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Motivation and Background Previous Work _ _
Lemma 1 [Speedup Phenomenon in Learning Theory]. From PSPACE ¢ BPTIME[exp(n°M)],
simple padding argument implies: DSPACE[ne()] ¢ BPEXP.
Some connections between algorithms and circuit lower bounds: Assume C[poly(n)] can be (weakly) learned intime 2n/ne®.
Lower bounds 3 o . : Lemma [Diagonalization] (3) (the proof is sketched later).
against C ? Fast SAT implies lower bounds” [KL’80] Let ke Nand € >0 be arbitrary constants. There is L € DSPACE[n®®] that is not in C[poly].
“Nontrivial” If Circuit-SAT can be solved efficiently then EXP & P/poly.
learning algorithm . o R Then C-circuits of size nk can be learned to accuracy n™ in Since DSPACE[ne®W] ¢ BPEXP, we get BPEXP ¢ C[poly], which
for a circuit class C Derandomization implies lower bounds” [KI’03] time at most exp(ng). completes the proof of Theorem 1.
\ If PIT € NSUBEXP then either
Improved algorithmic (1) NEXP & P/poly; or A ACCO-SAT ACCPO-Learnin - -
upper bounds ? (1) Permanent is not computed by poly-size arithmetic circuits. ) It remains to prove the following lemmas.
.. . 1) Speedup Lemma (relies on recent work [CIKK’16]).
“Nontrivial SAT implies lower bounds” [Wil’10] Nontrivial: 2"/n®®) J ? (1) sp P ( | )
(Non-uniform) Circuit Classes: If Circuit-SAT for poly-size circuits can be solved in time W (2) PSPACE Simulation Lemma (follows [KKO’13]).
2n/ne then NEXP & P/poly. E || SETH: 2¢-en ? ?
o0 (3) Diagonalization Lemma [Folklore].
AC? ¢ ACO[p] € ACCY ¢ TC® ¢ NC! ¢ ... c¢ P/poly || ETH: oe 5 5
Lower Bounds from Learning Algorithms: S ' ' '
(2
. ont 2 2 Lemma [Diagonalization]
Circuit Size: number of wires [FK’06] Learning circuit class C in poly-time implies BPEXP & C SUBEXP: 2 | ad There is L € DSPACE[n®®] that is not in C[poly].
c - o i)l ] (and related results for other learning models). i
s(n)): C-circuits on n-variables of size < s(n). _ _ _ _ o _
(5m) ™) [HH’11] Stronger lower bounds from Exact Learning. Speedup Phenomenon in Learning Theory Sketch. Diagonalization via majority vote. Define L such that on the
| | first << n'ogn strings of size n it differs from every circuit in C[poly]:
(Uniform) Complexity Classes: [KKO’13] Weaker assumptions and stronger conclusions in
different learning models. In particular, ¢ On input O", output the bit that disagrees with at least half of the
NP NEXP : : e _ circuits.
4 O & O Learning C in subexponential time implies LB or unlikely collapse. Proof of Theorem 1
P MA ¢ PSPACE c EXP , : ] : : .
MAEXP Vol’14] Efficiently learning C implies BPTIME(no®)/1 & C. (assuming Lemma 1) ¢ On input 0™11, output the bit that disagrees with at least half of
O & O & Main Techniques: the remaining circuits.

BPP

'Vol’15] New results for learning arithmetic circuits.

—> L can be computed in DSPACE[ne)].

Counting / Concentration Bound
Theorem. MAEXP & P/poly [BFT’98].

Fast learning algorithms: Diagonalization via majority vote
Theorem. MA/1 & SIZE(nK) [San’07]. . .
) . Learning via self-correction and downward-reducibility Lemma [PSPACE Simulation] _
Theorem. NEXP & ACC [Wil’11]. _ If PSPACE ¢ C[poly] and C[poly] can be learned in
AC® ¢ AC%[p] ¢ ACC® ¢ TC? ¢ NC! ¢ ... c P/poly Special PSPACE language subexponential time then PSPACE ¢ BPTIME[exp(n°®)].
BPEXP: Exponential time version of BPP. Hardness amplification
Believed to collapse to EXP  (if P = BPP then EXP = BPEXP). | " | Sketch. “Learn how to compute a PSPACE complete language.
Isan-Wigderson pseudorandom generator .
X0 Xp) [TV’°02] PSPACE-complete language L* that is both:
| | v R downward-self-reducible (dsr) and random-self-reducible (rsr).
Learning Algorithms: [CIKK’16] Quasi-poly size AC°[p] circuits learnable Proof Sketch: dor 01 {0.]
: : : : : : 10,1340,
Uniform Distribution, Randomized, Membership Queries. In quasi-poly time (requires MQs). Assume we have < . Run learning algorithm
\ Let C € {AC?, AC‘[p], ACCO, TC? NC1,...}. learned how to Goal: and simulate oracle Self-correct
: _ _ o _ _ _ ! ! ! ! ’ te L* on lenath access to L* on strings h via rsr
LMN’89] Quasi-poly size ACO circuits learnable in quasi-poly time. _ompt g . via rsr.
unknown) f C . » [ _ _ inputs of length k - f length k+1 via dsr.
( A) S €. “Accuracy Parameter”. Assume that ACC? ¢ C[poly] (since otherwise BPEXP ¢ C). P ° k+1inputs| 7= o
O: “Confidence Parameter”.
Oracle Access “C is not too weak.”
Goal- Our Results The proof of the Speedup Lemma requires additional ideas
' and will not be presented here. Check the paper for more details!

If PSPACE & C[poly] we are done (using that PSPACE ¢ BPEXP).

Learning Algorithm Af [Nontrivial Learning Implies Lower Bounds]

Output with probability > 1 -
a (general) circuit h such that —> Proceed under the assumption that PSPACE < C[poly].

Runs in time: ot 1) = F00] Theorem 1. Open Problems and Research Directions
- < €.
ta(n, size(f), /e, 1/0) X * =¢ Let C be acircuit class, y: N- (0,1/2] be arbitrary.
’ 1. Investigate the existence of speedups in other
Assume C-circuits of size n®t) can be learned with advantage Let’s use the Speedup Lemma (1) (stated above). learning rgr;lodels P P

y in time O(y? 2"/n?).

Algorithm A learns f € C with advantage y if w.h.p Then BPEXP & C[poly] We can learn C-circuits of poly(n) size in time exp(n°®). 2. Design a nontrivial learning algorithm for AC°[6]
_ ' circuits of size nlogloglogn,
Pr.[h(x) = f(x)] = 1/2 + . (recall that PSPACE ¢ C[poly]).
(This would show that BPEXP & AC°[6].)
_ _ Corollary of Theorem 1. Now employ a techniqgue from [KKO’13], [FK’06], [IW’01]:
Algorlthm Weakly learns C If Y= 1/p0|y(n) If ACCP circuits of size nlogloglogn ~3n be Weak|y learned in 3. Which classes of functions admit nontrivial learning

Lemma [PSPACE Simulation] (2) (the proof is sketched later) algorithms?
If PSPACE ¢ CJpoly] and C[poly] can be learned in
subexponential time then PSPACE c BPTIME[exp(n°®)].

_ L _ _ time 2"/n*) then BPEXP & ACCC.
It is nontrivial if running time of A < 2"/ne(),

Example. Depth-2 Threshold Circuits?
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