THE MINIMUM CONFLICT-FREE ROW SPLIT PROBLEM A model for reconstructing perfect phylogenies from mixed tumor samples.

A. Hujdurović, Edin Husić, M. Milanič (University of Primorska); R. Rizzi (University of Verona); A. Tomescu (University of Helsinki)

Motivation

- cancer research,
- reconstruct perfect phylogeny tree from a given matrix.

Def 1. Given $M \in \{0, 1\}^{m \times n}$, columns *i* and *j* are in conflict if \exists rows r_1, r_2, r_3 s.t.,

 $\begin{array}{ccc} r_1 & \begin{pmatrix} 1 & 0 \\ r_2 & \\ r_3 & \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \cdot & \nexists \ conflicts \ in \ M. \end{array}$

• *M* is conflict-free ⇔ admits perfect phylogeny tree.

Def 2. Let $M \in \{0,1\}^{m \times n}$ with the rows r_1, r_2, \ldots, r_m . $M' \in \{0,1\}^{m' \times n}$ is a row split of M if \exists a partition of rows of M' into R_1, R_2, \ldots, R_m s.t. $\forall i \in \{1, \ldots, m\}, r_i$ is the bitwise OR of the vectors in R_i .

 $\gamma(M)$ = the minimum number of rows in a conflict-free row split of *M*.

MINIMUM CONFLICT-FREE ROW SPLITInput:A binary matrix M.Task:Compute $\gamma(M)$.

Def 3. A branching of an acyclic digraph D = (V, A) is a subset of arcs B such that (V, B) is a digraph in which $\forall v \in V$ there is at most one arc leaving v.

For $M \in \{0,1\}^{m \times n}$, the *containment digraph* of *M* is $D_M = (V, A)$ with

$$V = \{ \operatorname{supp}(c) : c \in C_M \},$$

$$A = \{ (v, v') : v, v' \in V \land v \subset v' \}.$$

For $X \subseteq A$, and $v \in V$, we say that $r \in v$ is *uncovered* in v with respect to X if $\forall (v', v) \in X, r \notin v'$. For row r_i let

 $U(r_i) = \{(r_i, v) : r_i \text{ is uncovered in } v \in V\}$

$$U(X) = \bigcup_{i=1}^{m} U(r_i)$$

 $\beta(M)$ = the minimum size of U(B) over all branchings *B* of D_M .

MINIMUM UNCOVERING BRANCHING Input: A binary matrix M. Task: Compute $\beta(M)$.

Equivalence

For a branching *B* of D_M , the *B-split* of *M* is M^B with rows indexed by the elements of U(B), and columns c'_1, \ldots, c'_n , as follows. We set:

$$M^{B}_{(r,v),j} = \begin{cases} 1, & \text{if there exists a } v - v_j \text{ directed path in } (V, B); \\ 0, & \text{otherwise.} \end{cases}$$

Theorem 1. *B*-split of *M* is a conflict-free row split of *M*, the number of rows in M^B is exactly |U(B)|.

For a conflict-free row split \exists a corresponding branching of its containment digraph.

• integer program • APX-hardness • exact algorithm

Supermodular function + partition matroid

Let *A* be a finite set. We say that a set function $f : \mathcal{P}(A) \to \mathbb{R}$ is *supermodular:* if $\forall S, T \subseteq A$ it holds $f(S \cup T) + f(S \cap T) \ge f(S) + f(T)$, *monotone decreasing:* if $\forall S \subseteq T$ it holds $f(S) \ge f(T)$.

A pair (A, \mathcal{I}) is called a *matroid* if a collection $\mathcal{I} \subseteq \mathcal{P}(A)$ satisfies

 $- \quad \emptyset \in \mathcal{I}, Y \subseteq X \in \mathcal{I} \Rightarrow Y \in \mathcal{I}$

- $X, Y \in \mathcal{I}, |X| < |Y| \Rightarrow \exists s \in Y \setminus X \text{ such that } X \cup \{s\} \in \mathcal{I}.$

Let A_1, A_2, \ldots, A_n a partition of A and $k_1, k_2, \ldots, k_n \in \mathbb{N}$. Then S together with $\mathcal{I} = \{X \subseteq A : |X \cap A_i| \le k_i \text{ for all } i \in \{1, 2, \ldots, n\}\}$ is a partition matroid.

Proposition 2. The MINIMUM UNCOVERING BRANCHING problem can be formulated as a special case of the problem of minimizing a monotone decreasing supermodular function subject to a partition matroid constraint.

- f(X) = |U(X)|,
- A_i = set of edges leaving v_i and k_i = 1 for all i.

If we are interested in maximizing the number of "covered" pairs our task is to maximize a monotone increasing submodular function under a matroid constraint. For this problem, several (1 - 1/e)-approximation algorithms are known.

M^{D}	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
(r_1, v_5) /	1	1	1	0	1	0	0	0 \
(r_2, v_2)	1	1	1	0	0	0	0	0
(r_2, v_4)	1	0	1	1	0	0	0	0
(r_2, v_6)	1	0	0	0	0	1	0	0
(r_3, v_2)	1	1	1	0	0	0	0	0
(r_3, v_4)	1	0	1	1	0	0	0	0
(r_4, v_4)	1	0	1	1	0	0	0	0
(r_5, v_7)	1	0	0	0	0	0	1	0
(r_6, v_7)	1	0	0	0	0	0	1	0
(r_6, v_8)	1	0	0	0	0	1	0	1/

