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Abstract
We extend results on monochromatic tree covers and from classical Ramsey theory to a generalised

setting, where each of the edges of an underlying host graph (here, either a complete graph or a complete
bipartite graph), is coloured with a set of colours.

Our results for tree covers in this setting have an application to Ryser’s Conjecture. Every r-partite
r-uniform hypergraph whose edges pairwise intersect in at least k ≥ (r − 2)/2 vertices, has a transversal
of size at most r − k. In particular, for these hypergraphs, Ryser’s conjecture holds.

Introduction

We consider complete (and complete bipartite) graphs G whose edges are each coloured
with a set of k colours, chosen among r colours in total. That is, we consider functions
ϕ : E(G) →

([r]
k

)
. We call any such ϕ an (r, k)-colouring (so, the usually considered r-

colourings for Ramsey problems are (r, 1)-colourings).
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Figure 1: (4, 2)-colouring of K4

The first problem we consider is the tree covering problem. In the traditional setting, one
is interested in the minimum number tcr(Kn) such that each r-colouring of E(Kn) admits a
cover with tcr(Kn) monochromatic trees (not necessarily of the same colour). The following
conjecture has been put forward by Gyárfás:

Conjecture 1 (Gyárfás [5]). For all n ≥ 1, we have tcr(Kn) ≤ r − 1.

Note that this conjecture becomes trivial if we replace r − 1 with r, as for any colouring,
all monochromatic stars centered at any fixed vertex cover Kn. Also, the conjecture is tight
when r − 1 is a prime power, and holds for r ≤ 5. This is due to results from [1, 4, 5].

In our setting, for a given graph G we define tcr,k(G) as the minimum number m such that
each (r, k)-colouring of E(G) admits a cover with m monochromatic trees. In this context,
a monochromatic tree in G is a tree T ⊆ G such that there is a colour i which, for each
e ∈ E(T ), belongs to the set of colours assigned to e.

Tree coverings have also been studied for complete bipartite graphs Kn,m. Chen, Fujita,
Gyárfás, Lehel and Tóth [2] proposed the following conjecture.

Conjecture 2 (Chen et al. [2]). If r > 1 then tcr,1(Kn,m) ≤ 2r − 2, for all n,m ≥ 1.

It is shown in [2] that this conjecture is tight; that it is true for r ≤ 5; and that tcr,1(Kn,m) ≤
2r − 1 for all r, n,m ≥ 1.

Also classical Ramsey problems extend to (r, k)-colourings. Define the set-Ramsey num-
ber rr,k(H) of a graph H as the smallest n such that every (r, k)-colouring of Kn contains a
monochromatic copy of H . (As above, a monochromatic subgraph H of G is a subgraph
H ⊆ G such that there is a colour i that appears on each e ∈ E(H).) So the usual r-colour
Ramsey number ofH equals rr,1(H). Note that rr,k(H) is increasing in r, ifH and k are fixed,
and decreasing in k, if H and r are fixed.

Results

Let ϕ be an (r, k)-colouring of a graph G. Note that deleting k − 1 fixed colours from all
edges, and, if necessary, deleting some more colours from some of the edges, we can pro-
duce an (r− k+ 1)-colouring from ϕ. So, Conjecture 1, if true, implies that tcr,k(Kn) ≤ r− k.
We confirm this bound, in the case that r is not much larger than 2k.

Theorem 1. If r ≤ 2k + 2 then tcr,k(Kn) ≤ r − k for all n ≥ 1.

Clearly, the bound from Theorem 1 is tight for k = r − 1, and it is also tight for k = r − 2,
as Figure 1 shows, but in general, the bound is not tight. The smallest example (in terms of
r and k) corresponds to r = 5 and k = 2.

Theorem 2. For all n ≥ 4, we have tc5,2(Kn) = 2.

There is an interesting connection between Theorem 1 and Ryser’s Conjecture. The lat-
ter conjecture states that τ (H) ≤ (r − 1)ν(H) for each r-partite r-uniform hypergraph with
r > 1, where τ (H) is the size of a smallest transversal of H, and ν(H) is the size of a largest
matching inH. Is not hard to see (Figure 2) that there is a correspondence between r-partite
r-uniform hypergraphs and r-colourings of graphs in such a way that, for intersecting hy-
pergraphs, transversals in the hypergraph become monochromatic tree covers in a suitable
r-colouring.

Ryser’s conjecture for k-intersecting hypergraphs (where every two hyperedges intersect in
at least k vertices) is equivalent to the statement tcr,k(Kn) ≤ r − 1. But as Theorem 1 gives

the stronger bound tcr,k(Kn) ≤ r − k, we obtain a stronger version of Ryser’s conjecture for
these hypergraphs:

Corollary 1. We have τ (H) ≤ r − k for all r-partite r-uniform k-intersecting hypergraphs H with
r ≤ 2k + 2.
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Figure 2: Correspondence between r-partite r-uniform hypergraphs and r-colourings

In the case of G being a complete bipartite graph, we can use the argument from above,
deleting k − 1 fixed colours, to see that tcr,k(Kn,m) ≤ 2r − 2k + 1. However, it is possible to
improve the upper bound as the following theorem shows.
Theorem 3. For all r, k, n,m,

tcr,k(Kn,m) ≤


r − k + 1, if r ≤ 2k

2r − 3k + 1, if 2k < r ≤ 5k/2

2r − 3k + 2, otherwise.

For the case r ≤ 2k, our bound is sharp for large graphs.

Theorem 4. For each r, k with r > k there is m0 such that if n ≥ m ≥ m0 then tcr,k(Kn,m) ≥
max{r − k + 1, r − k + brkc − 1}.

Considering set-Ramsey numbers, we can bound rr,k(H) with the help of the usual r-
colour Ramsey number rr(H). In fact, in the same way as we obtained our trivial bounds on
tcr,k, one can prove (see also [6]) that for every graph H and integers r > k > 0,

rr−k+1(H) ≥ rr,k(H) ≥ rbrkc(H). (1)

Both bounds are not best possible as already the example of r = 3, k = 2 and H = K3,
or H = K4, shows. Namely, it is not difficult to show that r3,2(K3) = 5, and the value
r3,2(K4) = 10 follows from results of [3].

If kr surpasses t−2t−1, we can estimate rr,k(Kt) using Turán’s Theorem.

Theorem 5. Let ε ∈ (0, 1), let t ≥ 2 and let r > k > 0. If t−2t−1 = (1 − ε)kr , then rr,k(Kt) ≤ 1
ε + 1.

This bound is sharp if k = r − 1 = t− 1 is a prime power, in which case rr,k(Kt) = k2 + 1.

We also establish a lower bound for cycles under this setting.

Theorem 6. If ` is odd and k ≥ 2, then rr,k(C`) > max{2
r−1
k−1, 2b

r
kc(`− 1)}.

It is possible to show, by using Theorem 6 and some basic combinatorial arguments, that
r4,2(K3) = 9, being this number another example in which Equation (1) is not sharp.

Open Questions

Related to Theorem 1, the best lower bound we know is tcr,k(Kn) ≥ brkc− 1, for n ≥ (r− 1)2.
We do not know where in the interval [brkc − 1, r − k] the true value of tcr,k(Kn) lies.

Problem 1. Determine tcr,k(Kn) for all r, k, n.

For the case of complete bipartite graphs and for r > 2k, we do not know the true value of
tcr,k(Kn,m).

Problem 2. Determine tcr,k(Kn,m) for all r, k, n,m ≥ 1.
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Thése, Paris, 1979.
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