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Abstract

A hypercube or binary n-cube is an interconnection network very suitable for im-
plementing computing elements. In this paper we study a useful namely the Hamil-
tonian decomposition, i.e. the partitioning of its edge set into Hamiltonian cycles. It
is known that there are ⌊n/2⌋ disjoint Hamiltonian cycles on a binary n-cube. The
proof of this result, however, does not give rise to any simple construction algorithm
of such cycles. In a previous work Song presents ideas towards a simple method
to this problem. First decompose the hypercube into cycles of length 16, C16, and
then apply a merge operator to join the C16 cycles into larger Hamiltonian cycles.
The case of dimension n = 6 (a 64-node hypercube) is illustrated. He conjectures the
method can be generalized for any even n. In this paper, we generalize the first phase
of that method for any even n and prove its correctness. Also we show four possible
merge operators for the case of n = 8 (a 256-node hypercube). This result can be
viewed as a step toward the general merge operator, thus proving the conjecture.

1 Introduction

A hypercube is an interconnection network very suitable for connecting computing ele-
ments. In this paper we study an interesting property namely the Hamiltonian decomposi-
tion. Many results on the existence of Hamiltonian cycles in graphs are known [1, 3, 4, 5, 6].
When an application uses processing elements joined as a cycle, it is important to know
alternative cycles in case of communication failure in one cycle [2]. It is desirable to have
a simple algorithm to construct the alternative cycles.

It is known that there are ⌊n/2⌋ disjoint Hamiltonian cycles on a hypercube of dimension
n [1]. The proof of this result, however, does not give rise to any simple construction
algorithm of such cycles. In [7] Song presents ideas towards a simple and interesting
method to this problem. Two phases are involved. (1) Decompose the hypercube into C16

(cycles of length 16) and then (2) apply a merge operator to join the obtained C16 cycles
into larger cycles. The case of dimension n = 6 (a 64-node hypercube) was illustrated in
[7] where he conjectured this method can be generalized for any even n.

In this paper, we generalize the first phase of that method for any even n and prove its
correctness. Also we show a merge operator for the case of n = 8 (a 256-node hypercube).
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This result can be viewed as a step toward the general merge operator, thus proving the
conjecture.

2 Hamiltonian decomposition

The Hamiltonian decomposition of a graph is the partitioning of its edge set into Hamil-
tonian cycles. Consider a binary n-cube or hypercube of dimension n. For simplicity and
without loss of generality, consider n to be even. (If n is odd, the edge set can be parti-
tioned into (n − 1)/2 Hamiltonian cycles and a perfect matching [1].) Observe first that
the binary n-cube is equivalent to a 4-ary n/2-cube, that is the Cartesian product of n/2
cycles of length 4: C4 × C4 × · · · × C4. We start with the following theorem (see [1] for
details and proof).

Theorem 1 The binary n-cube with even n, or equivalently the product of n/2 cycles,
C4 × C4 × · · · × C4, can be partitioned into n/2 Hamiltonian cycles.

In a previous work [7] Song suggested ideas for a very simple method to construct the
disjoint Hamiltonian cycle of a binary n-cube. He illustrated the method for the case of
n = 6. In the following we summarize this method. It consists of two phases.

1. partition the edge set into cycles of length 16 or C16.

2. merge the resulting cycles into larger cycles to get the desired Hamiltonian cycles.
(This second phase is realized by using a merge operator to be seen later.)

2.1 Phase 1 – decomposition into C16
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Figure 1: Cycles of color 0

Phase 1 decomposes the n-cube into cycles of length 16, or C16. Foregger [5] gave a
solution for the case of n = 4, i.e. C4 ×C4 is decomposed into two C16. For the case n = 6,
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phase 1 consists of decomposing C4 × C4 × C4 into 12 C16. This decomposition is done as
follows.

Divide the 12 cycles into three groups: 4 cycles of color 0, 4 cycles of color 1, and 4
cycles of color 2. In the next section the cycles C16 of same color will be merged to form a
Hamiltonian cycle.
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Figure 2: Cycles of color 1 (left) and of color 2 (right)

In Figure 1 we illustrate the 4 cycles of color 0. Notice that the cycles are situated
on planes parallel to the plane defined by the axes e0 and e1. This observation will be
formalized in the next section. In Figure 2 we have the cycles of color 1 and color 2.
Notice the symmetries between cycles of this figure and those of Figure 1.

The edge set of the product C4 × C4 × · · · × C4 (n/2 times) can be partitioned into
n2n/32 disjoint cycles of length 16, 2n/16 cycles of the same color.

2.2 Phase 2 – the merge operator

We show how the 12 cycles of length 16 of the previous section can be merged into 3 Hamil-
tonian cycles. Cycles of the same color will be merged together to form one Hamiltonian
cycle.

Consider a vertex and the edges incident with it. An edge permutation operator is an
operator that permutes the colors of the edges. We use a set of edge permutation operators
to merge cycles of a given color to form a large cycle of the same color.

Definition 1 A set of edge permutation operators is a (cycle) merge operator if it trans-
forms a partition of the edge set of r cycles to a partition of the edge set of s cycles (s < r).

Consider the partition of the edges of C4 ×C4 ×C4 into C16 as before. Figure 3 shows
a merge operator that joins two cycles of each color into a large cycle of the same color.
Point A is a reference point for the application of the merge operator. Figure 4 shows the
effect of applying the merge operator. For each color the curves (i.e. the additional part
not present in Figure 3) indicate the remaining of the C16 cycle. On the left of Figure 5 we
have the positions (indicated by larger circles) of possible reference points A to apply the
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merge operator, according to Figure 3. On the right of the same figure we have the three
points chosen in [7] resulting in 3 Hamiltonian cycles of length 64, one for each color 0, 1
and 2.

e

e
e

0

1

2

A A
color 0

color 1

color 2

Figure 3: Merge operator

3 Generalization of phase 1

In the following we formalize phase 1, the decomposition of the edge set of a binary n-cube,
for any even n, into cycles C16. Let n = 2m and Hm a binary n-cube.

Hm = C4 × C4 × · · · × C4
︸ ︷︷ ︸

m times

.

Consider a vertex x of Hm. Let x = (x0, x1, · · · , xm−1), where xi ∈ {0, 1, 2, 3} for
0 ≤ i ≤ m − 1. Denote by x(i) the edge joining x = (x0, x1, · · · , xi, · · · , xm−1) and
x′ = (x0, x1, · · · , xi + 1 (mod 4), · · · , xm−1).

Definition 2 The initial coloring of the edge set of a binary n-cube is defined as follows.
Color each edge x(i) with color i, ∀x ∈ Hm and 0 ≤ i ≤ m − 1.

Thus each edge parallel to axis ei is colored by color i with the initial coloring.

Definition 3 The shift operator is an operator that, applied to a vertex x ∈ Hm, defines
the colors of half of the edges incident with x in the following manner: each x(i) is colored
with color (i − 1) (mod m), for 0 ≤ i ≤ m − 1.

The above operator is named shift operator because, given a vertex x and an initial
coloring of the edges, the application of the shift operator to x has the effect of shifting the
colors. See Figure 6 for n = 6. (Note however that the shift operator does not really shift
the edge colors but always gives the same coloring as defined, independent of the initial
colors before its application.)

Thus, given an initial coloring of the edges, by applying the shift operator at some
points, say x, of Hm, edges x(i + 1 (mod m)) parallel to axis ei+1 (mod m) will have color i
but all the other edges also with color i are parallel to ei. Furthermore, after applying shift,
any path formed by edges of color i only lies within a H2 = C4 × C4 parallel to the plane
defined by axes ei and ei+1 (mod m). This observation takes us to the following definition.

Definition 4 For each 0 ≤ i ≤ m − 1, H2(i) is a H2 parallel to the plane defined by axes
ei and ei+1 (mod m).
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Figure 4: The effect of the merge operator on colors 0, 1 and 2
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Figure 5: Candidate points to apply the merge operator (left) and the three chosen points
(right)
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Figure 6: The shift operator for the case n = 6
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Figure 7: The 12 H2’s for H3
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Figure 8: Illustration of Lemma 1

For example, for n = 6, H3 = C4 × C4 × C4 has 12 H2(i)’s, with 4 H2(i)’s for each
i = 0, 1, 2 (see Figure 7). A vertex x = (x0, x1, · · · , xi, xi+1 (mod m), · · · , xm−1) of H2(i) have
constant coordinates except xi and xi+1 (mod m). It is therefore of the following type:

x =(constant, · · ·, constant, xi, xi+1 (mod m), constant, · · ·, constant)
To simplify the notation, we omit the (m− 2) constant coordinates of H2(i) and write

x =(xi, xi+1 (mod m)). The following lemma will be used in the proof of Theorem 2.

Lemma 1 Consider a H2(i), for a fixed i, 0 ≤ i ≤ m − 1, a fixed k ∈ {0, 1, 2, 3}, and
an initial coloring. Apply shift in this H2(i) to all x = (xi, xi+1 (mod m)) such that xi +
xi+1 (mod m) = k (mod 4). Then the edges of color i in this H2(i) form a C16.

Proof. The proof is straightforward. We consider all possible cases for k (k = 0, 1, 2, 3)
and obtain Figure 8. The lemma holds. 2

The next theorem generalizes the decomposition in cycles C16 needed in phase 1 of the
method of [7].
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Figure 9: Points to apply the shift operator for H4

Theorem 2 Consider a binary n-cube Hm (n = 2m), with the initial coloring of its edges,
and a fixed K ∈ {0, 1, 2, 3}. Apply the shift operator to all vertices x = (x0, x1, · · · , xm−1)
such that x0 + x1 + · · ·+ xm−1 = K (mod 4). Then Hm is decomposed into cycles C16, i.e.,
any edge is part of a cycle C16.

Proof. Consider any edge of color i, 0 ≤ i ≤ m − 1. It belongs to some H2(i). In this
H2(i), consider the vertices at which the shift operator has been applied. As the (m − 2)
vertex coordinates of this H2(i) are constant, the difference between K and the sum of
these constants will also be constant. Call this difference d. Then the shift operator was
applied at vertices x such that xi + xi+1 (mod m) = d (mod 4) in this H2(i). This is exactly
the situation described in Lemma 1. Therefore in this H2(i) this edge must be part of the
cycle C16 of color i. 2

Note that the decomposition in cycles C16 for n = 6 presented in [7] is a special case of
this theorem with K = 3.

4 Hamiltonian decomposition for n = 8

We now present a Hamiltonian decomposition of the binary n-cube for n = 8.

4.1 Phase 1: decomposing H4 into 64 cycles C16

Apply Theorem 2 for H4 with K = 3. (The choice of K = 3 is that applying the theorem
for H3 with this K would produce the same results and illustrations as in [7] for H3.) In
Figure 9 the dark points are those to apply the shift operator. For clarity of illustration,
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Figure 10: 16 cycles C16 of color 0

some of the edges are omitted in the figure (most of the edges of type x(3) and all edges of
type x(i), x = (x0, x1, x2, x3), with xi = 3). H4 is decomposed into 64 cycles C16, with 16
C16 of color i for each i = 0, 1, 2, 3. In Figure 10 the 16 cycles C16 of color 0 are illustrated.
In this figure we omit more edges than we did in the previous figure, for the sake of clarity.
Compare this figure with Figure 8 to verify the omitted edges of color 0 that are part of
the cycle.
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Figure 11: Before applying the merge operator
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Figure 12: After applying each of the 4 merge operators for n = 8
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Figure 13: Effect of the merge operator 1 on color 0
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4.2 Phase 2: obtaining a merge operator

We found 4 merge operators (see Figure 11 and Figure 12). A small example is given in
Figure 13 to illustrate the effect of applying the merge operator. We choose the merge
operator 1 and use color 0. On the left of this figure, the large black point is the point
where the shift operator has been applied and the bold curves indicate the remaining of
the cycle C16 of color 0 in H2(0). We can observe four cycles of color 0. On the right we
notice that the merge operator (merge 1) joins the four cycles of color 0 into one sole cycle.
The same effect can be observed for colors 1, 2, and 3, that is, four cycles of each color
are joined by applying merge 1. The same is valid for the other merge operators (merge 2,
merge 3 and merge 4). We apply the merge operator at the following five reference points:
(3, 0, 0, 0), (1, 0, 2, 0), (0, 1, 1, 1), (3, 2, 0, 2), (1, 2, 2, 2) and we join the 16 cycles of each color
i = 0, 1, 2, 3 into one cycle only obtaining four cycles C256.

5 Conclusion

We continue the work initiated by Song[7] of finding a simple constructive algorithm to
obtain the disjoint Hamiltonian cycles of a binary n-cube. In this paper we generalize the
first phase of that method for any even n and prove its correctness. Also we show four
possible merge operators for the case of n = 8 (a 256-node hypercube). This result can be
viewed as a step toward the general merge operator, thus proving the conjecture.
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