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Motivation
• cancer research,

• reconstruct perfect phylogeny tree
from a given matrix.

Def 1. Given M ∈ {0, 1}m×n, columns i
and j are in conflict if ∃ rows r1, r2, r3 s.t.,

i j





r1 1 0
r2 0 1
r3 1 1

.

Def 2. Let M ∈ {0, 1}m×n with the rows
r1, r2, . . . , rm. M′ ∈ {0, 1}m′×n is a row
split of M if ∃ a partition of rows of M′

into R1, R2, . . . Rm s.t. ∀i ∈ {1, . . . , m}, ri
is the bitwise OR of the vectors in Ri.

γ(M) = the minimum number of rows
in a conflict-free row split of M.

M is conflict-free⇔
@ conflicts in M.

M is conflict-free ⇔ admits perfect
phylogeny tree.
·

MINIMUM CONFLICT-FREE ROW SPLIT

Input: A binary matrix M.
Task: Compute γ(M).

Def 3. A branching of an acyclic digraph
D = (V, A) is a subset of arcs B such that
(V, B) is a digraph in which ∀v ∈ V there is
at most one arc leaving v.

For M ∈ {0, 1}m×n, the containment di-
graph of M is DM = (V, A) with

V = {supp(c) : c ∈ CM} ,

A = {(v, v′) : v, v′ ∈ V ∧ v ⊂ v′}.

For X ⊆ A, and v ∈ V, we say that
r ∈ v is uncovered in v with respect to X
if ∀(v′, v) ∈ X, r /∈ v′. For row ri let

U(ri) = {(ri, v) : ri is uncovered in v ∈ V}

U(X) = ∪m
i=1U(ri)

β(M) = the minimum size of U(B) over
all branchings B of DM.

MINIMUM UNCOVERING BRANCHING

Input: A binary matrix M.
Task: Compute β(M).

Equivalence
For a branching B of DM, the B-split of M is MB with rows indexed by the elements
of U(B), and columns c′1, . . . , c′n, as follows. We set:

MB
(r,v),j =

{
1, if there exists a v− vj directed path in (V, B);
0, otherwise.

Theorem 1. B-split of M is a conflict-free row split of M, the number of rows in
MB is exactly |U(B)|.

For a conflict-free row split ∃ a corresponding branching of its containment digraph.

• integer program • APX-hardness • exact algorithm

Supermodular function + partition matroid
Let A be a finite set. We say that a set function f : P(A)→ R is

supermodular: if ∀S, T ⊆ A it holds f (S ∪ T) + f (S ∩ T) ≥ f (S) + f (T),
monotone decreasing: if ∀S ⊆ T it holds f (S) ≥ f (T).

A pair (A, I) is called a matroid if a collection I ⊆ P(A) satisfies
- ∅ ∈ I , Y ⊆ X ∈ I ⇒ Y ∈ I
- X, Y ∈ I , |X| < |Y| ⇒ ∃s ∈ Y \ X such that X ∪ {s} ∈ I .

Let A1, A2, . . . , An a partition of A and k1, k2, . . . , kn ∈ N. Then S together with
I = {X ⊆ A : |X ∩ Ai| ≤ ki for all i ∈ {1, 2, . . . , n}} is a partition matroid.

Proposition 2. The MINIMUM UNCOVERING BRANCHING problem can be for-
mulated as a special case of the problem of minimizing a monotone decreasing super-
modular function subject to a partition matroid constraint.

- f (X) = |U(X)|,
- Ai = set of edges leaving vi and ki = 1 for all i.

If we are interested in maximizing the number of "covered" pairs our task is to max-
imize a monotone increasing submodular function under a matroid constraint. For
this problem, several (1− 1/e)-approximation algorithms are known.
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1 1 1 0 1 0 0 0
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M c1 c2 c3 c4 c5 c6 c7 c8

{E,F} ∼ r1
{B,D,F} ∼ r2
{D,F} ∼ r3
{D} ∼ r4
{A} ∼ r5

{A,C,B} ∼ r6

v1 = {1, 2, 3, 4, 5, 6}

v2 = {1, 2, 3}

v3 = {1, 2, 3, 4}

v4 = {2, 3, 4}

v5 = {1}

v6 = {2, 6}
v7 = {5, 6}

v8 = {6}
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1 1 1 0 1 0 0 0
1 1 1 0 0 0 0 0
1 0 1 1 0 0 0 0
1 0 0 0 0 1 0 0
1 1 1 0 0 0 0 0
1 0 1 1 0 0 0 0
1 0 1 1 0 0 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 1 0
1 0 0 0 0 1 0 1
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(r1, v5)
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(r2, v4)
(r2, v6)
(r3, v2)
(r3, v4)
(r4, v4)
(r5, v7)
(r6, v7)
(r6, v8)
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Equalities among split rows:
r2_1=r3_1

r2_2=r3_2=r4
r5=r6_1
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