APPROXIMATING P-CENTRES IN LARGE O-HYPERBOLIC GRAPHS
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CLUSTERING VIA P-CENTRES

The p—center algorithm is a discrete variant of one of
the most frequently used clustering algorithms, the
k—means clustering. The goal of the p—center algorithm
1s to identify on a given graph a pre—specified number p
of vertices or centers, such that the maximum distance of
any graph vertex to its nearest center is minimized. For
any given p, the algorithm naturally partitions a graph
into p clusters induced by the position of its p centers.
Unfortunately, as a clustering algorithm the complexity
of the p—center algorithm is generally prohibitive, O(n?)
for an n—vertex graph, making it inapplicable to even
moderate size graphs.

In this work we show how to approximate p—centres in
a class of graphs which are common in real data, the
o—hyperbolic graphs. We show that that by giving up
to 30 in the (additive) approximation, one can achieve a
quasilinear time p—center approximation. As such, this
schemeisthe first p—center approximation applicable
to large graphs, particularly when p is relatively small,
for example in the range 10—10* and n is large, for
example, 10°—10° vertices.

THE p-CENTRE PROBLEM

Given input graph G and integer p:

o FInd p centres c,,
fr(c cp) =max, _, .

o Optlmal value of 7"( c,
the p—radiusr,

o Centres may be vertices or lie on edges

,C, MINIMIZING

min. d( V,C /
,C p) 1s called

KNOWN ALGORITHMS

In general graphs: p—centres 1s NP—hard. In fact it is
NP—hard toapproximate the p—radius toafactor smaller
than 2. A (multiplicative) 2—approximation exists in
time O(m log m).

In trees: p—centers can be solved exactly in linear time

O(n).

In 0—hyperbolic graphs: previous result: p—centres can
be solved in time O(n?) with an additive error at most
O on the p—radius [1].
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O-HYPERBOLICITY

Hyperbolicity 1s an invariant of a graph which roughly
measures how close i1ts distance metric is to the distance
metric of a tree.

Definition: Let 2.,z be any three vertices in G and let
/ 2,4/, [z.2], [y,z] be three shortest paths. The union of
‘the paths is called a geodesic triangle.

/\

Let the perimeter 7 = d(x,y) + d(y,z) + d(z,z) and
define

a, =% —d(yz)

a =T —d(z,2)

a = —d(z,y)

The points m m, m, are located where the inscribed%
circlewould meet the edges of a triangle with side lengths

d(vy,z), d(x,z) and d(xz,y).

The insize of a geodesic triangle is
gmaX’”E{x’%Z}maX@daad d(p,q) where p,q are points on the
‘geodesic triangle that are both at distance ¢, from v.

The hyperbolicity 0 of G is the maximum insize of a
geodesic triangle.

Fact: Trees are O—hyperbolic.

Fact: Graphs arising from real networks have small
hyperbolicity. Kennedy et al. [3] studied a large number
of publicly available graphs arising from social media,
collaboration and citation networks, IP—layer networks
and web graphs. They found that as the size of these
graphs grows very large, their hyperbolicities 0 remain
small (less than 10). This is in contrast with the random
graph, which has logarithmic hyperbolicity.

So 1n this sense, real—world graphs are tree—like.

THE OBJECTIVE

Real graphs are big: a quadratic—time algorithm is too
slow in practice on a billion—vertex graph.

Real graphs are 0—hyperbolic: can get an additive
constant error on the p—radius for graphs with fixed 0.
We want an approximation algorithm with a small
additive approximation error that runs in nearly linear
time.
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OUR RESULTS

In 0—hyperbolic graphs:

.................................................................................................................................................................................................................................................................................................................................................................................

Theorem: If p€{1,2} and G is §—hyperbolic: there is
an approximation algorithm with

o additive error at most 0 on the p—radius
o running time O((2 + 1)(m +n))

%Theorem; If p = 3 and G is 0—hyperbolic: there is an
approximation algorithm with

» additive error at most 30 on the p—radius

o running time O(p(0+ 1)(m + n) log n)
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PROOF IDEAS

Hyperbolic graphs are similar to trees, a class of graphs
where p—centres 1s easy. So we want to exploit this
similarity.

The p—centre problem is a covering problem: we want to
cover the vertices of G with p balls of a smallest possible
radius. The natural dual 1s a packing problem, known
as (p+1)—dispersion, which asks for p+I1 disjoint balls
each with a largest possible diameter.

THE (p+1)-DISPERSION PROBLEM
Given input graph G and integer p+1:

e I'ind p vertices z, ... ,x ., maximizing
d(:z: ) +1) min, ]d(x :1:])

o Optlmal Value of 7"( Cpy oo sC p) 1s called
the (p+1 )—dlameter dp g

In general graphs: r > d .. This follows from the
pigeonhole principle (but r, "and d ., may be arbitrarily
far apart).

In trees: r=d ,,

In d—hyperbolic graphs: r, <d , +0

Previous work on 0—hyperbolic graphs solved the primal
p—centreproblemanditsdual (p+1)—dispersion problem
simultaneously, resulting in a solution to p—centres with
an additive error of 0 on the p—radius T, But this cubic
time algorithm is prohibitively slow.

LocALLY DISPERSED SETS

Our key observation is that starting from a solution to a
'local' version of dispersion, we can easily obtainp centres
with an additive error of at most 30 on the p—radius. For

small values of p€{1,2} our additive error is just O.

In the local (p+1)—dispersion, rather than look for p+1I
vertices which are pairwise as far apart as possible in G,
we look for a set of p+1 vertices which we can't improve
by swapping a vertex in our set with a new vertex
(i.e. by making a local improvement).

We give an algorithm to find an optimal locally dis—
persed set by performing a quasilinear number of
vertex swaps. We then show how to obtain the approx—
imate p—centres from it in constant time.



