APPLYING SPECTRAL GRAPH THEORY TO CLASSICAL EXTREMAL PROBLEMS

Lilian Cavalet (Author) Luiz Emilio Allem Carlos Hoppen lilian.cavalet@ufrgs.br emilio.allem@ufrgs.br choppen@ufgrs.br

Departamento de Matemática Pura e Aplicada Universidade Federal do Rio Grande do Sul, Brasil

Introduction

Certain extremal problems are classified as Turán type problems. Here we shall consider the Zarankiewicz problem, which aims to maximize the number of edges e(G) under the condition that the graph G does not contain any copy of a complete bipartite graph $K_{s,t}$. We say that G is $K_{s,t}$ -free.

In addition to the classical version of the Zarankiewicz problem, we shall discuss it under a spectral viewpoint, since it is possible to derive bounds for the classical version from inequalities of Spectral Graph Theory.

In this work, we consider two matrix representations of graphs:

Bounds for the *q***-index**

Since the spectral radius and the q-index are related as follows

 $2\lambda \leq q$

bounds on the q-index imply bounds on the spectral radius, and thus on the number of edges. This leads to the following spectral question: What is the maximum q of a graph G is a $K_{s+1,t}$ -free graph of order n?

Reference

Bound

Adjacency Matrix: Given a graph G = (V, E) with vertex set $\{v_1, \ldots, v_n\}$ the adjacency matrix $A(G) = (a_{ij})$ is given by

$$a_{ij} = \begin{cases} 1 & \text{it } v_i \sim v_j \\ 0 & \text{otherwise} \end{cases}$$

Signless Laplacian Matrix: Q(G) = A(G) + D(G), where D(G) is the diagonal matrix whose *i*-th entry is given by the degree of vertex v_i .

The largest eigenvalues associated with the matrices A(G) and Q(G) are called the **spectral** radius $\lambda(G)$ and the *q*-index q(G), respectively.

Bounds for the Zarankiewicz problem

Table. 1: Bounds on the average degree of a $K_{s,t}$ -free graph G with n vertices, where $2 \leq t \leq s$.

Bounds for the spectral radius

de Freitas, Nikiforov and Patuzzi, [4]

 $q \le \frac{n+2s}{2} + \frac{1}{2}\sqrt{(n-2s)^2 + 8s}$

q < n

$$q \leq \frac{n}{2} + s + t - 2 + \frac{1}{2}\sqrt{(n - 2 + 2s)^2 - 8s(n - 2) + 4(t - 1)(n - t + 1)^2}$$

Table. 4: Bounds on the q-index of a graph G as in the above problem. Note that the first inequality is the resultant of this problem on the following conditions: $n \ge s^2 + 6s + 6$ and t = 2. The second inequality holds under the restriction $\Delta(G) < n-1$. The last inequality is a conjecture proposed in [4].

Tightness of upper bounds on the *q*-index

 $q \le n/2 + 1 + 1/2\sqrt{(n-2)^2 + 8}$ in [3] s = 1

s > 1 The equality is valid if and only if $G = K_1 \lor H$ where H is an s-regular graph of order n - 1, as shown in [4]

Table. 5: Values for s and t presented by de Freitas, Nikiforov and Patuzzi, [4], such that the bounds are tight.

Future Work

• Verify whether the above conditions may be relaxed in some instances.

The spectral radius λ satisfies the following inequality

Therefore, bounds on the spectral radius lead to bounds on the edges number. Hence, we may state a spectral question associated with the Zarankiewicz problem: What is the maximum value of $\lambda(G)$ if G is a $K_{s,t}$ -free graph of order n?

Reference	Bound	
Babai and Guiduli [$\lambda \leq \left((s-1)^{1/t} + o(1) \right) n^{1-1/t}$	
Nikiforov [6]	$t = 2$ $\lambda \le 1/2 + \sqrt{(s-1)(n-1)} + 1$	1/4
	$ \sum_{k=0}^{t} \lambda \leq (s-t+1)^{1/t} n^{1-1/t} + (t-1)n^{1-2} n^{1-2} n^{1$	$t^{2/t} + t - 2$

Table. 2: Bounds on the spectral radius of a graph G as in the above problem. Note that in the first inequality the asymptotics is for t and s fixed and $n \to \infty$, while the latter is an improvement on the results in [7].

Tightness of upper bounds on the spectral radius

 $\lambda \le 1/2 + \sqrt{n - 3/4}$

• Look for better upper and lower bounds on the q-index. • Consider other spectral parameters related with the Zarankiewicz problem. • Consider other classical problems and their relation with spectral parameters.

References

t=2

- [1] L. Babai, B. Guiduli. Spectral extrema for graphs: the Zarankiewicz problem. The Electronic Journal of Combinatorics, (2009).
- [2] N. Alon, L. Rónyai, T. Szabó. Norm-graphs: variations and applications. Journal of Combinatorial Theory, Series B 76.2 (1999), 280-290.
- [3] M. A. A. de Freitas, V. Nikiforov, L. Patuzzi, Maxima of the Q-index: forbidden 4-cycle and 5-cycle, Eletronic J. Linear Algebra, (2013).
- [4] M. A. A. de Freitas, V. Nikiforov, L. Patuzzi, Maxima of the Q-index: graphs with no $K_{s.t}$, Linear Algebra Appl. (2016), 381–391.
- [5] T. Kövari, V. Sós, P. Turán, On a problem of the K. Zarankiewicz, Collq. Math. (1954), 50-57.
- [6] V. Nikiforov. A contribution to the Zarankiewicz problem. Linear Algebra and its Applications, (2010), 1405-1411.
- Z. Füredi. An upper bound on Zarankiewicz'problem. Combinatorics, Probability and |7|Computing, (1996), 29-33.

s = 2	$X \leq 1/2 + \sqrt{n} = 3/4$		Computing, (1550), 25-55.
	Equality for friendship graphs.		[8] Z. Füredi. New asymptotics for bipartite Turán numbers. Journal of Combinatorial Theory, Series A 75.1 (1996), 141-144.
t = 2	$\lambda \ge \sqrt{sn} + O\left(n^{1/3}\right)$ given by [8]		it has
s > 2	Equality for strongly regular graph in which every two vertices have exactly $s - 1$ common neighbors.	Consider the	ne C5 graph, te graph. Id is a K2,2-free graph.
	$\lambda \le n^{2/3} + 2n^{1/3} + 1$	order 5 a	$\frac{2}{100}$ is $\lambda = 250$, $\frac{2}{100}$ is $\lambda = 250$, $\frac{1}{100}$ is λ
$t = 3 \qquad \qquad s = 3$	$\lambda \ge n^{2/3} + 2/3 \ n^{1/3} + C \text{ with } C > 0$ by Alon, Rònyai and Szabò, in [2]	Its st by t	spectral radius, is tight, the first ness of values, is tight, the shtness of radius, is tight,
$t \ge 2 \text{ and } s \ge (t-1)! + 1$	$\lambda \ge n^{1-1/t} + O\left(\left(n^{1-1/t-C} \right) \text{ with } C > 0$ as shown in [2]	in C	$\frac{1}{10} \frac{1}{10} \frac$
Table. 3: Upper and lower bounds on λ that	allow us to assess the quality of the bounds in [6] for some values of s	and t .	