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Motivation

• Symmetry: structural invariance w.r.t. certain transformations

• Symmetry in networks (graphs) relates structure of edges and identity of vertices

– e.g.: using network structure for matching vertices of related networks,
breaching users’ privacy

•Global symmetry: traditional graph-theoretic approach

– isomorphisms: adjacency-preserving vertex mappings

– automorphisms: isomorphisms to the graph itself

– group of automorphisms induces equivalence classes of vertices: “equivalent
position” in the network

• In many cases, an asymmetric network contains vertices that are intuitively
equivalent from a local perspective

–Topologically similar areas of the network

Fig. 1: Equivalence of local structures, highlighted by similarly colored
subgraphs. Due to the presence of the dashed edge, no automorphismmatches
these subgraphs, so global symmetry between them does not exist.

•Can we capture this equivalence with the concept of symmetry?

Local symmetry

•Given a graph G = (V,E) and node v ∈ V , let N k[u] be the subgraph induced
by vertices with distance at most k from u

–N 0[v] = v (trivial graph)

–N 1[v] = N [v] = v and its neighbors with incident edges

–Growing neighborhoods: proxy for locality
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Fig. 2: Neighborhoods around v. N [v] is traditional closed neighborhood;
N 2[v] = N [N [v]] includes both red and orange vertices; N 3[v] = G

•Global symmetry (traditional):

u and v are globally symmetric ⇐⇒ there is an automorphism of G
mapping u to v

G is globally symmetric ⇐⇒ there are u, v ∈ V distinct and globally
symmetric — i.e. G has a non-trivial automorphism

•Local symmetry (proposed here):

u and v are k-locally symmetric ⇐⇒ there is an isomorphism between
N k[u] and N k[v] mapping u to v

G is locally symmetric ⇐⇒ there are u, v ∈ V distinct and k-locally
symmetric

– e.g.: red nodes in Figure 1 are 4-local symmetric

• Intuition: u and v locally symmetric must

– have topologically equivalent neighborhoods; AND

– be equivalently located in these neighborhoods

• Size of neighborhood determines level of locality

–We’ll use “local symmetry” = 1-local symmetry by default

•Hierarchy of symmetries

– (k + 1)-local symmetry implies k-local symmetry

– If k ≥ diam(G), k-local symmetry = global symmetry

Known results

(see [Bollobás ’81], [KSV ’02])

•A G(n, p) random graph is:

– globally asymmetric a.a.s. if p ∈ [log n/n, 1− log n/n]

– globally symmetric if p ≪ log n/n or 1− p ≪ log n/n

•A G(n,m) random graph is globally asymmetric a.a.s iff 2m/
(

n
2

)

≥ log n + ω(1) and
n− 1− 2m/

(

n
2

)

≥ log n + ω(1)

Regime of local symmetry

Theorem:A G(n, p) random graph, with p = o(n−2/3), is locally symmetric a.a.s.

•Local symmetry persists to much higher average degree than global symmetry

Proof sketch:

•A G(n, p) has few triangles (∼ (np)3 = o(n))

– therefore most neighborhoods (n− o(n)) are stars

•Degrees in G(n, p) are concentrated around np

– range of length ∼ np: o(n) degree values used

• Same degree + star neighborhoods =⇒ local symmetry

Regimes of local asymmetry

Theorem:AG(n, p) random graph, with ω(n−1/2+δ1) ≤ p ≤ o(n−3/7−δ2) for constant δ1, δ2 >
0, is locally asymmetric a.a.s.

•Local asymmetry eventually emerges, but much later

Proof sketch:

•Union bounds reduces problem to local asymmetry of two vertices in G(n, p)

• Isomorphism relates to distance metric ∆ over degree sequences of neighborhoods

–Local symmetry between u and v only if ∆(N [u],N [v]) = 0

• Intersection between neighborhoods is small

–Removing it affects ∆ by O((np2)2)

•Neighborhood remainders are two independent G(n, p) random graphs

–Random size: ∼ np vertices

–Degrees can be considered independent

–Power-law decaying probabilities are preserved by approximation

•Degrees in each graph are grouped into “buckets”

– Joint distributions of degrees in each bucket are multinomial

–∆ ≥ L1-distance between two independent multinomials

–Larger than (np)1/2−ε with probability 1− o(n−a), for any ε, a > 0

Additional details:

•Degree sequence edit distance: ∆(G,G′) =
∑

k |φG(k) − φG′(k)|, where φG(k) counts
vertices in G with degree k

–∆(G,G′) is the minimum mismatch when aligning vertices of G and G′ by degree

– Isomorphic graphs must have the same degree sequence: ∆ = 0

–Useful fact: if G = (V,E) and S ⊆ G, then ∆(G,G[S]) ≤ |V \ S| + |C(S)|, where
C(S) counts edges between S and V \ S

•Degrees in a G(n, p) random graph are almost like independent random variables

–McKay and Wormald ’97: approximation framework, with asymptotic error guarantees
for event probabilities

–Three intermediate models to perform transition between Bn,p (binomial model, inde-
pendent sequence) and Dn,p (degree sequence model, extracted from G(n, p))

Theorem: If p satisfies ω(log n/n) ≤ p ≤ o(n−1/2), then for any event sequence An and
any fixed a > 0, PBn,p

(An) = o(n−a) implies PDn,p
(An) = o(n−a).

–Our extension: simultaneous approximation for two independent random graphs
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