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Circuit Lower Bounds from Nontrivial Learning Algorithms 

“Nontrivial”   

learning algorithm  

for a circuit class C 

Lower bounds 

against C ? 

Improved algorithmic 

upper bounds ? 

C(s(n)):  C-circuits on  n-variables  of  size  ≤  s(n).   

Circuit Size:  number of wires.   

  

  AC0    AC0[p]    ACC0    TC0    NC1     …     P/poly 

 

MA    PSPACE    EXP 

NEXP 
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BPEXP:   Exponential time version of BPP.    

P 

NP 

BPP 

Theorem.  MAEXP  ⊈  P/poly    [BFT’98].  

Theorem.  NEXP  ⊈  ACC0        [Wil’11].  

Believed to collapse to EXP   (if P = BPP then EXP = BPEXP). 

Theorem.  MA/1  ⊈  SIZE(nk)    [San’07].  

(Non-uniform)  Circuit Classes: 

(Uniform)  Complexity Classes: 

Learning Algorithm  Af 

(unknown) f    C  

Oracle Access 

Runs in time:  

tA(n, size(f), 1/ε, 1/δ) 

 Uniform Distribution,  Randomized,  Membership Queries. 

 

ε:  “Accuracy Parameter”.   

δ:  “Confidence Parameter”.   

Goal: 
 

Output with probability > 1 - δ 
a  (general) circuit h such that 
 

Prx[h(x)  f(x)]  ε. 

Learning Algorithms: 

Algorithm  A  learns  f  C  with  advantage    if  w.h.p 
 

Prx[h(x) = f(x)]  1/2 + . 

 Algorithm  weakly  learns  C  if    1/poly(n).  

 
 It  is  nontrivial  if  running  time of  A    2n/nω(1).    

 

“Fast SAT implies lower bounds” [KL’80]  

If  Circuit-SAT can be solved efficiently then EXP ⊈ P/poly. 

“Derandomization implies lower bounds” [KI’03]  

If  PIT   NSUBEXP then either   

   (i)  NEXP ⊈ P/poly; or 

   (ii) Permanent is not computed by poly-size arithmetic circuits.   

“Nontrivial SAT implies lower bounds” [Wil’10]  

If  Circuit-SAT for poly-size circuits can be solved in time 

2n/nω(1)  then  NEXP ⊈ P/poly. 

[FK’06] Learning circuit class C in poly-time implies BPEXP ⊈ C 

(and related results for other learning models).  

[HH’11] Stronger lower bounds from Exact Learning.  

[KKO’13] Weaker assumptions and stronger conclusions in  

different learning models. In particular, 

[Vol’14] Efficiently learning C implies BPTIME(nω(1))/1 ⊈ C.  

   Learning C in subexponential time implies LB or unlikely collapse. 

[Vol’15] New results for learning arithmetic circuits.  

  

  AC0    AC0[p]    ACC0    TC0    NC1     …     P/poly 

 

[LMN’89] Quasi-poly size AC0 circuits learnable in quasi-poly time. 

[CIKK’16] Quasi-poly size AC0[p] circuits learnable 

in quasi-poly time  (requires MQs). 

? ? ? 

Some connections between algorithms and circuit lower bounds:  

Lower Bounds from Learning Algorithms: 

Fast learning algorithms: 

Our Results 

             [Nontrivial Learning Implies Lower Bounds]   
 
Theorem 1.   
Let  C  be a circuit class,  : N (0,1/2] be arbitrary. 
 
Assume  C-circuits of size nω(1) can be learned with advantage  
 in time O(2 2n/n2).   
 
Then BPEXP ⊈ C[poly]. 

 

Corollary of Theorem 1.    
If  ACC0 circuits of size nlog log log n  can be weakly learned in 
time  2n/nω(1)   then  BPEXP ⊈ ACC0. 
 

Lemma 1  [Speedup Phenomenon in Learning Theory]. 

 

Assume  C[poly(n)]  can be  (weakly)  learned  in time  2n/nω(1). 
 

Let  k  N and ε > 0  be  arbitrary constants. 

 

Then  C-circuits of size  nk  can be learned to accuracy  n-k  in 

time  at most  exp(nε). 
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ACC0-SAT ACC0-Learning 

Nontrivial: 2n/nω(1) 

SETH: 2(1-ε)n 

ETH:  2εn 

SUBEXP: 2n
ε 

Speedup Phenomenon in Learning Theory 

? 

? 

? 

? 

? 

? 

? 

Open Problems and Research Directions 

1. Investigate the existence of speedups in other 
learning models. 

(This would show that BPEXP ⊈ AC0[6].) 

2. Design a nontrivial learning algorithm for AC0[6] 
circuits of size nlog log log n. 

3. Which classes of functions admit nontrivial  learning  
algorithms? 

Example.  Depth-2 Threshold Circuits? 

Main Techniques: 

 Counting / Concentration Bound 

 Learning via self-correction and downward-reducibility 

 Special  PSPACE  language 

 Diagonalization via majority vote 

 Hardness amplification 

 Nisan-Wigderson pseudorandom generator 

Let C  {AC0,  AC0[p], ACC0, TC0, NC1, …}. 

 

Assume that ACC0   C[poly] (since otherwise BPEXP  C). 

 

 “C is not too weak.” 

If  PSPACE ⊄ C[poly] we are done (using that PSPACE  BPEXP). 

 

   Proceed under the assumption that  PSPACE  C[poly].  

 

Let’s use the Speedup Lemma (1)  (stated above). 

  

We can learn C-circuits of  poly(n) size in time exp(no(1)). 

 

                                               (recall that PSPACE  C[poly]).  

Lemma [PSPACE Simulation] (2)  (the proof is sketched later)   

    If  PSPACE  C[poly] and C[poly] can be learned in             

    subexponential time  then  PSPACE  BPTIME[exp(no(1))].   

Now employ  a  technique from  [KKO’13], [FK’06], [IW’01]: 

From PSPACE  BPTIME[exp(no(1))],  

simple padding argument  implies:   DSPACE[nω(1)]  BPEXP. 

Lemma [Diagonalization] (3)  (the proof is sketched later).  

There is L  DSPACE[nω(1)] that is not in C[poly]. 

Since  DSPACE[nω(1)]  BPEXP,  we get BPEXP  C[poly], which 

completes the proof of Theorem 1. 

(1)  Speedup Lemma  (relies on recent work [CIKK’16]).  

(2)  PSPACE Simulation Lemma (follows [KKO’13]). 

(3)  Diagonalization Lemma [Folklore]. 

It remains to prove the following lemmas. 

Lemma [Diagonalization]  

There is L  DSPACE[nω(1)] that is not in C[poly]. 

Sketch. Diagonalization via majority vote. Define L such that on the 

first  nlog n  strings of size  n  it differs from every circuit in C[poly]: 

 

  On input 0n, output the bit that disagrees with at least  half  of the 

circuits. 

 

  On input 0n-11, output the bit that disagrees with at least  half  of 

the remaining circuits. 

…
    L can be computed in DSPACE[nω(1)].  

Goal:  

length   

k+1 inputs 

Sketch. “Learn how to compute a PSPACE complete language.”  

Lemma [PSPACE Simulation] 

    If  PSPACE  C[poly] and C[poly] can be learned in             

    subexponential time  then PSPACE  BPTIME[exp(no(1))].   

[TV’02] PSPACE-complete language L* that is both: 

downward-self-reducible (dsr)  and  random-self-reducible (rsr). 

Run learning algorithm 

and simulate oracle 

access to L* on strings 

of length k+1 via dsr. 

dsr h: {0,1}k+1{0,1}  
Assume we have 

learned how to 

compute  L*  on 

inputs of  length  k 

Self-correct  

h via rsr. 

(assuming Lemma 1) 

Proof Sketch: 

The proof of the Speedup Lemma requires additional ideas 

and will not be presented here. Check the paper for more details! 
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