HAMILTONIAN CYCLES IN THE MATROID BASIS GRAPHCristina G. Fernandes†César Hernández-Vélez§José C. de Pina†Jorge Luis Ramírez Alfonsín‡cris@ime.usp.brcesar.velez@uaslp.mxcoelho@ime.usp.brjramirez@um2.fr

Background

A matroid is an ordered pair (E, C) consisting of a finite set E and a collection C of subsets of E satisfying the following three conditions:

(C1) $\emptyset \notin C$.

- (C2) If C_1 and C_2 are members of \mathcal{C} and $C_1 \subseteq C_2$, then $C_1 = C_2$.
- (C3) If C_1 and C_2 are distinct members of \mathcal{C} and $e \in C_1 \cap C_2$, then there is a member $C_3 \subseteq (C_1 \cup C_2) e$.

Matroid basis graph

Let M be a matroid and \mathcal{B} be its collection of bases. The *matroid basis graph* BG(M) of M is the graph with vertex set \mathcal{B} in which two vertices/bases B_1 and B_2 are adjacent if and only if B_1 and B_2 differ by exactly one element; that is, if $|B_1 \triangle B_2| = 2$.

Theorem[CGF, CH-V, JCP, JLRA]

Let G be a k-edge-connected graph of order 3, for $k \geq 3$. Then the number of Hamiltonian cycles passing through any edge of the basis graph $BG(M_G)$ of the cycle matroid M_G is at least

$$\mathrm{sf}(k-1),$$

where $sf(n) = n!(n-1)! \cdots 0!$ for a nonnegative integer n.

The members of \mathcal{C} are the *circuits* of M, and E is the *ground set* of M.

FACT:Let E be the set of edges of a graph G and
 \mathcal{C} be the set of edge sets of cycles of G.
Then \mathcal{C} is the set of circuits of a matroid
on E.

The matroid derived above from the graph G is called the *cycle matroid* of G. It is denoted by M_G .

The \mathcal{I} be the collection of subsets of E that contain nomember of \mathcal{C} . The members of \mathcal{I} are the *independent* sets of M. We call a maximal independent set in M a basis of M.

It is not hard to see that the collection \mathcal{I} of independent sets of a matroid M satisfies the following properties:

 ${f (I1)}\,\emptyset\in{\cal I}.$

(I2) If $I \in \mathcal{I}$ and $I' \subseteq I$, then $I' \in \mathcal{I}$.

(I3) If I_1 and I_2 are in \mathcal{I} and $|I_1| < |I_2|$, then there is an element e of $I_2 \setminus I_1$ such that $I_1 + e \in \mathcal{I}$.

A graph G. The matroid basis graph $BG(M_G)$.

Maurer characterized the matroid basis graph.

He proved that if the distance between the vertices x and y of a matroid basis graph is two, then the subgraph induced by their neighbors and themselves is either a square, a pyramid, or a octahedron.

Theorem[CGF, CH-V, JCP, JLRA]

Let G be a k-edge-connected graph of order n, for $k, n \geq 4$. Then the number of Hamiltonian cycles passing through any edge of the basis graph $BG(M_G)$ of the cycle matroid M_G is at least

Sketch of the proof

Let B_1B_2 be an edge of $BG(M_G)$. We may assume that the element e belongs to B_1 and not to B_2 . We partition the set of bases \mathcal{B} into the set of bases \mathcal{B}/e containing the element e and the set of bases $\mathcal{B} \setminus e$ that do not contain the element e.

We apply induction on \mathcal{B}/e since there exists a 1–1 correspondence with the bases of the cycle matroid derived from the graph G/e. Also, we apply induction on $\mathcal{B}\backslash e$ because the 1–1 correspondence with the bases of the cycle matroid derived from the graph $G\backslash e$.

Let G be a graph. A subset X of E(G) is independent in M_G exactly when G[X], the subgraph of G induced by X, is a forest. Thus X is a basis of M_G when G[X] is a spanning forest. It follows that, when G is connected, X is a basis of M_G if and only if G[X] is a spanning tree.

The three types of subgraphs induced by the vertices x and y at distance two in a matroid basis graph.

A connected graph G. A basis of the cycle matroid M_G .

If M is a matroid and \mathcal{B} is its collection of bases, then \mathcal{B} satisfies the following *Basis Exchange Axiom*:

(BEA) If B_1 and B_2 are members of \mathcal{B} and $x \in B_1 \setminus B_2$, then there is an element y of $B_2 \setminus B_1$ such that $(B_1 - x) + y \in \mathcal{B}$.

Bondy and Ingleton proved that for every edge of the basis graph BG(M) of any matroid M, there exists a Hamiltonian cycle passing through it.

In the case of the basis graph of a cycle matroid, we proved that not only exists a Hamiltonian cycle passing through every edge but many of them. Formally, we proved the following.

Theorem [CGF, CH-V, JCP,

Finally, we joint both parts, \mathcal{B}/e and $\mathcal{B}\backslash e$, with a "good" cycle.

Of course, we need the base cases given by the prior theorems and to prove the existence of such a good cycle.

References

[1] J. Adrian Bondy and Aubrey W. Ingleton. Pancyclic graphs. II. J. Combinatorial Theory Ser. B, 20(1):41–46, 1976.

[2] Stephen B. Maurer. Matroid basis graphs. I. J. Combinatorial Theory Ser. B, 14:216–240, 1973.

JLRA]

Let G be a 3-edge-connected graph of order n, for $n \geq 3$. Then the number of Hamiltonian cycles passing through any edge of the basis graph $BG(M_G)$ of the cycle matroid M_G is at least

 $(n-2)!2^{\binom{n-1}{2}}$

[3] James Oxley. Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, second edition, 2011.

Author Affiliations

† Instituto de Matemática e Estatística, Universidade de São Paulo

§ Facultad de Ciencias, Universidad Autónoma de San Luis Potosí

‡ Institut Montpéllierain Alexander Grothendieck, Université de Montpellier