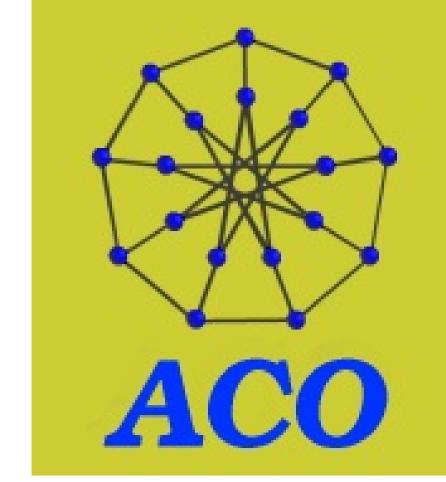


MAXIMUM NUMBER OF TRIANGLES IN WHEEL-FREE GRAPHS AND ITS RELATION WITH TURÁN NUMBER OF EXPANSION OF WHEELS IN 3-GRAPHS

> He Guo, Georgia Institute of Technology, USA he.guo@gatech.edu



BASIC DEFINITIONS

Definition 1 (*r*-hypergraphs). Let V be a set of n elements. F is called a r-hypergraph or r-graph with vertex set V if the edge set E(F) of F is a subset of $\binom{[V]}{r}$, where $\binom{[V]}{r}$ is the collection of all r-sets of V.

Definition 2 (Turán Number). Let $ex_r(n, F)$ denote the maximum number of edges in an r-hypergraph with n vertices not containing any copy of the r-hypergraph F.

Definition 3 (r-expansion). The r-expansion G^+ of a graph G is the r-hypergraph obtained from a graph G by enlarging each edge of G with a vertex subset of size r-2 disjoint from V(G) such that distinct edges are enlarged by disjoint subsets.

Definition 4 (k-wheels). W_k is denoted for k-wheels, determined by connecting a center K_1 to each vertex of a k-cycle C_k by an edge.

PROBLEM

Determine the order of magnitude of $ex_3(n, G^+)$ when G is an even wheel, that is $G = W_{2k}$. Specifically, determine whether $ex_3(n, G^+) = \Theta(n^2)$ for every even wheel G.

PARTIAL RESULTS

 $ex_3(n, W_{2k}^+) = \Omega(n^2).$

IDEAS FOR REMAINING PARTS

Definition. For a hypergraph H, the codegree of a set $S = \{x_1, x_2, ..., x_s\}$ of vertices of H is $d_H(S) =$ $|\{e \in H : S \subset e\}|$. Let ∂H denote the (r-1)-graph of sets contained in some edge of H - this is the shadow of H. The edges of ∂H will be called the sub-edges of H. An r-graph H is d-full if every sub-edge of Hhas codegree at least d.

The following is a useful lemma for the problem.

Lemma. For $r \ge 2, d \ge 1$, every n-vertex r-graph H has a (d+1)-full subgraph F with $|F| \ge |H| - d|\partial H|$.

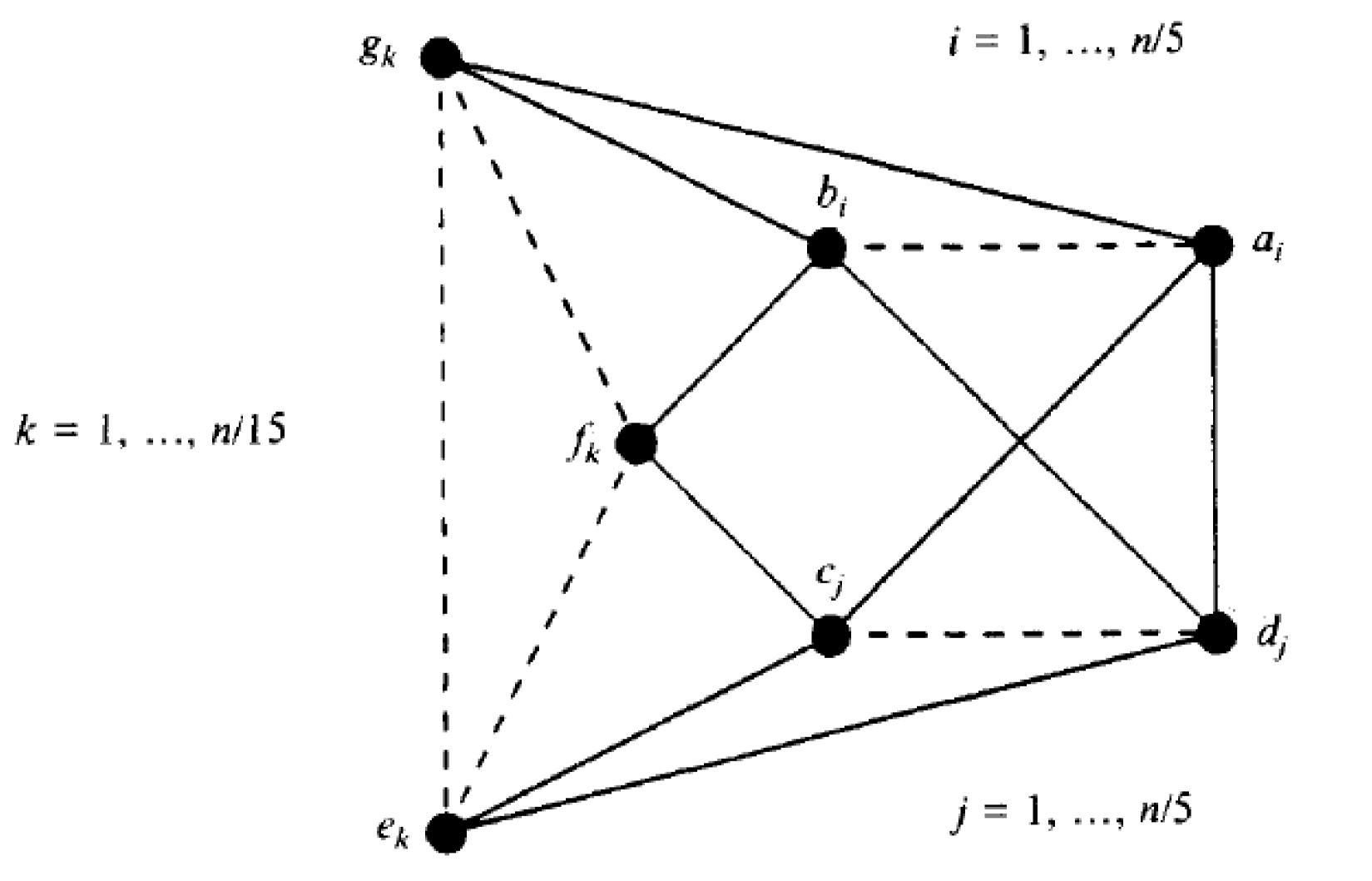
Proofs

Lemma 1. [1] Let WFG_n be the set of all graphs on n vertices with no wheels. Let t(n) be the maximum number of triangles over WFG_n . Then there exists a wheel-free graph on n vertices with $\frac{n^2}{7.5} + \frac{n}{15}$ triangles whenever n is a multiple of 15, i.e., $t(n) \ge \frac{n^2}{7.5} + \frac{n}{15}$.

Proof. Define the graph G_n on n vertices, where n is a multiple of 15 (see figure 1) as follows. Its vertex set $V(G_n)$ consists of a_i, b_i, c_i, d_i for i = 1, ..., n/5, and e_k, f_k, g_k for k = 1, ..., n/15. Its edge set $E(G_n)$ consists of

- two matchings of size n/5: (a_i, b_i) and (c_i, d_i) ,

- three matchings of size n/15: $(e_k, f_k), (f_k, g_k) and (e_k, g_k)$, and
- all the edges of types: $(a_i, c_j), (a_i, d_j), (a_i, g_k), (b_i, d_j), (b_i, f_k), (b_i, g_k), (c_j, e_k), (c_j, f_k), (d_j, e_k).$ (Here $1 \le i, j \le n/5$ and $1 \le k \le n/15$.)



Proof. Immediately by greedy algorithm.

The following ideas are mainly focused on finding the Turán number of 3-expansion of W_4 .

1. Consider an extramal 3-graph F for W_4 . Find a vertex with large degree in ∂F and look for $C_4 = K_{2,2}$ in its neighbors.

2. View W_4^+ as a similar thing to tight 5-cycle or tight 5-cycle minus an edge.

- **3.** Flag Algebra.
- 4. Consider Turán density.
- 5. · · ·

REFERENCE

 [1] Z. Füredi, M. Goemans, D. Kleitman: On the Maximum Number of Triangles in Wheel-Free Graphs, Combinatorics, Probability & Computing, 1994, 3(1): 63-75

Figure 1 A wheel-free graph having $n^2/7.5 + n/15$ triangles.

It is easy to verify that this graph belongs to WFG_n . For example, the neighborhood of the vertex a_i , consists of the matching $\{(c_j, d_j) : 1 \le j \le n/5\}$ as well as a star rooted at b_i with edges $\{(b_i, g_k) : 1 \le k \le n/15\}$ and $\{(b_i, d_j) : 1 \le j \le n/5\}$.

Each triangle in G_n contains an edge from the matchings, and its vertices are in three different classes. An easy calculation shows that the number of triangles in G_n is $t(G_n) = n^2/7.5 + n/15$.

Lemma 2. Let G be a graph and G^+ be the 3-expansion of G. Let g(n) be the maximum number of triangles over all G-free graph on n vertices. Then $g(n) \leq ex_3(n, G^+)$.

Proof. Let F be a 3-graph. Let ∂F denote the 2-graph of sets contained in some edge of F, which is called shadow of F. Let H_2 be a G-free graphs with g(n) triangles. View each triangle of H_2 as a 3-edge, we get a 3-graph H. Then H has g(n) edges and is G^+ -free. Otherwise, since $G^+ \subseteq H$, then $G \subseteq \partial G^+ \subseteq \partial H \subseteq H_2$, contradictory to H_2 is G-free.

Theorem 1. $ex_3(n, W_{2k}^+) = \Omega(n^2)$.

Proof. Since wheel free implies some even wheel free. By Lemma 1 and 2, we get the result immediately. \Box