os
S
ark�ozy
Szemer
edi ���� ������ For every graph H there is a
constant K such that

��Gn
 	
�
� � �

��H


�
n

implies that there is a union of vertex�disjoint copies of H covering all but at most K vertices
of Gn�
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A simple example in 	�� shows that K � � cannot always be achieved even when v�H
 divides
v�G
� Erd�os and Faudree conjectured that for H � K��� a perfect covering is possible� that
is� if n is divisible by �� and Gn has minimum degree n

� then Gn can be perfectly tiled by
��cycles� 	 !� also contains a proof of that for large enough n�

The proof goes along the following lines� Let r � ��H
 and apply �rst the Regularity Lemma
and then the Hajnal�Szemer�edi theorem for the reduced graph R to obtain a covering of most
of the vertices with super�regular r�cliques with equal color classes� Then the leftover �n
vertices are distributed among these regular r�cliques as evenly as possible� This may not
be possible completely evenly� the color classes may di�er with ��n� At this point� the Alon�
Yuster conjecture easily follows from the Blow�up Lemma in the �moderately interesting

case when the color classes of H are not all equal� For H with equal color classes� the
somewhat uneven distribution of the vertices among the r clusters in a regular r�clique may
be a problem� But one can show that either there is a partition of Gn into regular r�cliques
with perfectly equal clusters and a constant number of leftover vertices �and thus the Blow�
up Lemma implies the Alon�Yuster conjecture
� or Gn has a very special structure in that it
contains an r�partite subgraph G� with equal color classes and at least ��� �
n vertices and
with minimum degree ��G�
 � ��� �
r � �
n� It is not hard to see that such special graphs
also satisfy the Alon�Yuster conjecture �even with K � �
�

��� The Blow�up Lemma

Several recent results exist about embedding spanning graphs into dense graphs� Some of
the proofs use the following new powerful tool� It basically says that regular pairs behave as
complete bipartite graphs from the point of view of embedding bounded degree subgraphs�
Note that for embedding spanning subgraphs� one needs all degrees of the host graph large�
That�s why using regular pairs is not su�cient any more� we need super�regular pairs� The
Blow�up Lemma plays the same role in embedding spanning graphs H into G as the Key
Lemma played in embedding smaller graphs H �up to v�H
 � �� � �
v�G

�

The proof of the Blow�up Lemma starts with a probabilistic greedy algorithm� and then uses
a K�onig�Hall argument to �nish the embedding� The proof of correctness is quite involved�
and we will not present it here�

Theorem 	�� �Blow
up Lemma � Koml
os
S
ark�ozy
Szemer
edi ���� ��	��� Given a
graph R of order r and positive parameters ���� there exists an � � � such that the following
holds� Let n�� n�� � � � � nr be arbitrary positive integers and let us replace the vertices of R
with pairwise disjoint sets V�� V�� � � � � Vr of sizes n�� n�� � � � � nr �blowing up
� We construct
two graphs on the same vertex�set V � �Vi� The �rst graph R is obtained by replacing each
edge fvi� vjg of R with the complete bipartite graph between the corresponding vertex�sets Vi
and Vj � A sparser graph G is constructed by replacing each edge fvi� vjg with an ��� �
�super�
regular pair between Vi and Vj� If a graph H with ��H
 � � is embeddable into R then it
is already embeddable into G�
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In the case when H is a tree the condition that H has bounded degrees can be relaxed to

��H
 � c
q
n
 log n� In fact� the following even stronger statement follows easily from the

methods used in 	 ���

Theorem 	�	� There is an absolute constant c� and for every � � � there is an � � �
such that the following holds for all positive integers m�n� Let G � �U� V�E
 be an ��� �
�
super�regular pair with color class sizes jU j � m and jV j � n� and let T be a subtree of the
complete bipartite graph Km�n satisfying

deg�u
 � c�n
 log n for all u � U� and deg�v
 � c�m
 logm for all v � V�

Then T is embeddable into G�

� Weakening the Regularity Lemma

In a number of applications of the Regularity Lemma �especially the ones about bipartite
graphs like Theorem ��

 only one regular pair is used� Since the Regularity Lemma only
guarantees that every n�graph Gn with cn� edges contains a regular pair of order at least
c�n where c� � �
tower��
c
 �the tower function of �
c
 �and about the same density as
that of Gn
� in these situations a direct method is preferable that may not provide a full
regular partition� but proves the existence of a regular pair with a much larger order� Such
a method is the graph�functional method of Koml�os ����� In the next few subsections�
we describe some applications of the functional method �a kind of moment method
� and
we will mention other variants of the regularity lemma later� While all these methods are
weaker than the original Regularity Lemma of Szemer�edi� they have the advantage of more
manageable constants� and thus� more importantly� they can be applied to sparser graphs
�e�g� n�graphs with n��� edges
�

��� The method of graph�functionals

Moment methods are standard tools in graph theory� The following special moments� called
graph�functionals� were introduced by Koml�os in ����� They have the form

��G
 � ���d�G

���v�G

�

where d�G
 � e�G


�
v�G�
�

�
is the density of G� and �� and �� are monotone increasing positive

functions� For technical reasons� we also assume that ���x

x is monotone increasing and
���x

x is monotone decreasing� We often normalize these forms into one of the standard
forms� ��G
 � ��d�G

v�G
 with an increasing �� or ��G
 � t�G
��v�G

 with a decreasing
�� where t�G
 is the average degree of G� The idea is that if the edge distribution in G is
not uniform� then we may wish to replace G by a denser� but not much smaller subgraph
H� The factor ���v�G

 guarantees that we do not choose too small H �e�g� an edge
� it
is a delicate balance that has to be set separately for every problem� The use of a graph
functional is as follows�
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� Given a graph G� select a subgraph H with maximal �� ��H
 � maxG��G ��G�
�

� Note that the order ofH cannot be too small� ���d�G

���v�G

 � ���d�H

���v�H

 �
����
���v�H

 gives a lower bound on v�H
�

� Prove that every ��maximal graph has certain desirable properties�

The desirable properties will be similar to expanding properties� and are natural relaxations
of regularity�

Given a class C of graphs� we say that H � C is ��maximal within the class C if

��H
 � max
S�H�S�C

��S
�

When the class C is understood we often omit any reference to it and simply say H is
��maximal� It is worth noting that under the above conditions on the functions ��� ��� a
��maximal graph H is automatically t�maximal� too�

t�H
 � max
S�H�S�C

t�S
�

We start with two trivial lemmas�

Lemma ���� Let ��G
 � v�G
��d�G

� where ��x
 is monotone increasing on x � 	�� ���
Then every graph G � C contains a ��maximal subgraph H � C satisfying

��H
 	 ��G
� d�H
 	 d�G
� v�H
 	 ��G

���
�

Indeed� let
��H
 � max

G��G�G��C
��G�
�

The lemma follows from the inequalities

��G
 � v�G
��d�G

 � v�H
��d�H

 � v�H
���
�

Lemma ���� Let ��G
 � t�G
��v�G

� where ��x
 is monotone decreasing and ��x
 	 �
for x 	 �� Then every graph G � C contains a ��maximal �as well as t�maximal� subgraph
H � C satisfying

��H
 	 ��G
� t�H
 	 t�G

���
� v�H
 � ��G

���
�

Indeed� let
��H
 � max

G��G�G��C
��G�
�

The lemma follows from the inequalities

t�G
 � t�G
��v�G

 � t�H
��v�H

 � t�H
���
 � v�H
���
�

The t�maximality is trivial�

In the following few subsections we describe a couple of applications of this method�
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��� Regular subgraphs

In ���
� at a workshop in Bielefeld� Erd�os� Loebl and S�os started investigating a new area
of Combinatorial Discrepancy Theory called Graph Discrepancies� Later F�uredi and Ruzsa
also joined these investigations �see 	���
� The following related problem was asked by Vera
S�os� Given a graph Gn with e�Gn
 � cn�� how large a regular subgraph can be found in Gn '
The problem itself has many variants and a long history� Mostly people wanted to know how
many edges are required to ensure a ��regular� or more generally� a k�regular subgraph in a
Gn� Denote the family of k�regular graphs by Lk�reg� Erd�os and Sauer 	��� conjectured that

ex�n�Lk�reg
 � O�n
�

Alon� Friedland and Kalai 	�� proved that every graph with maximum degree � and average
degree bigger than � contains a ��regular subgraph �and established some similar results for
other degrees of regularity
� Using this result Pyber proved 	��� that

ex�n�Lk�reg
 � �
k�n log n�

Then Pyber� R�odl and Szemer�edi proved 	����

ex�n�Lk�reg
 	 cn log log n for some c � ��

About dense graphs they note that an application of the Regularity Lemma and the matching
theorem trivially show that for every c � � there is an f�c
 � � such that e�Gn
 � cn�

implies that Gn contains a regular subgraph with f�c
n� edges� The example of the complete
bipartite graph Kcn����c�n shows that f�c
 � c� cannot be hoped for� The Regularity Lemma
argument only gives something like f�c
 � �
tower��
c
� Erd�os asked if a polynomial lower
bound for f�c
 can be found� In 	  �� Koml�os and S�os provide such a bound by a simple
application of the functional method �with ��G
 � v�G
dr�G

� In fact� they show the
almost optimal f�c
 � c�
 log��

c
� To get the �rst polynomial bound f�c
 � c����� let
r� � log 

�
 log 
 � log �
 � 
���� and for r � r� let us write

cr � 
� �




��r � ��

Then the following simple procedure gives the bound f�d
 	 crd
�r for any r � r�� Let Bn be

be the class of all bipartite graphs with n vertices in each color classes� and let B � �nBn�
For G � Bm let us write n�G
 � m� Fix an r � r�� and for a graph B � B de�ne
��B
 � n�B
dr�B
� where d�B
 � e�B

n��B
 �bipartite density
� We say that H � B is
��maximal if

��H
 � max
H��H
H��B

��H �
�

Now to �nd a large regular subgraph from a dense graph Gn�

�� Select a bipartite subgraph B � B of Gn that contains at least half the edges of Gn�


� Select a subgraph H � B of B that is ��maximal among all subgraphs of B within the
class B�
�� Apply the following two fairly simple lemmas �the �rst one is just Lemma !��
�



� �� �

Lemma ���� Let r � r�� If B � B then G has a ��maximal subgraph �within the class B�
with d�H
 	 d�B
 and n�H
 	 dr�B
n�B
�

Lemma ���� If H � B is ��maximal �within B� then H contains crd�H
n�H
 pairwise
edge�disjoint complete one�factors�

To get the tighter bound mentioned above� one needs some randomized versions of the
method� and select a large matching of regular pairs� Note that this method provides fairly
large regular subgraphs even for sparser n�graphs� e�g� with n�graphs with only n��� edges�

��� Finding a larger regular pair

As mentioned above� often one single regular pair �or a large matching of regular pairs
 is
enough to select� The following theorem provides a regular pair having an order polynomial
in the density and exponential in �
�� �A repeated application gives a larger matching of
such pairs� The decomposition described is Subsection !�! can also be used to provide a
decent size regular pair� but not as large as the one guaranteed by the next theorem�


Theorem ��� �Koml
os ���� ������ Let � � �� and r � ��
�
 log��
�
� Then every
G � B contains an ��� �
�super�regular subgraph H � B with

� 	 d�G


 and n�H
 	 dr�G
n�G
�

Corollary ��	� Let � � �� and r � ��
�
 log��
�
� If Gn is any n�graph with cn� edges�
then Gn contains an ��� �
�super�regular subgraph H � B with

� 	 c and n�H
 	 �
c
rbn

c�

The proof is again using the simple graph�functional ��G
 � v�G
dr�G
 but now with the
large r de�ned in the theorem� We simply choose a ��maximal subgraph �rst� and then
apply the following fairly easy lemma�

Lemma ���� Let H � B be �r�maximal with r de�ned above� Then H is ��� �
�super�regular
with � 	 d�H


�

��� Topological cliques in dense graphs

Here is another application where choosing one regular pair is su�cient� although that does
not give the best result�

The topological clique number tcl�G
 of a graph G is the largest integer r such that
G has a subgraph isomorphic to a subdivision of Kr� the complete graph on r vertices� A
standard exercise in graph theory courses is the following simple theorem�



� �
 �

Theorem ��� �Erd�os
Fajtlowicz ������ For most n�graphs Gn�

c�
p
n � tcl�Gn
 � c�

p
n�

�Bollob�as and Catlin 	�
� improved this to tcl�Gn
 �
p

n for most Gn�
 The proof of the

lower bound consists of picking k vertices v�� � � � � vk arbitrarily� and connecting them with
�disjoint
 paths of length at most 
 as follows� For each non�adjacent pair vi� vj� select
a vertex from among their common neighbours� this way connecting them with a path of
length 
� Since in most n�graphs these common neighbourhoods are of size about n
�� we

can select an unused vertex every time� provided
�
k
�

�
� k is less than about n
� �or at least

k�
� � n
�
� The upper bound is equally simple�

The truth is� however� that the existence of a topological clique of size c
p
n in a random

n�graph is simply due to the fact that most graphs are dense� and all dense n
graphs Gn

have tcl�Gn
 � c
p
n�

Theorem ���� �Koml�os�Szemer�edi ���� 	��� ���
 For each c � � there is a c� � � such
that tcl�Gn
 � c�

p
n for all graphs Gn with e�Gn
 � cn��

The proof of the existence of such a c� is fairly simple� We de�ne some kind of expanders
with the property that any two disjoint vertex sets of size cn are connected and all degrees
are large� Then we show that these expanders have large topological subgraphs by using a
greedy algorithm� and the simple fact that these expanders have a diameter at most �� It
remains to show that dense graphs have large expanders� This can be done naturally by
using the Regularity Lemma to select a regular pair �and throw away a few vertices to get
all degrees large
� This was the way the following more general result was proved�

Theorem ����� �Alon�Duke�Le�man�R�odl�Yuster ���
 	
�
 For each c � � there is a c� � �
such that e�Gn
 � cn� and e�H
 � c�n imply that H is a topological subgraph of Gn�

The use of the Regularity Lemma is not really necessary here� since only the existence of
one single regular pair in any dense graph is used� This existence can be shown without
referring to the Regularity Lemma just by using direct computation� and this way one may
get more reasonable constants �see Theorem !��
� Hence the dependence of c� on c will not
be something useless like c� � �
tower��
c
 �the tower function grows real fast
� but �only�
c� � e���c� This seems to be quite an improvement� However� the true c� is proportional top
c� and thus another approach seems to be necessary� Ironically� returning to the Regularity

Lemma is the solution� The proof of Theorem !�� uses the Regularity Lemma and gives a
constant about 


p
c� which is within a factor 
 of the truth� Also� that proof implies that

in the Alon�Duke�Le�man�R�odl�Yuster theorem the condition e�H
 � c�n can be relaxed to
v�H
 � c�n and e�H
 � �
��
cn �here c� is� however� the ridiculously small c� obtained from
the Regularity Lemma�




� �� �

��� Topological cliques in sparse graphs

The following question has obvious implications for simulating large complete network con�
nections in sparse networks preferably using short paths� Let f�t
 be the largest integer such
that every graph with average degree at least t has a topological clique with f�t
 vertices�

f�t
 � min ftcl�G
 � t�G
 	 tg�
where t�G
 is the average degree of the graph G� Determine� or estimate� the function f�t
�
Mader 	���� and independently Erd�os and Hajnal 	���� conjectured that

c�
p
t � f�t
 � c�

p
t �

that is� random dense graphs are the worst case� Mader�s conjecture was �rst fully proved by
Bollob�as and Thomason 	�!� in ����� followed in a few months by another proof of Koml�os
and Szemer�edi 	���� The Bollob�as�Thomason proof is direct� using sophisticated connectivity
theory along the lines of some very recent results of Robertson and Seymour� They get
the constant c� � �


p
��
 �recently improved by them to c� � �


p
��
� The Koml�os�

Szemer�edi proof �ts more into this survey article� for they make a general reduction �rst
from sparse graphs to dense graphs using expander graphs �see next subsection
� and then use
the Regularity Lemma to handle dense graphs �as mentioned in the previous subsection
�
This way� they get a better constant �but the proof� as most proof using the Regularity
Lemma� only works for large t
� c� �

p

� which is within a factor 
 of the truth� since a

simple example of (Luczak shows that the upper bound f�t
 � c�
p
t holds with c� �  
��

This reduction to dense graphs will probably lead to the determination of the best c�� too�

��� Expander graphs

Regular pairs are random�looking graphs in which the number of edges between any two
�large
 sets is about what it is expected to be� A much weaker notion is expansion� The
bipartite graph G � �A�B�E
 is a weak ��expander if� for any X � A� jXj � �jAj � Y �
B� jY j � �jBj� there is at least one edge between X and Y � This is the same to say that
X � A� jXj � �jAj imply that jN�X
j 	 �� � �
jBj� This notion� and especially stronger
versions of expansion �in which even smaller sets X have relatively large neighbourhoods

proved to be very useful in Computer Theory� While use of expanders is certainly preferable
to the use of the Regularity Lemma� expanders often don�t have enough power to replace
the Regularity Lemma in proofs�

An example of using expander graphs for reducing a sparse graph problem to a dense graph
problem was mentioned in the previous subsection� The reduction uses the following propo�
sition proved �though not explicitly stated
 in 	���� Every graph of average degree t contains
a dense topological subgraph with average degree ct� More precisely� there is an absolute
constant c� � � such that every graph with average degree t contains a topological subgraph
with at most t� 
 vertices and at least c�t� edges�

Let us state the self�contained theorem that is the main tool for the proof of this propo�
sition� Throughout this subsection ���
 denotes functions � � 	���
 � 	�� �� such that



� �� �

R�
� ���u

u
du ��� and� for given ���
� we write

�� � max



sup
u
��u
�

Z �

�

��u
du

u

�
�

De�nition ����� Given a function � and a threshold x�� a graph G � �V�E
 is an ��
expander if

j�Xj
jXj 	 ��jXj
 �



for all subsets X � V� x� � jXj � jV j

�

Theorem ���� �Expander subgraphs � Koml
os
Szemer
edi ���� ���� ����� Let

��x
 be monotone decreasing and x��x
 be monotone increasing for x 	 x�� ��


and assume that �� � �
�� Then every graph G has a subgraph H � �V�E
 with

t�H
 	 t�G

�� � ���
 and ��H
 	 t�H


 ��


which is an ��expander�

Example� the papers 	 �� ��� used ��x
 � �
�log��x
t�G


�

The proof of Theorem !��
 is fairly simple but it is using a complicated graph functional�
We select a subgraph H of G that is ��maximal with respect to the graph�functional

��G
 � t�G
�� � ��v�G


�

where the function ��x
 is de�ned by

��x
 � �
Z �

x

��u
du

u
�x 	 �
�

Then we apply the following simple lemma�

Lemma ����� Let ��x
 � and x��x
 � for x 	 x�� let

��x
 � c
Z �

x

��u
du

u
�x 	 �


with � � c � �
��� and de�ne

��G
 � t�G
�� � ��v�G


� ��


Then every ��maximal graph is an ��expander�



� �� �

��� Covering transversals in multipartite graphs

De�nition ���� �r
transversals� �
regular cylinders�� Let G � �V�E
 be a k�partite
graph with classes V�� � � � � Vk� A subset of W� � � � �Wk of V� � � � � Vk where Wi � Vi is a
cylinder� A cylinder is ��regular if in G all the pairs �Wi�Wj
 are ��regular�

The following theorem is from the paper of Alon� Duke� Le�man� R�odl and Yuster 	���

Theorem ����� �Lemma ��� in 	
�
 For every � � � there exists aK such that if G�A�� A�� � � � � Ar
�
jA�j � � � � � jArj� is an r�partite graph� then� for some k � K� one can partition the Carte�
sian product �Ai as �Ai �

S
j�k�Ai�j so that all but �nr r�transversals are covered by

��regular pairs� Furthermore� K � ��
r

�

����

As it is remarked in 	��� a similar lemma was proved by Eaton and R�odl 	����

	 Strengthening the Regularity Lemma

��� Sparse�graph versions of the Regularity Lemma

It would be very important to �nd extensions of the Regularity Lemma for sparse graphs�
e�g�� for graphs where we assume only that

e�Gn
 � cn��	�

for some positive constants c and 	� However� we do not really know much about this�
There is a new and promising development though� Y� Kohayakawa 	!�� and V� R�odl 	����
independently proved a version of the Regularity Lemma in ���� which can be regarded as
a Regularity Lemma for sparse graphs� �R�odl�s result seems to be unpublished but in 	!�� it
is remarked that V� R�odl has also found this lemma�
 As Kohayakawa puts it� �Our result
deals with subgraphs of pseudo�random graphs�� He �with co�authors
 has also found some
interesting applications of this theorem in Ramsey theory and in Anti�Ramsey theory� �see
e�g� 	!�� !�� !�� !!�  ��  ��  
�
�

To formulate the Kohayakawa�R�odl Regularity Lemma we need the following de�nitions�

De�nition ���� A graph G � Gn is �P�� �
�uniform for a partition P� of V �Gn
 if for some
p � 	�� �� we have

jeG�U� V 
� pjU jjV jj � �pjU jjV j�
whenever jU j� jV j � �n and either P� is trivial� U� V are disjoint� or U� V belong to di�erent
parts of P��

De�nition ���� A partition Q � �C�� C�� � � � � Ck
 of V �Gn
 is ��� k
�equitable if jC�j � �n
and jC�j � � � � � jCkj�



� �� �

Notation�

dH�G�U� V 
 �
�
eH�U� V 

eG�U� V 
 if eG�U� V 
 � �
� otherwise�

De�nition ���� We call a pair �U� V 
 ���H�G
�regular if for all U � � U and W � � W with
jU �j 	 �jU j and jW �j 	 �jW j� we have

jdH�G�U�W 
� dH�G�U
��W �
j � ��

Theorem ��� �Kohayakawa ���� ������ Let � and k�� � � � be �xed� Then there are
constants � � � and K� � k� with the following properties� For any �P�� �
�uniform graph
G � Gn� where P� � �Vi
�i is a partition of V � V �G
� if H � G is a spanning subgraph
of G� then there exists an ���H�G
�regular� ��� k
�equitable partition of V re�ning P�� with
k � k� � K��

��� A hypergraph version of the Regularity Lemma

Of course� after having the powerful Szemer�edi Lemma one would like to know if it can be
generalized �a
 to sparse graphs� �b
 to hypergraphs�

One can easily formulate fake hypergraph regularity lemmas by mindlessly generalizing the
original Regularity Lemma� The real question is if one can �nd a powerful hypergraph lemma
which can be used to prove theorems which do not follow from an application of the ordinary
Regularity Lemma�

The �rst such result was announced by Frankl and R�odl 	���� The authors write�

���� We hope that this will prove to be nearly as useful as Szemer�edi�s theorem�
So far we have found two applications� proof of a conjecture of Erd�os concerning
Tur�an type problems 	�
� �
� and giving an alternative condition for quasiran�
domness 	
��� Proofs of these applications will be the subject of a subsequent
paper��

One problem with the hypergraph version is that one feels that there must be more than
one possible generalizations� When regarding ��graphs� one can think of partitioning the
vertices or the pairs of vertices� And when one has various forms� sometimes it is di�cult to
tell their relation�

Later we will discuss the problem of quasi�random hypergraphs� This led Fan Chung to her
formulation of the hypergraph�regularity lemma stated below� Since the paper of Frankl and
R�odl is somewhat concise and not too easy to read� we restrict ourselves below to formulating
Fan Chung�s 	
�� hypergraph regularity lemma�

This version has 
 parameters� k and r � k� The r�tuples are partitioned into t classes
forming t r�uniform hypergraphs S�� � � � � St and then a k�uniform hypergraph Hn is �xed
and some densities d�A�� � � � � A�kr



 are de�ned as follows� A�� � � � � A�kr

is a

�
k
r

�
�subset of

fS�� � � � � Stg� We count those k�tuples Ej � V �Hn
 for which each r�tuple of Ej belongs to



� �! �

di�erent Ai� Let their number be eH�A�� � � � � A�kr


� The very same quantity for the complete

k�graph K�k�
n is denoted by e�A�� � � � � A�kr



� Let

dH�A�� � � � � A�kr


 �

eH�A�� � � � � A�kr




e�A�� � � � � A�kr



�

We say that �A�� � � � � A�kr


 is �k� r
� ��regular if for any choice Xi � Ai with

e�X�� � � � �X�kr




eK�A�� � � � � A�kr



� ��

we have
jdH�X�� � � � �X�kr



� dH�A�� � � � � A�kr


j � ��

For general k� there are k � � di�erent versions of the Regularity Lemma� Namely� for each
� � r � k the following holds�

Theorem ���� Suppose � � r � k� For every � � �� there exists a K��
 � � such that

for every k�graph G�
�
V
r

�
can be partitioned into sets S�� � � � � St for some k � K��
 so that

all but at most �nk k�tuples are contained in E�Si�� � � � � Si�kr


 for some i�� � � � � i�kr


where

� � i� � i� � � � � � i�kr

� t and fSi� � � � � � Si�kr
g is �k� �
�regular�

Very recently J� Pach found a weakening of the hypergraph regularity lemma along the line
described as ��� �
�regular pairs� which he needed to prove a so called Tverberg�type results
in geometry� 	����


 Algorithmic questions

The Regularity Lemma is used in two di�erent ways in computer science� Firstly� it is used
to prove the existence of some special subcon�gurations in given graphs of positive edge�
density� Thus by turning the lemma from an existence�theorem into an algorithm one can
transform many of the earlier existence results into relatively e�cient algorithms� The �rst
step in this direction was made by Alon� Duke� Le�man� R�odl and Yuster 	���

In the second type of use� one takes advantage of the fact that the regularity lemma provides
a random�like substructure of any dense graph� We know that many algorithms fail on ran�
domlike objects� So one can use the Regularity Lemma to prove lower bounds in complexity
theory� see e�g� Maass and Tur�an 	!
�� One of these randomlike objects is the expander
graph� an important structure in Theoretical Computer Science�



� � �

��� Two applications in computer science

A� Hajnal� W� Maass and G� Tur�an applied the Regularity Lemma to estimate the commu�
nicational complexity of certain graph properties 	!
�� We quote their abstract�

�Abstract� We prove ��n log n
 bounds for the deterministic 
�way communication com�
plexity of the graph properties CONNECTIVITY� s� t�CONNECTIVITY and BIPARTITE�
NESS� ��� The bounds imply improved lower bounds for the VLSI complexity of these
decision problems and sharp bounds for a generalized decision tree model which is related
to the notion of evasiveness��

Another place where the Regularity Lemma is used in estimating communicational complex�
ity is an �electronic
 paper of Pudl�ak and Sgall 	� �� In fact� they only use the ����
�problem�
i�e�� the Ruzsa�Szemer�edi theorem�

��� An algorithmic version of the Regularity Lemma

The Regularity Lemma being so widely applicable� it is natural to ask if for a given graph Gn

and given � � � and m one can �nd an ��regular partition of G in time polynomial in n� The
answer due to Alon� Duke� Lefmann R�odl and Yuster 	�� is surprising� at least at �rst� Given
a graph G� we can �nd regular partitions in polynomially many steps� however� if we describe
this partition to someone else� he cannot verify in polynomial time that our partition is really
��regular� he has better produce his own regular partition� This is formulated below�

Theorem ���� The following decision problem is co�NP complete� Given a graph Gn with
a partition V�� V�� � � � � Vk and an � � �� Decide if this partition is ��regular in the sense
guaranteed by the Regularity Lemma�

Let Mat�n
 denote the time needed for the multiplication of two ��� �
 matrices of size n�

Theorem ��� �Constructive Regularity Lemma�� For every � � � and every positive
integer t � � there exists an integer Q � Q��� t
 such that every graph with n � Q vertices
has an ��regular partition into k � � classes for some k � Q and such a partition can be
found in O�Mat�n

 sequential time� The algorithm can be made parallel on an EREW with
polynomially many parallel processors� and it will have O�log n
 parallel running time�

��� Counting subgraphs

R� Duke� H� Lefmann and V� R�odl applied a version of the Szemer�edi Lemma to count
various subgraphs of a graph Gn relatively fast 	���� If we wish to count the subgraphs of
Gn isomorphic to some given L then no really good algorithm is known� Therefore it is
reasonable to try to �nd an approximation algorithm� The authors in 	��� do not count the

graphs individually� rather they �x a list of all the t � 
�
k
�
 labelled subgraphs L�� � � � � Lt and

this de�nes a vector �k�G
 whose i�th component is the number of �order�isomorphic� copies



� �� �

of Li in the labelled Gn� where �order�isomorphic� means that the embedding � � L � Gn

preserves the order of the labels as well� The aim is to approximate this vector �k�Gn
�
Clearly� if k is relatively small compared to n then it does not matter if we try to count
labelled or unlabelled copies� The main result of 	��� is �logarithm is of the base 

�

Theorem ��� ������� Let c be a constant� � � c � �� and n an integer with log log n �p
c log n� There is an algorithm which� given a labeled graph on n vertices and an ordering

of its vertices and given a list of all labeled graphs on an ordered set of k vertices� � � k �p
c log n� yields a 
k�k�
����approximation to �k�G
 in O�
�

k
�
n�cMat�n

 sequential time�

where

� �

�

�
k� log log n

c log n

�����

and Mat�n
 is the time required to multiply two n � n matrices with ��� entries� over the
integers�

�� Regularity and randomness

���� Extremal subgraphs of random graphs

Answering a question of P� Erd�os� L� Babai� M� Simonovits and J� Spencer 	 � described the
Tur�an type extremal graphs for random graphs�

Given an excluded graph L and a probability p� take a random graph Rn of edge�
probability p �where the edges are chosen independently
 and consider all its subgraphs
Fn not containing L� Find the maximum of e�Fn
�

Below we formulate three theorems� Theorem ���� deals with the simplest case� namely�
when p � �

 and K	 is excluded� Theorem ���� generalizes Theorem ���� for arbitrary
��chromatic graphs with �critical edges�� �see the de�nition below
� Theorem ���� describes
the asymptotically extremal structure in the general case� i�e�� when an arbitrary ��chromatic
L is �xed� and though L � Fn is not excluded� the graph Fn contains only a small number of
copies of L� �	 � also contains a theorem providing a more precise description of the general
situation in terms of the structure L�
 We will use the expression �almost surely� in the
sense �with probability �� o��
 as n���� In this part a p�random graph means a random
graph of edge�probability p where the edges are chosen independently�

Theorem ����� Let p � �

� If Rn is a p�random graph and Fn is a K	�free subgraph
of Rn containing the maximum possible number of edges� and Bn is a bipartite subgraphs of
Rn having maximum possible number of edges� then e�Bn
 � e�Fn
� Moreover� Fn is almost
surely bipartite�

De�nition ���� �Critical edges�� Given a k�chromatic graph L� an edge e is critical if
L� e is k � ��chromatic�



� �� �

Many theorems valid for complete graphs were generalized to arbitrary L having critical
edges �see e�g� 	����
� Theorem ���� also generalizes to every ��chromatic L containing a
critical edge e� and for every probability p � ��

Theorem ����� Let L be a �xed 
�chromatic graph with a critical edge e �i�e�� ��L�e
 � 
��
There exists a function f�p
 such that if p � ��� �
 is given and Rn � G�p
� and if Bn is a
bipartite subgraph of Rn of maximum size and Fn is an L�free subgraph of maximum size�
then

e�Bn
 � e�Fn
 � e�Bn
 � f�p


almost surely� and almost surely we can delete f�p
 edges of Fn so that the resulting graph
is already bipartite� Furthermore� there exists a p� � �

 such that if p 	 p�� then Fn is
bipartite� e�Fn
 � e�Bn
�

Theorem ���� immediately implies Theorem ����� One could of course ask how large f�p

is as p � �� We do not know the precise answer� only that Theorem ���� holds with
f�p
 � O�p�	 log p
�

In Theorem ���� we are not concerned with the exact value of p�� Our main point is that
the observed phenomenon is valid not just for p � �

� but for smaller values of p as well�
We do not even know if e�Fn
� e�Bn
�� as p� ��

If ��L
 � � but we do not assume that L has a critical edge� then we get similar results�
having slightly more complicated forms� To formulate them we should introduce the notion
of the �decomposition family� of L 	����� To keep the paper short we skip these more
technical details and formulate a weaker version�

Theorem ����� Let L be a given 
�chromatic graph� Let p � ��� �
 be �xed and let Rn be
a p�random graph� If Bn is a bipartite subgraph of Rn of maximum size and Fn is an L�free
subgraph of maximum size� then almost surely

e�Bn
 � e�Fn
 � e�Bn
 � o�n�


and we can delete o�n�
 edges of Fn so that the resulting graph is already bipartite�

The above results also generalize to r�chromatic graphs L�

���� Random Berge�graphs

One of the deepest questions in graphs theory seems to be the Strong Perfect Graph Con�
jecture� This asserts that G is a perfect graph i� neither G nor its complementary graph
G contains any odd cycles of length at least � as induced subgraphs� A surprising result of
Pr�omel and Steger 	�!� asserts that statistically this conjecture is true� Let us call odd cycles
on k 	 � vertices and their complementary graphs Berge graphs� Let Berge�n
 denote the
class of all labelled graphs not containing Berge graphs as induced subgraphs�



� �� �

Theorem ���� ������� Almost all Berge graphs are perfect�

De�nition ���	 �Generalized split graphs�� A graph G on the vertex set V is a Gen�
eralized Split Graph if V can be partitioned into V� and V� so that
� either G	V�� is the union of pairwise disjoint cliques and V� and V� induced a clique in G
� or the above condition holds for the complementary graph G�

Let S denote the family of generalized split graphs and F� denote the class of graphs not
containing an induced C�� Pr�omel and Steger show that

�a
 all the generalized split graphs are perfect� and therefore

S�n
 � Perf�n
 � F��n
�

�b
 Almost all graphs in F��n
 are split graphs�

This implies
S�n
 � Berge�n
 � Perf�n
 � F��n
�

and that all these families have asymptotically the same cardinality� The proof uses the
Regularity Lemma�

���� Quasi�randomness and the Regularity Lemma

Quasi�random structures have been investigated by several authors� among others� by Thoma�
son 	�
��� Chung� Graham� Wilson� 	
��� For graphs� Simonovits and S�os 	���� have shown
that quasi�randomness can also be characterized by using the Regularity Lemma� Fan Chung
	
�� generalized their results to hypergraphs�

Let N�
G�L
 and NG�L
 denote the number of induced and not necessarily induced copies of

L in G� respectively� Let S�x� y
 � V �Gn
� �N�x
�N�y

� the set of vertices joined to both
x and y in the same way� let N�x� y
 � N�x

N�y
� the set of common neighbours of x and
y� We start with the Chung�Graham�Wilson theorem in which various properties are listed
all of which are almost surely true for random graphs and which are very natural properties
of random graphs� The theorem asserts that even if we do not assume that a sequence �Gn

is a random graph sequence� the properties listed below are equivalent�

Theorem ���� �Chung
Graham
Wilson ��	��� For any graph sequence �Gn
 the fol�
lowing properties are equivalent�

P��

� for �xed 
� for all graphs H�

N�
G�H�
 � �� � o��

n�
��

�
�

�

P��t
� Let Ct denote the cycle of length t� Let t 	 � be even�

e�Gn
 	 �

�
n� � o�n�
 and NG�Ct
 �

�
n




�t
� o�nt
�



� �
 �

P	� e�Gn
 	 �
�
n� � o�n�
� ���Gn
 �

�
�
n � o�n
 and ���Gn
 � o�n
� where �i�G


is the i�th eigenvalue of the �adjacency matrix of the� graph G �listed in decreasing order of
modulus��

P�� For each subset X � V �

e�X
 �
�

�
jXj� � o�n�
�

P�� For each subset X � V� jXj � bn�c we have e�X
 �
�
�
�

n� � o�n�


�
�

P
�
P

x�y�V

���jS�x� y
j � n
�

��� � o�n	
�

P��
P

x�y�V

���jN�x� y
j � n
�

��� � o�n	
�

Obviously� P��

 says that the graph Gn contains each subgraph with the same frequency as
a random graph� In P��t
 we restrict ourselves to not necessarily induced even cycles� The
di�erence between the role of the odd and even cycles is explained in 	
��� The eigenvalue
property is also very natural� knowing the connection between the structural properties of
graphs and their eigenvalues� The other properties are self�explanatory�

Simonovits and S�os formulated a graph property which also proved to be a quasi�random
property�

PS � For every � � � and � there exist two integers� k��� �
 and n���� �
 such that for
n 	 n�� Gn has a Szemer�edi�partition with parameters � and � and k classes U�� � � � � Uk�
with � � k � k��� �
� so that

�Ui� Uj
 is �� regular� and
����d�Ui� Uj
� �




���� � �

holds for all but at most �k� pairs �i� j
� � � i� j � k�

It is easy to see that if �Gn
 is a random graph sequence of probability �

� then PS holds for
�Gn
� almost surely� Simonovits and S�os 	���� proved that PS is a quasi�random property�
i�e� PS �� Pi for � � i � !� In fact� they proved some stronger results� but we skip the
details�

F�R�K� Chung generalized these results to hypergraphs 	
���
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