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Abstract

The element distinctness problem consists in finding, given a
list of elements, if there is some collision (two or more equal
elements). The quantum algorithm for element distinctness
was first proposed by Ambainis and uses important concepts of
quantum walks. Ambainis’ algorithm performs a quantum walk
over the edges of a Johnson graph while searches for a marked
vertex. Szegedy generalized this process into a quantum walk
model on bipartite graphs, leading to the formulation of other
important algorithms. Recently, Portugal et al. introduced the
staggered quantum walk, a novel quantum walk model which
includes Szegedy’s model as a particular case. In this work, we
reformulate the element distinctness quantum algorithm using
a staggered quantum walk. We show that our new formulation
requires less memory than the original one while keeping the
same query complexity.

1. Introduction

The problem: In a given list of indices [N ] = 0, 1, ..., N − 1,
where each index represents an element in [M ], we have the
following considerations:
1. Element Distinctness. Given elements x0, x1, ..., xN−1 ∈

[M ], are there indices i, j ∈ [N ] such that i 6= j, and xi = xj ?
2. Element k -Distinctness. Given elements x0, x1, ..., xN−1 ∈

[M ], are there k indices i1, i2, ..., ik ∈ [N ] such that i1 6= i2 6=
... 6= ik and x1 = x2 = ... = xk ?

Quantum Walks (QW): Describes the movement of a particle
through nodes of a graph [2]. This walk must be reversible and
deterministic, as ruled by the postulates of quantum mechanics.
Two models are particularly important for this work: Szegedy’s
model [7] and Staggered model [6].
Ambainis’ algorithm for element distinctness: Uses con-
cepts of QW and quantum search in graphs to perform a search
for a marked vertex on a Johnson graph, requiring O(r(logN +

logM)) qubits of memory [3], and O(Nk/k+1) queries, where k
is the number of collisions in the list.
Belovs’ algorithm for element distinctness: This quan-
tum algorithm is based in learning graphs and requires
O(N1−2k−2/(2k−1)) queries, being more efficient than Ambainis’
algorithm [4].
Staggered quantum algorithm for element distinctness:
Our proposal uses the Staggered quantum walk model [6]. This
algorithm has the same complexity of Ambainis’ original pro-
posal, however it has the advantage of requiring just O(r logN)
qubits of memory [1].

2. Staggered Quantum Walk Model

Definition 1. Let C be a set of cliques of Γ. We say that C is a
set of disjoint maximal cliques of Γ if the cliques of C are pair-
wise disjoint and the inclusion of any vertex v ∈ V (Γ)\C to some
cliqueK ∈ C turns it into a non-complete graph—that is, K∪{v}
is not a clique of Γ—or causes the cliques of C are no longer
pairwise disjoint—that is, (K ∪ {v}) ∩K ′ 6= ∅, for some K ′ ∈ C
such that K ′∪{v} 6= K. If C is an inclusion-wise maximal set of
disjoint maximal cliques of Γ—that is, the inclusion of any clique
K of Γ into C turns it a non-disjoint maximal set of cliques of
Γ—, then we say that C is a tessellation of Γ. In the context of
the Staggered Quantum Walk model, we call each clique in C a
polygon.
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Figure 1: Different tessellations of the same graph. Each tes-
sellation is a set of disjoint-maximal cliques in the graph. Notice
that in each tessellation, every vertex is covered by a polygon.

Definition 2. Let C1, C2, ..., CT be tessellations of Γ. We say that
Γ is T -tessellable if and only if C1, C2, ..., CT is the smaller family
of tessellations in Γ such that C1∪C2∪ ...∪Ct covers all vertices
and all edges of Γ.

Figure 2: A graph Γ covered by tessellations present in Fig 1.
This graph is 3-tessellable because if we remove any tessella-
tion, the graph will not be fully covered.

Polygons of different tessellations necessarily have at least one
vertex in common, and each polygon defines a unit vector in a
Hilbert Space HN . Each tessellation defines a unitary orthogo-
nal reflexive operator as

Ui = 2

(
mi−1∑
k=0

|ϕi〉〈ϕi|

)
− I, (1)

where
|ϕi〉 =

∑
j∈ψi

ψi,j|j〉, (2)

and mi is the number of polygons in tessellation Ci, and ψi,j are
nonzero complex amplitudes of the unit vector |ϕi〉, that repre-
sents a polygon in Γ with vertices where j is a vertex in the
polygon represented by the unit vector |ϕi〉.
Proposition 1. [5] A graph is two-tessellable if and only if its
clique graph is two-colorable.

3. Staggereg quantum algorithm for Element
Distinctness

Let define r = bNk/k+1c, where k is the number of collisions
that we have in the starting list. In our approach we have two
sets represented by S and y, where S ⊆ [N ] with size r and
y ⊆ [N ]\S with unit size. S represents the indices of the el-
ements in our list. For each S we have N − r unitary sets y
associated. We have a graph Γ where each vertex v = (S, y),
i.e., we have N − r vertices with the same set S, but differing by
sets y.
Definition 3. We define a graph Γ with

(N
r

)
(N − r) vertices. A

vertex v corresponds to (S, y). There are an edge between two
vertices v and v′, for v = (S, y) and v′ = (S′, y′), if and only if (i)
S′ = S and y 6= y′, or (ii) S′ = S ∪ {y}\{y′}.
Definition 4. We can define two tessellations in graph Γ. The
first tessellation, called α-tessellation, is defined by polygons
that cover cliques, where for every pair of vertices (v, v′) such
that v = (S, y) and v′ = (S′, y′), we have S = S′ and y 6= y′. The
second tessellation, called β-tessellation, is defined by poly-
gons that cover cliques, where for every pair of vertices (v, v′),
such that v = (S, y) and v′ = (S′, y′), we have S′ = S ∪ {y}\{y′}.

Figure 3: Graph Γ generated from [N ] = {0, 1, 2, 3}, where
k = 2, N = 4 and r = 2. We have α-tessellation in red and
β-tessellation in blue.

The two operators generated by tessellations α and β, respec-
tively, are

U0 = 2

[ (Nr )−1∑
i=0

(
1

N − r
|Si, y〉〈Si, y|+

+
∑
y′ 6=y
y′/∈S

1

N − r
|Si, y′〉〈Si, y′|

)]
− I

(3)

and

U1 = 2

[ (Nr )−1∑
i=0

(
1

r + 1
|Si, y〉〈Si, y|+

+
∑
y′ 6=y
y′∈S

1

r + 1
|S′i, y

′〉〈S′i, y
′|
)]
− I,

(4)

where |S′i〉 = |Si ∪ {y}\{y′}〉.
Our algorithm uses just O(r logN) qubits of memory, corre-
sponding to a Hilbert Space of dimension

(N
r

)
(N − r).

Proposition 2. The graph Γ constructed by Def. 3 can be cast
into a bipartite Johnson graph in Szegedy’s model.

Proposition 3. A graph Γ constructed by Def. 3 is two-
tessellable.

Proposition 4. A graph Γ constructed by Def. 3 and Def. 4 al-
ways has at most one vertex in intercession of two polygons αi
and βj of different tessellations α and β, respectively.

Algorithm 1: Element k-distinctness Algorithm (Single-
solution)

1. Generate the uniform superposition

1√(N
r

)
(N − r)

∑
|S|=r,y /∈S

|S, y〉.

2. t1 = O((N/r)k/2) times repeat:
(i) Apply the conditional phase flip (|S, y〉 → −|S, y〉), such

that xi1 = ... = xik for i1 6= ... 6= ik, and i1, ..., ik ∈ S.
(ii) Apply U1U0 t2 = O(

√
r) times.

3. Measure the final state. Check if S contains a k-collision and
answer ”There is a k-collision” or ”There is no k-collision” ac-
cording to the result.
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