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1. From list coloring to DP-coloring

List coloring is an important generalization of ordinary graph coloring, introduced indepen-
dently by Vizing [6] and Erdős, Rubin, and Taylor [4]. It is defined as follows. Let G be a graph

and suppose that for each vertex v ∈ V (G), a set of available colors L(v), called the list of v, is
specified. A proper coloring c of G is an L-coloring if c(v) ∈ L(v) for all v ∈ V (G). G is said to
be L-colorable if it admits an L-coloring; G is k-list-colorable (or k-choosable) if it is L-colorable
whenever |L(v)| ≥ k for all v ∈ V (G). The least number k such that G is k-choosable is called the
list chromatic number (or the choosability) of G and is denoted by χ`(G) (or ch(G)).

Consider a graph G and a list assignment L for G. For each v ∈ V (G), let

L̃(v) := {(v, c) : c ∈ L(v)}.

(Note that the sets L̃(v) are pairwise disjoint.) Let H be the graph with vertex set

V (H) :=
⋃

v∈V (G)

L̃(v)

and edge set given by
(v1, c1)(v2, c2) ∈ E(H) :⇐⇒ (v1 = v2 and c1 6= c2) or (v1v2 ∈ E(G) and c1 = c2).

In other words, the graph H is obtained from G by replacing each vertex v ∈ V (G) by a clique of size
|L(v)| and each edge v1v2 ∈ E(G) by a matching that pairs the vertices corresponding to coinciding
colors in L(v1) and L(v2).

Given an L-coloring c of G, we define the set Ic ⊆ V (H) as follows:
Ic := {(v, c(v)) : v ∈ V (G)}.

Observe that Ic is an independent set in H and for each vertex v ∈ V (G), |Ic∩ L̃(v)| = 1. Conversely,
if I ⊆ V (H) is an independent set such that |I ∩ L̃(v)| = 1 for all v ∈ V (G), then, setting cI(v) to
be the single color such that (v, cI(v)) ∈ I , we obtain a proper L-coloring cI of G.

So, we have that

G is L-colorable ⇐⇒ H contains an independent set of size |V (G)|.

( a ) A graph G with a list L ( b ) The vertex set of H

( c ) The graph H ( d ) An L-coloring of G as an independent set in H

Figure 1: From list coloring to DP-coloring

2. DP-colorings: the definition

The following definitions are essentially due to Dvořák and Postle [3] (they used the term “correspon-
dence coloring” instead of “DP-coloring”).

Definition 2.1: Covers
Let G be a graph. A cover of G is a pair (L,H), where L is an assignment of pairwise disjoint
sets to the vertices of G and H is a graph with vertex set

⋃
v∈V (G)L(v), satisfying the following

conditions.
1. For each v ∈ V (G), H [L(v)] is a complete graph.
2. For each uv ∈ E(G), the edges of H between L(u) and L(v) form a matching (possibly empty).
3. For each distinct u, v ∈ V (G) with uv 6∈ E(G), no edges of H connect L(u) and L(v).

Definition 2.2: DP-colorings
Suppose G is a graph and (L,H) is a cover of G. An (L,H)-coloring of G is an independent set
I ⊆ V (H) of size |V (G)|.

Definition 2.3: DP-chromatic numbers
The DP-chromatic number of G (notation: χDP (G)) is the minimum k such that G is (L,H)-
colorable for each choice of (L,H) with |L(v)| ≥ k for all v ∈ V (G).

3. First properties

Proposition 3.1: Dvořák–Postle [3]
• χDP (G) ≤ ∆(G) + 1;
• χDP (G) ≤ 5 for planar G;
• χDP (G) ≤ 3 for planar G with girth ≥ 5.

Proposition 3.2
χDP (Cn) = 3 for all n ≥ 3.

Figure 2: A cover of C4 showing that χDP (C4) > 2

4. Alon’s theorem for DP-colorings

A fundamental result of Alon asserts that the list chromatic number of a graph is bounded below by
an increasing function of its average degree. More precisely:

Theorem 4.1: Alon [1]
Let G be a graph with average degree d. Then

χ`(G) ≥ (1/2− o(1)) log2 d.

I turns out that the dependence of the DP-chromatic number of a graph on its average degree is much
stronger:

Theorem 4.2: Version of Alon’s theorem for DP-colorings; A.B. [2]
Let G be a graph with average degree d ≥ 2e. Then

χDP (G) ≥ d/2

ln(d/2)
.

Proof. Suppose that
k ≤ d/2

ln(d/2)
.

Let {L(v)}v∈V (G) be a collection of pairwise disjoint sets, each of size k. Randomly construct a graph
H with vertex set

⋃
v∈V (G)L(v) as follows: For each u ∈ V (G), make H [L(u)] a clique, and for each

uv ∈ E(G), connect L(u) and L(v) by a perfect matching chosen independently and uniformly at
random. By construction, (L,H) is a cover of G.

Consider any set I ⊆
⋃
v∈V (G)L(v) such that |I ∩ L(v)| = 1 for all v ∈ V (G). If uv ∈ E(G), then

the probability that the only vertex in I ∩ L(v) and the only vertex in I ∩ L(u) are nonadjacent in
H is exactly 1 − 1/k. Therefore, the probability that I is a proper (L,H)-coloring of G is exactly
(1 − 1/k)|E(G)| ≤ e−|E(G)|/k. Thus, the probability that there exists at least one (L,H)-coloring is
at most

k|V (G)| · e−|E(G)|/k = e|V (G)| ln k−|E(G)|/k.

We claim that it is less than 1. Indeed, it is enough to show that

k ln k <
|E(G)|
|V (G)|

= d/2.

But
k ln k <

d/2

ln(d/2)
· ln(d/2) = d/2,

as desired.

5. Johansson’s theorem for DP-colorings

Theorem 5.1: Johansson [1]
Let G be a triangle-free graph with maximum degree ∆. Then

χ`(G) = O

(
∆

ln ∆

)
.

It turns out that Johansson’s bound holds for DP-chromatic number as well:
Theorem 5.2: Johansson’s theorem for DP-colorings; A.B. [2]
Let G be a triangle-free graph with maximum degree ∆. Then

χDP (G) = O

(
∆

ln ∆

)
.

As a surprising corollary of Theorems 4.2 and 5.2, we see that the DP-chromatic number of a regular
triangle-free graph is determined, up to a constant factor, by its degree.

Corollary 5.3: DP-chromatic number of regular triangle-free graphs
Let G be a d-regular triangle-free graph. Then

χDP (G) = Θ

(
d

ln d

)
.
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