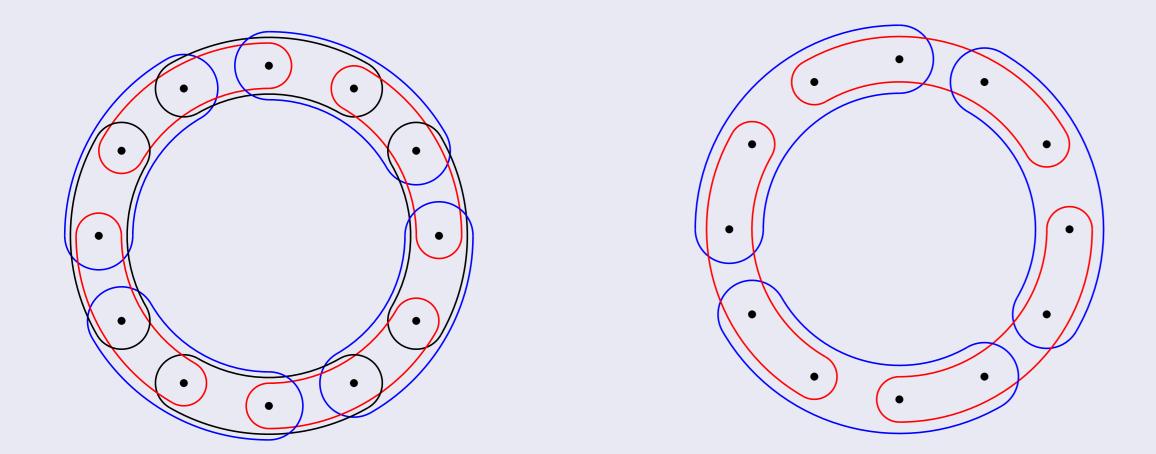
Hamilton Cycles in Hypergraphs below the Dirac Threshold Frederik Garbe

Basic Definitions

A k-uniform hypergraph or k-graph H = (V, E) is a finite vertex set V together with a set of edges $E \subseteq \binom{V}{k}$. This is a natural generalisation of a graph which coincides with the case k = 2. Given any integer $1 \leq \ell < k$, we say that a k-graph C is an ℓ -cycle if the vertices of C may be cyclically ordered such that every edge of C consists of k consecutive vertices and each edge intersects the subsequent edge in precisely ℓ vertices.



Characterisation of 2-Hamiltonian 4-graphs

We now want to analyse dense 4-graphs below this Dirac threshold. The key insight is that each such 4-graph which is not 2-Hamiltonian is a subgraph of one of two extremal examples together with some very few additional edges.

Theorem (G. and Mycroft, 2016)

There exist ε , $n_0 > 0$ such that the following statement holds for any even $n \ge n_0$. Let H be a 4-graph on n vertices with $\delta(H) \ge n/2 - \varepsilon n$. Then H admits a Hamilton 2-cycle if and only if every bipartition of V(H) is both even-good and odd-good.

Let H = (V, E) be a 4-graph of order n, where n is even, and let $\{A, B\}$ be a bipartition of V. We say an edge $e \in E$ is *odd*, if $|e \cap A|$ is odd, otherwise we say that e is *even*. Furthermore we say that a pair $p \in {V \choose 2}$ is a split pair, if $|p \cap A| = 1$.

Figure: A 2-cycle 3-graph and a 2-cycle 4-graph.

We say that a k-graph H on n vertices contains a Hamilton ℓ -cycle if it contains an n-vertex ℓ -cycle as a subgraph. The degree of a set $S \subseteq V$ is

 $d(S) = |\{e \in E \ : \ S \subseteq e\}|$.

The minimal codegree of $oldsymbol{H}$ is

 $\delta(H) = \min_{S \in {V \choose k-1}} \{d(S)\}$.

Dirac-type Results

Dirac's Theorem

A classic result of graph theory is the theorem of Dirac.

Even-Good

We say that $\{A, B\}$ is *even-good* if at least one of the following statements holds.

- |A| is even or |A| = |B|.
- E contains odd edges e and e'such that either $e \cap e' = \emptyset$ or $e \cap e'$ is a split pair.
- |A| = |B| + 2 and E contains odd edges e and e' with $e \cap e' \in {A \choose 2}$.
- |B| = |A| + 2 and E contains odd edges e and e' with $e \cap e' \in {B \choose 2}$.

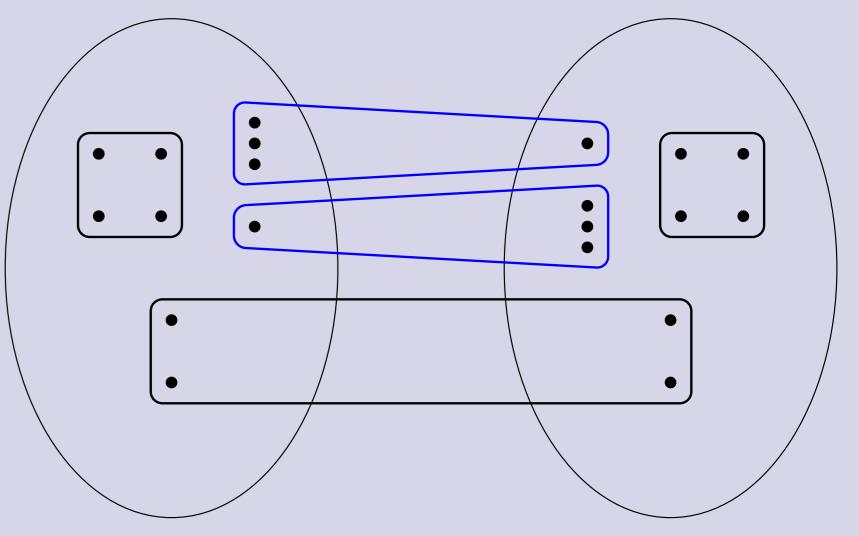


Figure: Note that with $|A| \approx \frac{n}{2}$, $|A| \neq |B|$, both odd, and without the blue edges this leads to an extremal example of a non 2-Hamiltonian 4-graph.

Let $m \in \{0, 2, 4, 6\}$ and $d \in \{0, 2\}$ be such that $m \equiv n \mod 8$ and $d \equiv |A| - |B| \mod 4$.

Odd-Good

If G is a graph on $n \geq 3$ vertices with minimum degree at least n/2, then G contains a Hamilton cycle.

A major focus in recent years has been to find hypergraph analogues of Dirac's theorem. The asymptotic Dirac threshold for any $1 \leq \ell < k$ can be collectively described by the following theorem which comprises results of independent collaboration among Hàn, Keevash, Kühn, Mycroft, Osthus, Rödl, Ruciński, Schacht and Szemerédi.

Theorem (Asymptotic Dirac for k-graphs)

For any $k \ge 3$, $1 \le \ell < k$ and $\eta > 0$, there exists n_0 such that if $n \ge n_0$ is divisible by $k - \ell$ and H is a k-graph on n vertices with

$$\delta(H) \geq egin{cases} \left\{ egin{array}{c} \left(rac{1}{2} + \eta
ight) n & ext{if } k - \ell ext{ divides } k, \ \left(rac{1}{\lceilrac{k}{k-\ell}
ceil(k-\ell)} + \eta
ight) n & ext{otherwise,} \end{cases}
ight.$$

then H contains a Hamilton ℓ -cycle.

More recently the exact Dirac threshold has been identified in some cases, namely for $k = 3, \ell = 2$ by Rödl, Ruciński and Szemerédi,

We say that $\{A, B\}$ is *odd-good* if at least one of the following statements holds.

- $(m,d) \in \{(0,0), (4,2)\}.$
- $(m,d) \in \{(2,2), (6,0)\}$ and E contains an even edge.
- $(m,d) \in \{(4,0),(0,2)\}$ and E contains two even edges e,e'with $|e \cap e'| \in \{0,2\}$.
- $(m,d) \in \{(6,2), (2,0)\}$ and either there is an even edge $e \in E$ with $|e \cap A| = 2$ or E contains 3 even edges which induce a disjoint union of 2-paths.

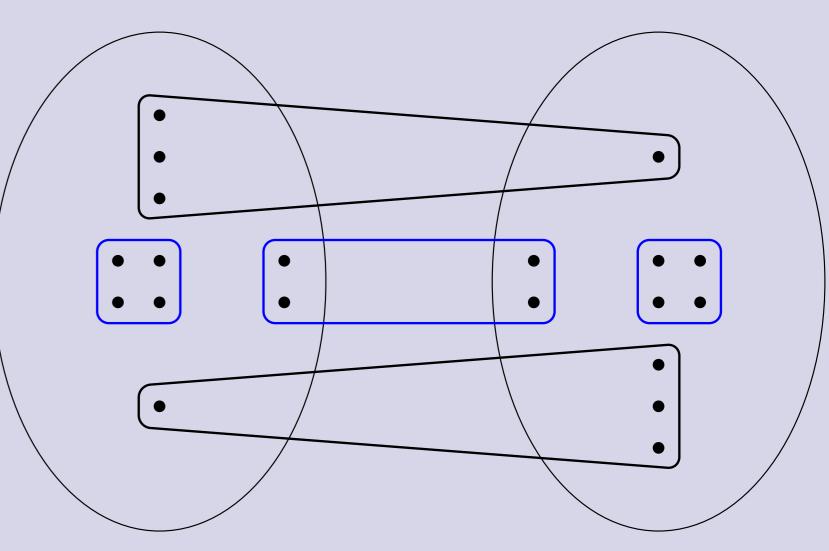


Figure: Note that with $|A| \approx \frac{n}{2}$, $n \equiv 2 \mod 4$ and without the blue edges this leads to an extremal example of a non 2-Hamiltonian 4-graph.

Consequences and further results

A consequence of this characterisation is that we can decide the Hamilton 2-cycle problem in 4-graphs with high minimal codegree in polynomial time.

Theorem (G. and Mycroft, 2016)

for $k = 3, \ell = 1$ by Czygrinow and Molla, and for any $k \geq 3$ and $\ell < k/2$ by Han and Zhao. We add the exact Dirac threshold for Hamilton 2-cycles in 4-graphs.

Theorem (G. and Mycroft, 2016)

There exists n_0 such that if $n \ge n_0$ is even and H is a 4-graph on n vertices with

$$\delta(H) \geq egin{cases} rac{n}{2} - 2 & ext{if n is divisible by 8,} \ rac{n}{2} - 1 & ext{otherwise}, \end{cases}$$

then H contains a Hamilton 2-cycle. Moreover, this condition is best-possible for any even $n \ge n_0$.

There exist a constant $\varepsilon > 0$ and an algorithm which, given a 4-graph H on n vertices with $\delta(H) \ge n/2 - \varepsilon n$, runs in time $O(n^{32})$ and returns either a Hamilton 2-cycle in H or a certificate that no such cycle exists.

We can also prove that the situation presents itself very differently in the case of tight cycles, i.e. $\ell = k - 1$. Indeed, if P \neq NP, we should not expect a characterisation similar to the case of 2-cycles as the following theorem shows.

Theorem (G. and Mycroft, 2016)

For any $k \ge 3$ there exists $C \in \mathbb{N}$ such that it is NP-hard to determine whether a k-graph H with $\delta(H) \ge \frac{1}{2}|V(H)| - C$ admits a tight Hamilton cycle.