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1. Introdution

“The Probabilistic Method has now become one of the most im-
portant and indispensable tools for the Combinatorist. There have
been several hundred papers written which employ probabilistic ideas
and some wonderful monographs. ... Over the past two decades, the
explosion of research material, along with the wide array of very im-
pressive results demonstrates another important aspect of the Prob-
abilistic method; some of the techniques involved are subtle, one
needs to know how to use those tools, more so than simply under-
stand the theoretical underpinnings.”. Nirajan Balachandran’s words
([5]) give us an idea of the dimensions that this method has now reached.
The method, which became popular after several contributions of Paul
Erdös, can be summarized as follows: to prove the existence of an object
(a graph with certain properties, for example) one builds a probability
space in which our object has positive probability. So, even though we
don’t know how to build it, we know it exists. Noga Alon and Zoltan
Füredi published, in 1989, a result on legitimate colorings of projective
planes [1] in which this method is applied via the Local Lovász Lemma
(LLL). In [4], Moser and Tardos, for a special case of the LLL called
variable version, showed an constructive algorithm that finds the object
which the LLL proves existence . In order to analyze this algorithm,
Moser and Tardos developed the so-called entropy compression method
(this name was given by Terrence Tao in [6]) . Roughly speaking, the
method consists in two main stages: first, we provide some way to en-
code an execution process of the algorithm so that the outcomes of all
random choices performed by the algorithm can be uniquely recovered
from the resulting encoding. On the second stage we use the structure of
this encoding to show that if the expected runtime of the algorithm were
unbounded then this encoding would losslessly compress the original ran-
dom data while reducing its Shannon entropy, which is impossible. It
was discovered lately (and somewhat unexpectedly), by Grytczuk, Kozik
and Micek in [8], that one can obtain better combinatorial results by a
direct application of the entropy compression method rather than simply
appealing to the LLL. The idea is to construct a randomized procedure
that solves a particular combinatorial problem (instead of proving the
LLL in general) and then apply an entropy compression argument to
show that this procedure has expected finite runtime. Examples can be
found in [2], [7], [3], etc.. In our research [9], we use this method to
improve the result obtained by Noga Alon and Zoltan Füredi in [1].

2. Definitions

Let P and L be sets whose elements are called “points and “lines”,
respectively and R : P → L a relation. Then (P,L,R) is a projective
plane if:

Axiom 1 Given b, c ∈ P , b 6= c, there is an only one element a ∈ L
such that (a, b), (a, c) ∈ R.

Axiom 2 Given b, c ∈ L, b 6= c, there is an only one element a ∈ P
such that (a, b), (a, c) ∈ R.

Axiom 3 There are a1, a2, a3, a4 ∈ P such that there are no b ∈ L
and i, j, k ∈ {1, 2, 3, 4} such that (ai, b), (aj, b)(ak, b) ∈ R, where k 6=
i 6= j 6= k.

If P and L are finite sets then (P,L,R) is called a finite projective
plane and:

Result 1 There is n ∈ N such that ]P = ]L = n2 + n + 1 (and n is
the order of the finite projective plane)

Result 2 If l ∈ L then there are only p1, . . . , pn+1 ∈ P such that
(pi, l) ∈ R, for all i ∈ {1, ..., n + 1} ( for n fixed in the Result 1)

Result 3 If p ∈ P then there are only l1, . . . , ln+1 ∈ L such that
(li, l) ∈ R, for all i ∈ {1, ..., n + 1} ( for n fixed in the Result 1)

The next figure shows the projective plane of order 2 - The Fano Plane:

Figure 1: The Fano Plane.

Definition 1 f : P → {1, . . . , χ} is a χ-coloring of (P,L,R).

Definition 2 The type of a line l is the vector
tl,f = (|l ∩ f−1(1)|, . . . , |l ∩ f−1(χ)|).

Definition 3 If, for some χ-coloring, all the lines of a (P,L,R)
have different types , this coloring is called legitimate.

Definition 4 χ(P,L,R) is the minimum number of colors necessary
in oder to exist a legitimate χ-coloring of (P,L,R).

3. Results

In [1] is shown that every projective plane of order greater than 3 ·1036

can be legitimate colored with 8 colors. In our research we concluded
that this is true for projective planes of order greater than 1010. We also
conclude that with 9 colors one can legitimate color projective plane of
order greater than 3 · 106, with 10 colors greater than 60, etc..

We now show a sketch of our proof. First we need some results used
in [1]

Lemma 1 There is S ⊂ P such that, for all l ∈ L, lnn 6 |l∩S| 6
20 lnn.

Now we fix a 8-coloring f for P \S. For all li, lj ∈ L, we define {li, lj}
as a dangerous pair if d1(tli,f , tlj,f ) 6 40 lnn.

Lemma 2 There is a 8-coloring f : P \ S → {1, . . . , 8} in which
there is no p ∈ P that belongs to more than 4 dangerous pairs.

Making little changes in the lemmas presented in [1] it is not hard to
show that there is a f -coloring of P \ S in which none of the points
p ∈ P belong to more than bn dangerous pairs and there is no line that
forms a dangerous pair with more than an (or more) lines, given that n
is large enough.

Now we use the entropy compression method described in [7] and ex-
plained in [6]. We will use a simple algorithm define as follows:

From now on [n] will denote the set {1, . . . , n}. let Pn be a projec-
tive plane of order n with set of points P = [n2 + n + 1]. let S and
f : P \ S → [c] be the set and the partial coloring defined above. let

K = d m
m−1(m!δ(m−1))(1/m)e for m, δ > 0 to be defined and F ∈ [K]t,

for t > 0. the vector F will provide the entries for the algorithm. We
must show that there is a vector F for which the algorithm finds a
legitimate coloring of Pn. The algorithm follows:

At step i, assign Fi (the i-th entry of F ) to the uncolored point pj
of smallest index of S . Suppose that, after pj is colored, the distance
between two lines becomes zero with all points colored. In this case, it
is possible to define a vector R such that lemmas 3 and 4 holds.

Let Xi be the set of points not colored at step i and φi the partial
coloring of Pn at step i. We will show that the pair (φi, (Rj)j≤i) is
produced by exactly one vector (Fj)j≤i. But first we need the following
lemma:

Lemma 3 At each step i, Xi is uniquely determined by (Rj)j≤i.

Lemma 4 At each step i, the application that associates to each
(Fj)j≤i the pair ((Rj)j≤i, φi) is injective.

Let Ft be the set of vectors F for which the projective plane is not
completely colored at step t of the algorithm. Clearly |Ft| ≤ Kt and if
this inequality is strict then there is a vector F for which the projective
plane is completely colored (in a legitimate fashion) at step t. Let Rt
be the set of registers R that can be produced by vectors from Ft. Since
there are (K + 1)|S| possible partial colorings of Pn at step t the next
lemma is a direct consequence of lemma 4.

Lemma 5 |Ft| ≤ (K + 1)|S||Rt|.

We now need to compute |Rt| and show that for t large enough, |Ft|
is smaller than the set of all possible vectors, meaning that there is a
vector F for which the algorithm terminates.

Let w = w1 . . . wm be a word on the alphabet A = [(a · b)1/m] and

θ(w) = 1 +
∑m
i=1(wi − 1)(a · b)i−1/m. One can easily check that θ is

injective and has range in [a · b].
Let R ∈ Rt. We define R∗ = (R∗i )i≤t as the sequence of words on the

alphabetA∗ = A∪{0} as follows: for 1 ≤ i ≤ t, if Ri = ∅ then R∗i = 0.

If Ri = (u, v) then R∗i is the concatenation of 0 and θ−1(v). Now, let
R• be the word obtained from R∗ by concatenating all its entries and R◦

on the alphabet {0, 1} obtained from R• changing its non-zero letters
into 1.

Let R∗t = {R∗|R ∈ Rt. It is possible to show that |Rt| ≤
(m!)t/m|R∗t |. Clearly R∗ 7→ R• is an injection. We will have to work a
little harder to analyse R• 7→ R◦.

Definition 5 A partial Dyck word is word w on the alphabet {0, 1}
such that any prefix of w contains at least as many 0’s as 1’s. A Dyck
word of length 2t is a partial Dyck word with t 0’s and t 1’s. A descent
in a (partial) Dyck word is a maximal sequence of consecutive 1’s.

Lemma 6 For any R ∈ Rt, the word R◦ is a partial Dyck word with
t 0’s and t − r 1’s, where r is the number of points after t steps of the
algorithm. Moreover, all descents in R◦ have length m.

The proof of the first part of lemma 6 can be find in [7]. The second
part comes from de fact that in a word R◦, each 1 represents a point
that was uncolored and each 0 a point that was colored.

Let R◦t = {R◦|R ∈ Rt}. The fact that in a word R◦ the num-
ber of 1’s does not exceed the number of 0’s (lemma 6) implies that

|R•| ≤ ((a · b)1/m)t|R◦t |. Therefore, by lemma 5:

Lemma 7 |Ft| ≤ (K + 1)|S|((m!a · b)1/m)t|R◦t |.

We now aim to count partial Dyck words having the properties de-
scribed in lemma 5. To make the computation easier, we will in fact
count Dyck words with these properties. The next lemma, proven in [7]
shows that counting these two objects is almost equivalent, provided
that r (the difference between the number of 0 s and 1 s in the partial
Dyck word) is not too large.

Lemma 8 Let t and r ≤ t be integers, and let E 6= {1} be
a non-empty set of non-negative integers. Let Ct,r,E (resp. Ct,E)
be the number of partial Dyck words with t 0’s, t − r 1’s (resp.
Dyck words with length 2t) and all descents having length in E. Then
Ct,r,E ≤ Ct+r(s−1),E, where s = min(E \ {1}).

As mentioned in [7], if E = {m} then

Ct,E =
1

t + 1

(
t + 1
t
m

)
.

Using Stirling’s formula, we find its asymptotic value ct3/2Ctm, where c

is a constant and Cm = m(m− 1)1/m−1.

We are now able to prove the main result of our research:

Theorem 8. Let Pn be a projective plane of order n. There is a
legitimate coloring of Pn with max(c(n, a, b), d m

m−1(m!δ(m− 1))1/me)
colors, with m as defined above, δ = a · b for a e b defined above and
c(n) the number of colors needed in order to exist a f : P \ S → [c(n)]
with the properties previously mentioned.

Proof: To prove the theorem, we need to show that there is a vec-
tor F ∈ [ m

m−1(m!δ(m − 1))1/m]t such that the algorithm with Pn
and F as entries, returns a legitimate coloring of Pn. By lemma 7,
|Ft| ≤ (K + 1)|S|((m!a · b)1/m)t|R◦t |. Note that, for each R ∈ Rt, the
number of zeros and ones in each prefix of R◦ differs by at most |S| − 1
since at most |S| − 1 points are colored in each step of the algorithm.

Now, lemmas 6 and 8 implies that |R◦t | ≤
∑|S|
r=0Ct+r,E ≤ c

′
Ctmt

−3
2,

where c
′

is a constant. Therefore |Ft| ≤ c
′
((m!a · b)1/m)t|Ctmt−

3
2, and

|Ft|/( m
m−1(m!δ(m− 1))1/m)t goes to as t goes to infinity. In particular,

for t large enough, |Ft| < [ m
m−1(m!δ(m − 1))1/m)]t, hence there is a

vector F for which the algorithm halts in less than t steps and returns a
legitimate coloring of Pn using at most d m

m−1(m!δ(m − 1))1/me colors
in S. Since we had used c(n, a, b) colors in P \ S, the result follows.
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