
Approximating p-centres in large δ-hyperbolic graphs

Katherine Edwards1, W. Sean Kennedy2, Iraj Saniee2

A quasi-linear time algorithm for distance-based clustering

Clustering via p-centres
The p-center algorithm is a discrete variant of one of
the most frequently used clustering algorithms, the
k-means clustering. The goal of the p-center algorithm
is to identify on a given graph a pre-specified number p
of vertices or centers, such that the maximum distance of
any graph vertex to its nearest center is minimized. For
any given p, the algorithm naturally partitions a graph
into p clusters induced by the position of its p centers.
Unfortunately, as a clustering algorithm the complexity
of the p-center algorithm is generally prohibitive, O(np)
for an n-vertex graph, making it inapplicable to even
moderate size graphs.
In this work we show how to approximate p-centres in
a class of graphs which are common in real data, the
d-hyperbolic graphs. We show that that by giving up
to 3d in the (additive) approximation, one can achieve a
quasilinear time p-center approximation. As such, this
scheme is the first p-center approximation applicable
to large graphs, particularly when p is relatively small,
for example in the range 10-104 and n is large, for
example, 105-109 vertices.

The p-centre Problem

Given input graph G and integer p:

 • Find p centres c1, ... ,cp minimizing
 r(c1, ... ,cp) = max

vdV(G)
min

i
d(v,ci)

 • Optimal value of r(c1, ... ,cp) is called
 the p-radius rp

 • Centres may be vertices or lie on edges

Known Algorithms
In general graphs: p-centres is NP-hard. In fact it is
NP-hard to approximate the p-radius to a factor smaller
than 2. A (multiplicative) 2-approximation exists in
time O(m log m).

In trees: p-centers can be solved exactly in linear time
O(n).

In d-hyperbolic graphs: previous result: p-centres can
be solved in time O(n3) with an additive error at most
d on the p-radius [1].

References & Contact
1 University of Rome La Sapienza - katherine.edwards2@gmail.com
2 Nokia Bell Labs - {kennedy, iis}@research.bell-labs.com

[1] V. Chepoi and B. Estellon. Packing and covering δ-hyperbolic spaces by balls. In, Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, pages 59– 73. Springer, 2007.

[2] K. Edwards, W. S. Kennedy, and I. Saniee. Fast approximation algorithms for p-centres in large δ-hyperbolic graphs. Arxiv preprint arx-
iv:1604.07359, 2016.

[3] W. S. Kennedy, O. Narayan, and I. Saniee. On the Hyperbolicity of Large-Scale Networks. Arxiv preprint arxiv:1307.0031, 2013.

Our results
In d-hyperbolic graphs:

Theorem: If pd{1,2} and G is d-hyperbolic: there is
an approximation algorithm with
 • additive error at most d on the p-radius
 • running time O((2δ + 1)(m + n))

Theorem: If p $ 3 and G is d-hyperbolic: there is an
approximation algorithm with
 • additive error at most 3d on the p-radius

 • running time O(p(d+ 1)(m + n) log n)

Proof Ideas
Hyperbolic graphs are similar to trees, a class of graphs
where p-centres is easy. So we want to exploit this
similarity.

The p-centre problem is a covering problem: we want to
cover the vertices of G with p balls of a smallest possible
radius. The natural dual is a packing problem, known
as (p+1)-dispersion, which asks for p+1 disjoint balls
each with a largest possible diameter.

The (p+1)-dispersion Problem

Given input graph G and integer p+1:

 • Find p vertices x1, ... ,xp+1 maximizing
 d(x1, ... ,xp+1) = min

i ^j
d(xi ,xj)

 • Optimal value of r(c1, ... ,cp) is called
 the (p+1)-diameter dp+1

In general graphs: rp $ dp+1. This follows from the
pigeonhole principle (but rp and dp+1 may be arbitrarily
far apart).

In trees: rp= dp+1

In d-hyperbolic graphs: rp # dp+1+d

Previous work on d-hyperbolic graphs solved the primal
p-centre problem and its dual (p+1)-dispersion problem
simultaneously, resulting in a solution to p-centres with
an additive error of d on the p-radius rp

. But this cubic
time algorithm is prohibitively slow.

Locally Dispersed Sets
Our key observation is that starting from a solution to a
'local' version of dispersion, we can easily obtain p centres
with an additive error of at most 3d on the p-radius. For
small values of pd{1,2} our additive error is just d.

In the local (p+1)-dispersion, rather than look for p+1
vertices which are pairwise as far apart as possible in G,
we look for a set of p+1 vertices which we can't improve
by swapping a vertex in our set with a new vertex
(i.e. by making a local improvement).

We give an algorithm to find an optimal locally dis-
persed set by performing a quasilinear number of
vertex swaps. We then show how to obtain the approx-
imate p-centres from it in constant time.

δ-hyperbolicity
Hyperbolicity is an invariant of a graph which roughly
measures how close its distance metric is to the distance
metric of a tree.

Definition: Let x,y,z be any three vertices in G and let
[x,y], [x,z], [y,z] be three shortest paths. The union of
the paths is called a geodesic triangle.

Let the perimeter r = d(x,y) + d(y,z) + d(x,z) and
define
ax = ½r - d(y,z)
ay = ½r - d(x,z)
az = ½r - d(x,y)

The points mx, my, mz are located where the inscribed
circle would meet the edges of a triangle with side lengths
d(y,z), d(x,z) and d(x,y).

The insize of a geodesic triangle is
maxvd{x,y,z}maxid[0,av] d(p,q) where p,q are points on the
geodesic triangle that are both at distance av from v.

The hyperbolicity d of G is the maximum insize of a
geodesic triangle.

Fact: Trees are 0-hyperbolic.

Fact: Graphs arising from real networks have small
hyperbolicity. Kennedy et al. [3] studied a large number
of publicly available graphs arising from social media,
collaboration and citation networks, IP-layer networks
and web graphs. They found that as the size of these
graphs grows very large, their hyperbolicities d remain
small (less than 10). This is in contrast with the random
graph, which has logarithmic hyperbolicity.

So in this sense, real-world graphs are tree-like.

The objective
Real graphs are big: a quadratic-time algorithm is too
slow in practice on a billion-vertex graph.
Real graphs are d-hyperbolic: can get an additive
constant error on the p-radius for graphs with fixed d.
We want an approximation algorithm with a small
additive approximation error that runs in nearly linear
time.

x

yz

ax ax

ay

ayaz

az

m
x

m
y m

z

#d

