Motivation

e Symmetry: structural invariance w.r.t. certain transformations
e Symmetry in networks (graphs) relates structure of edges and identity of vertices

—e.g.. using network structure for matching vertices of related networks,
breaching users’ privacy

e Global symmetry: traditional graph-theoretic approach

—isomorphisms: adjacency-preserving vertex mappings

—automorphisms: isomorphisms to the graph itself

—group of automorphisms induces equivalence classes of vertices: “equivalent
position” in the network

e In many cases, an asymmetric network contains vertices that are intuitively
equivalent from a local perspective

— Topologically similar areas of the network
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F1G. 1: Equivalence of local structures, highlighted by similarly colored

subgraphs. Due to the presence of the dashed edge, no automorphism matches
these subgraphs, so global symmetry between them does not exist.

e Can we capture this equivalence with the concept of symmetry?

Local symmetry

e Given a graph G = (V, E) and node v € V', let N*[u] be the subgraph induced
by vertices with distance at most k from

—N'[v] = v (trivial graph)
—N1v] = Mv] = v and its neighbors with incident edges
— Growing neighborhoods: proxy for locality
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F1G. 2: Neighborhoods around v. N[v] is traditional closed neighborhood:;
includes both red and orange vertices; N°[v] = G

e Global symmetry (traditional):

u and v are globally symmetric <= there is an automorphism of GG
mapping u to v

GG is globally symmetric <= there are u,v € V distinct and globally
symmetric — i.e. G has a non-trivial automorphism

e [ocal symmetry (proposed here):

u and v are k-locally symmetric <= there is an isomorphism between
N*[u] and N*[v] mapping u to v

(G is locally symmetric <= there are u,v € V distinct and k-locally
symmetric

—e.g.: red nodes in Figure 1 are 4-local symmetric

e Intuition: uw and v locally symmetric must

—have topologically equivalent neighborhoods; AND
—be equivalently located in these neighborhoods

e Size of neighborhood determines level of locality
— We'll use “local symmetry” = 1-local symmetry by default
e Hicrarchy of symmetries

— (k + 1)-local symmetry implies k-local symmetry
—If £ > diam(G), k-local symmetry = global symmetry
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Known results

(see [Bollobés '81], [KSV '02)

e A G(n,p) random graph is:
—globally asymmetric a.a.s. if p € [logn/n,1 —logn/n]
—globally symmetric if p < logn/n or 1 —p < logn/n

e A G(n,m) random graph is globally asymmetric a.a.s iff 2m/(}) > logn + w(1) and
n—1—2m/() > logn+ w(1)

Regime of local symmetry

Theorem: A G(n, p) random graph, with p = o(n=2/?), is locally symmetric a.a.s.
e Local symmetry persists to much higher average degree than global symmetry
Proof sketch:
e A G(n,p) has few triangles (~ (np)’ = o(n))
—therefore most neighborhoods (n — o(n)) are stars
e Degrees in G(n, p) are concentrated around np

—range of length ~ np: o(n) degree values used
e Same degree + star neichborhoods = local symmetry

Regimes of local asymmetry

Theorem: A G(n, p) random graph, with w(n =2 < p < o(n=%"=%) for constant 6;, 6, >
0, 1s locally asymmetric a.a.s.

e Local asymmetry eventually emerges, but much later
Proof sketch:

e Union bounds reduces problem to local asymmetry of two vertices in G(n, p)
e [somorphism relates to distance metric A over degree sequences of neighborhoods
— Local symmetry between u and v only if A(Nul], N'v]) =0
e [ntersection between neighborhoods is small
—Removing it affects A by O((np?)?)
e Neighborhood remainders are two independent G(n, p) random graphs
— Random size: ~ np vertices
— Degrees can be considered independent
— Power-law decaying probabilities are preserved by approximation
e Degrees in each graph are grouped into “buckets”
— Joint distributions of degrees in each bucket are multinomial
— A > Li-distance between two independent multinomials
— Larger than (np)"/?=¢ with probability 1 — o(n™%), for any €, a > 0
Additional detalils:
o Degree sequence edit distance: A(G,G") = >, |¢c(k) — ¢c(k)|, where ¢g(k) counts

vertices in G with degree k

—A(G, G") is the minimum mismatch when aligning vertices of G and G’ by degree

— Isomorphic graphs must have the same degree sequence: A = (

— Useful fact: if G = (V, F) and S C G, then A(G,G|S]) < [V \ S|+ |C(9)], where
C'(S) counts edges between S and V' \ S

e Degrees in a GG(n, p) random graph are almost like independent random variables

— McKay and Wormald '97: approximation framework, with asymptotic error guarantees
for event probabilities

—Three intermediate models to perform transition between B, , (binomial model, inde-
pendent sequence) and D,, ,, (degree sequence model, extracted from G(n, p))

Theorem: If p satisfies w(logn/n) < p < o(n~?), then for any event sequence A, and
any fixed a > 0, Pg, (Ay,) = o(n™*) implies Pp, (A,) = o(n™%).

— Our extension: simultaneous approximation for two independent random graphs

Preprints

sequence probabilities of two random graphs with appli-
cation to graph isomorphism




