
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

Motivation and Background Previous Work

Proof of Theorem 1

 Charles University in Prague University of Oxford

Igor C. Oliveira Rahul Santhanam

Circuit Lower Bounds from Nontrivial Learning Algorithms

“Nontrivial”

learning algorithm

for a circuit class C

Lower bounds

against C ?

Improved algorithmic

upper bounds ?

C(s(n)): C-circuits on n-variables of size ≤ s(n).

Circuit Size: number of wires.

 AC0  AC0[p]  ACC0  TC0  NC1  …  P/poly

MA  PSPACE  EXP

NEXP

BPEXP

MAEXP

BPEXP: Exponential time version of BPP.

P

NP

BPP

Theorem. MAEXP ⊈ P/poly [BFT’98].

Theorem. NEXP ⊈ ACC0 [Wil’11].

Believed to collapse to EXP (if P = BPP then EXP = BPEXP).

Theorem. MA/1 ⊈ SIZE(nk) [San’07].

(Non-uniform) Circuit Classes:

(Uniform) Complexity Classes:

Learning Algorithm Af

(unknown) f  C

Oracle Access

Runs in time:

tA(n, size(f), 1/ε, 1/δ)

 Uniform Distribution, Randomized, Membership Queries.

ε: “Accuracy Parameter”.

δ: “Confidence Parameter”.

Goal:

Output with probability > 1 - δ
a (general) circuit h such that

Prx[h(x)  f(x)]  ε.

Learning Algorithms:

Algorithm A learns f  C with advantage  if w.h.p

Prx[h(x) = f(x)]  1/2 + .

 Algorithm weakly learns C if   1/poly(n).

 It is nontrivial if running time of A  2n/nω(1).

“Fast SAT implies lower bounds” [KL’80]

If Circuit-SAT can be solved efficiently then EXP ⊈ P/poly.

“Derandomization implies lower bounds” [KI’03]

If PIT  NSUBEXP then either

 (i) NEXP ⊈ P/poly; or

 (ii) Permanent is not computed by poly-size arithmetic circuits.

“Nontrivial SAT implies lower bounds” [Wil’10]

If Circuit-SAT for poly-size circuits can be solved in time

2n/nω(1) then NEXP ⊈ P/poly.

[FK’06] Learning circuit class C in poly-time implies BPEXP ⊈ C

(and related results for other learning models).

[HH’11] Stronger lower bounds from Exact Learning.

[KKO’13] Weaker assumptions and stronger conclusions in

different learning models. In particular,

[Vol’14] Efficiently learning C implies BPTIME(nω(1))/1 ⊈ C.

 Learning C in subexponential time implies LB or unlikely collapse.

[Vol’15] New results for learning arithmetic circuits.

 AC0  AC0[p]  ACC0  TC0  NC1  …  P/poly

[LMN’89] Quasi-poly size AC0 circuits learnable in quasi-poly time.

[CIKK’16] Quasi-poly size AC0[p] circuits learnable

in quasi-poly time (requires MQs).

? ? ?

Some connections between algorithms and circuit lower bounds:

Lower Bounds from Learning Algorithms:

Fast learning algorithms:

Our Results

 [Nontrivial Learning Implies Lower Bounds]

Theorem 1.
Let C be a circuit class, : N (0,1/2] be arbitrary.

Assume C-circuits of size nω(1) can be learned with advantage
 in time O(2 2n/n2).

Then BPEXP ⊈ C[poly].

Corollary of Theorem 1.
If ACC0 circuits of size nlog log log n can be weakly learned in
time 2n/nω(1) then BPEXP ⊈ ACC0.

Lemma 1 [Speedup Phenomenon in Learning Theory].

Assume C[poly(n)] can be (weakly) learned in time 2n/nω(1).

Let k  N and ε > 0 be arbitrary constants.

Then C-circuits of size nk can be learned to accuracy n-k in

time at most exp(nε).

R
u

n
n

in
g

Ti
m

e

ACC0-SAT ACC0-Learning

Nontrivial: 2n/nω(1)

SETH: 2(1-ε)n

ETH: 2εn

SUBEXP: 2n
ε

Speedup Phenomenon in Learning Theory

?

?

?

?

?

?

?

Open Problems and Research Directions

1. Investigate the existence of speedups in other
learning models.

(This would show that BPEXP ⊈ AC0[6].)

2. Design a nontrivial learning algorithm for AC0[6]
circuits of size nlog log log n.

3. Which classes of functions admit nontrivial learning
algorithms?

Example. Depth-2 Threshold Circuits?

Main Techniques:

 Counting / Concentration Bound

 Learning via self-correction and downward-reducibility

 Special PSPACE language

 Diagonalization via majority vote

 Hardness amplification

 Nisan-Wigderson pseudorandom generator

Let C  {AC0, AC0[p], ACC0, TC0, NC1, …}.

Assume that ACC0  C[poly] (since otherwise BPEXP  C).

 “C is not too weak.”

If PSPACE ⊄ C[poly] we are done (using that PSPACE  BPEXP).

 Proceed under the assumption that PSPACE  C[poly].

Let’s use the Speedup Lemma (1) (stated above).

We can learn C-circuits of poly(n) size in time exp(no(1)).

 (recall that PSPACE  C[poly]).

Lemma [PSPACE Simulation] (2) (the proof is sketched later)

 If PSPACE  C[poly] and C[poly] can be learned in

 subexponential time then PSPACE  BPTIME[exp(no(1))].

Now employ a technique from [KKO’13], [FK’06], [IW’01]:

From PSPACE  BPTIME[exp(no(1))],

simple padding argument implies: DSPACE[nω(1)]  BPEXP.

Lemma [Diagonalization] (3) (the proof is sketched later).

There is L  DSPACE[nω(1)] that is not in C[poly].

Since DSPACE[nω(1)]  BPEXP, we get BPEXP  C[poly], which

completes the proof of Theorem 1.

(1) Speedup Lemma (relies on recent work [CIKK’16]).

(2) PSPACE Simulation Lemma (follows [KKO’13]).

(3) Diagonalization Lemma [Folklore].

It remains to prove the following lemmas.

Lemma [Diagonalization]

There is L  DSPACE[nω(1)] that is not in C[poly].

Sketch. Diagonalization via majority vote. Define L such that on the

first  nlog n strings of size n it differs from every circuit in C[poly]:

 On input 0n, output the bit that disagrees with at least half of the

circuits.

 On input 0n-11, output the bit that disagrees with at least half of

the remaining circuits.

…
  L can be computed in DSPACE[nω(1)].

Goal:

length

k+1 inputs

Sketch. “Learn how to compute a PSPACE complete language.”

Lemma [PSPACE Simulation]

 If PSPACE  C[poly] and C[poly] can be learned in

 subexponential time then PSPACE  BPTIME[exp(no(1))].

[TV’02] PSPACE-complete language L* that is both:

downward-self-reducible (dsr) and random-self-reducible (rsr).

Run learning algorithm

and simulate oracle

access to L* on strings

of length k+1 via dsr.

dsr h: {0,1}k+1{0,1}
Assume we have

learned how to

compute L* on

inputs of length k

Self-correct

h via rsr.

(assuming Lemma 1)

Proof Sketch:

The proof of the Speedup Lemma requires additional ideas

and will not be presented here. Check the paper for more details!

http://www.facebook.com/pages/PosterPresentationscom/217914411419?v=app_4949752878&ref=ts

