
Comparison of Genomes using High-Performance Parallel Computing

N. F. Almeida Jr∗

Univ. Federal de Mato Grosso do Sul
nalvo@dct.ufms.br

C. E. R. Alves
Universidade São Judas Tadeu

prof.carlosr alves@usjt.br

E. N. Caceres†

Univ. Federal de Mato Grosso do Sul
edson@dct.ufms.br

S. W. Song‡

Universidade de São Paulo
song@ime.usp.br

Abstract

Comparison of the DNA sequences and genes of two
genomes can be useful to investigate the common func-
tionalities of the corresponding organisms and get a bet-
ter understanding of how the genes or groups of genes are
organized and involved in several functions. In this pa-
per we use high-performance parallel computing to com-
pare the whole genomes of two organisms, namely Xan-
thomonas axonopodis pv. citri and Xanthomonas campes-
tris pv. campestris, each with more than five million base-
pairs. Our purpose is two-fold. First we intend to exploit
the high-performance power of a cluster of low-cost micro-
computers, propose a parallel solution to this problem, and
show its feasibility with implementation and performance
results. Second we do additional comparisons of the two
genomes by locating and compare not only the homolo-
gous genes (expressed in terms of the 20-letter amino acids)
but also compare the regions or gaps (in terms of the 4-
letter DNA nucleotides) between the corresponding homol-
ogous genes. We have implemented the proposed compar-
ison strategy to compare the two genomes Xanthomonas
axonopodis pv. citri (Xac) and Xanthomonas campestris
pv. campestris (Xcc). The parallel platform used is a Be-
owulf cluster of 64 nodes consisting of low cost microcom-
puters. Xac has 5,175,554 base pairs and 4,313 protein-
coding genes while Xcc has 5,076,187 base pairs and 4,182
protein-coding genes. The parallel solution is based on the
dynamic programming approach and presents not only less
processing time, but also better quality results as compared
to approaches based on Blast and EGG.

∗ Partially supported by CNPq.
† Partially supported by FINEP-PRONEX-SAI Proc. No.

76.97.1022.00, CNPq, FAPESP Proc. No. 1997/10982-0.
‡ Partially supported by CNPq Grants No. 52.3778/96-1, 55.2028/02-9.

1. Introduction

High-performance computing has always been associ-
ated with solutions of the so-calledgrand challengesthat in-
clude such diverse areas as weather prediction, climate and
global changes, material sciences, medicine and health, and
more recently, the important area of bioinformatics. With
recent advances of DNA sequencing technology, whole ge-
nomes of bacteria, archaea and eukaryota, including hu-
mans, have been sequenced, with the announcements of
new sequencing results on a nearly monthly basis. The
amount of genome information already available is astound-
ing. According to the National Center for Biotechnology
Information of the National Institute of Health, within 20
years after the creation of Genbank, the database has grown
from 680 thousand base pairs in 1982 to 28.5 billion base
pairs in 2002 [12].

In an area so overwhelmed by data and incomplete infor-
mation we are urgently in need of high-performance com-
puting tools to analyze and interpret the vast amount of raw
data and fragments of information in order to get a better
glimpse and understanding of at least some of the biologi-
cal functions of living organisms.

Though an awesome and computationally expensive ef-
fort, comparison of the DNA sequences and genes of two
whole genomes can be useful to investigate the common
functionalities of the corresponding organisms and get a
better understanding of how the genes or groups of genes
are organized and involved in several functions.

In this paper we use high-performance parallel com-
puting to compare the whole genomes of two organisms,
namely Xanthomonas axonopodispv. citri and Xan-
thomonas campestrispv. campestris, each with more than
five million base-pairs.

A pioneer work along the line of comparison of these
two genomes has appeared in the literature, in a paper coau-
thored by Rasera da Silva et al. [13]. One of the approaches
used in [13] consists of locating the homologous genes (ex-

pressed in terms of amino acids) of the two genomes and
compare each pair of the homologous genes.

Our purpose is two-fold. First we intend to exploit the
high-performance power of a cluster of low-cost microcom-
puters, propose a parallel solution to this problem, and show
its feasibility with implementation and performance results.
Second we intend to do additional comparisons of the two
genomes not handled by the previous work. More specif-
ically, we locate and compare not only the homologous
genes (expressed in terms of the 20-letter amino acids) but
also compare the regions or gaps (in terms of the 4-letter
DNA nucleotides) between the corresponding homologous
genes.

In addition to [13], comparison of whole genomes has
been investigated by Setubal and Almeida [15] and by some
related works presented in a special workshop dedicated es-
pecially to this purpose [9]. Other works related to the study
of genomes, e.g.Agrobacterium tumefaciens, include the
papers by Wood et al. [18, 19].

2. Basic Concepts

With the intent of making this text readable to those not
familiar with terms of Biology, though aware of the risk of
oversimplification, we now present some of the basic con-
cepts. The interested reader can obtain further explanation
in some excellent texts such as [10, 16].

DNA (deoxyribonuclei acid) is the chemical material in
a cell that carries the genetic codes for living organisms. Its
structure is a double helix consisting of two sequences of
letters from a four-letter alphabet (A, T, C, G), such that A
is paired with T, and C with G. The letters represent thenu-
cleotidesor basesknown asadenine, thymine, cytosineand
guanine. Since the bases are paired, they are referred to as
base pairs.

All the DNA of a living organism is called itsgenome.
The size of a genome can vary from millions of base pairs
for bacteria to several billions base pairs in the case of mam-
mals. For example, the genomes of the bacteriaXanthomo-
nas axo-no-po-dispv. citri (in shortXac) andXanthomonas
campestrispv. campestris(in shortXcc) have, respectively,
5,175,554 and 5,076,187 base pairs [13].

Genesare pieces of DNA and most contain the code for
making a specific protein.Proteinsare sequences of amino
acids from a 20-letter alphabet. Each amino acid is coded
by three nucleotides called acodon. There are therefore
43 = 64 possible codon values. However, some different
codons code the same amino acid while other codons refer
to the start and end of the sequence of amino acids of a pro-
teins. Thus there are 20 different amino acids (and not 64).

3. Comparison Strategy

Consider two genomes of close evolutionary relation-
ship. The termhomologyis used to indicate the fact that
two genes share a common evolutionary past. Two genes
arehomologousif they are descendants of a same ances-
tral gene. Often the similarity between two sequences of
DNA or amino acids is important because through similarity
we may infer homology. This is because closely related or-
ganisms often present similar sequences. Homology in turn
is important because often homology determines function.
Thus we have the chainsimilarity→ homology→ function.

The comparison of genomes has the potential of reveal-
ing evolutionary relationships of seemingly different or-
ganisms. Xanthomonas for example is a group of bacteria,
whereXanthomonas axonopodispv.citri or Xaccauses cit-
rus canker in citrus trees, whileXanthomonas campestris
pv. campestrisor Xcc causes black rot in crucifers. These
two seemingly different bacteria are closely related and it
has been shown that Xac and Xcc share more than 80% of
the genes [13].

In this section we summarize a comparison strategy to
allow us to identify common regions in two closely related
genomes. The output is a global alignment of both DNA
sequences that takes into account the homologous genes
found between the two genomes. It is crucial to point out
that we do not want to obtain merely brute similarity be-
tween two genomes, as is possible by using MUMmer [17],
a tool for aligning whole genome sequences. Instead we
wish to get an alignment of the genomes that takes into con-
sideration biological or functional information.

We use the strategy of splitting the genomes into con-
tiguous blocks and align each pair of blocks, one from each
genome. This is better explained as follows.

We use the routinesDP-score, DP-align andLCSto get
the alignment score of two sequences bydynamic program-
ming, to get the alignment proper of two sequences bydy-
namic programming, and to get thelongest common subse-
quenceof two sequences, respectively. These routines will
be explained later.

Consider genomesG andH . Algorithm 1 summarizes
the comparison strategy. Refer also to Fig. 1 and Fig. 2 that
illustrate some of the steps.

Fig. 1 shows an example after steps 1 through 3, with the
homologous pairs determined and labeled. Fig. 2 shows the
situation after step 4. It also shows the intergenic regions
[g, g′] and [h, h′].

4. Parallel String Similarity

We have presented some parallel algorithms for finding
the similarity between two strings [4, 5, 6]. Among these
we choose the one that is very efficient in practice [6]. It

Algorithm 1 Comparison of GenomesG andH

Input: (i) the 4-letter alphabet DNA sequence of each
genomeG and H ; (ii) the annotation with the start and
end positions of the predicted genes in each DNA se-
quence; (iii) the genes given in terms of amino acids from a
20-letter alphabet.
Output: Alignment of the genomesG andH .

1: Find pairs of the homologous genes:
For allg of G, obtainh of H such that
DP-score(g, h) = max{ DP-score(g, w) for all w of H
}

2: Label the homologous genes ofG:
Label the homologous genes ofG as1, 2, . . . , m in the
same order as their positions in the genomeG.
Let LabelGdenote the sequence of labels obtained in
this step.

3: Label the corresponding homologous genes ofH :
For all pairs of homologous genes(g, h), g of G, h of
H , label geneh with the same label ofg.
Let LabelH denote the sequence of labels obtained in
this step.

4: Find the non-crossing pairs of homologous genes:
Obtain the LCS(LabelG, LabelH). the LCS obtained
contains only the non-crossing pairs

5: Align each pair of homologous genes:
For each non crossing homologous pair(g, h) do DP-
align(g, h).

6: Align each pair of intergenic regions:
For each intergenic region[g, g′], whereg, g′ of G are
two consecutive genes of the LCS, obtain the corre-
sponding intergenic region[h, h′] in H and do
DP-align([g, g′], [h, h′]).

7: Join all the alignments:
Concatenate the alignments of the homologous genes
and the intergenic regions, in the same order they ap-
pear in the genomes.

is a parallel wavefront algorithm for efficient biological se-
quence comparison using the dynamic programming tech-
nique. We summarize the algorithm in the section. Details
can be found in [6].

This parallel algorithm uses the dynamic programming
technique to compute an alignment between two stringsA
andC, with |A| = m and|C| = n. On a distributed memory
parallel computer ofp processors each withO((m + n)/p)
memory, the proposed algorithm requiresO(p) communi-
cation rounds andO(mn/p) local computing time. A nice
feature of this algorithm is that it based on a compromise
between the workload of each processor and the number of
communication rounds required, expressed by a parameter
called α. The algorithm is expressed in terms of this pa-
rameter that can be tuned to obtain the best overall parallel

q q q q q q

q q q q q q

B
B

B
B
B

BB

B
B

B
B
B

BB

�
�
�
�
�
��

1 2 4 3 5 6

1 2 3 4 5 6

g

h

Figure 1. Homologous pairs and their label-
ing

q q q q q

q q q q q

B
B

B
B
B

BB

B
B

B
B
B

BB

�
�
�
�
�
��

1 2 3 5 6

1 2 3 5 6

g g′

h h′

Figure 2. Non crossing homologous pairs
and corresponding intergenic regions (e.g.
[g, g′] and [h, h′])

time in a given implementation. Very promising experimen-
tal results have been obtained in experimental executions.A
characteristic of the wavefront communication requirement
is that each processor communicates with few other proces-
sors. This makes it very suitable as a potential application
for cluster and grid computing.

Let us recall the similarity problem we wish to solve.
Let A = a1a2 . . . am andC = c1c2 . . . cn be two strings
over some alphabetI. To align the two strings, we insert
spaces in the two sequences in such way that they become
equal in length. See Fig. 3 and Fig. 4 where each column
consists of a symbol ofA (or a space) and a symbol ofC
(or a space). AnalignmentbetweenA andC is a match-
ing of the symbolsa ∈ A andc ∈ C in such way that if we
draw lines between the matched symbols, these lines can-
not cross each other. The alignment shows the similarities
between the two strings. In the two simple alignment exam-

A a c t t c a – t
C a t t c – a c g

Score 1 0 1 0 0 1 0 0 3

Figure 3. Alignment Example (a).

A a c t t c a – t
C a – t t c a c g

Score 1 0 1 1 1 1 0 0 5

Figure 4. Alignment Example (b).

ples we assign a score of 1 when the aligned symbols in a
column match and 0 otherwise. The alignment of Fig. 3 has
a score of 5 and than that of Fig. 4 a score of 3.

A more general score assignment for a given alignment
between strings is done as follows. Each column of the
alignment receives a certain value depending on its con-
tents and the total score for the alignment is the sum of the
values assigned to its columns. Consider a column consist-
ing of symbolsr ands. If r = s (i.e. amatch), it will re-
ceive a valuep(r, s) > 0. If r 6= s (a mismatch), the col-
umn will receive a valuep(r, s) < 0. Finally, a column with
a space in it receives a value−k, wherek ∈ N . We look for
the alignment (optimal alignment) that gives the maximum
score. This maximum score is called thesimilarity between
the two strings to be denoted bysim(A, C) for stringsA
andC. There may be more than one alignment with maxi-
mum score [16].

Consider|A| = m and|C| = n. We can obtain the solu-
tion by computing all the similarities between arbitrary pre-
fixes of the two strings starting with the shorter prefixes and
use previously computed results to solve the problem for
larger prefixes. There arem + 1 possible prefixes ofA and
n + 1 prefixes ofC. Thus, we can arrange our calculations
in an(m +1)× (n +1) matrixS where eachS(r, s) repre-
sents the similarity betweenA[1..r] andC[1..s], that denote
the prefixesa1a2 . . . ar andc1c2 . . . cs, respectively.

The similarity scoreS of the alignment between strings
A andC can be computed as follows:

S(r, s) = max

S[r, s − 1] − k
S[r − 1, s − 1] + p(r, s)
S[r − 1, s] − k

Observe that we can compute the values ofS(r, s) by us-
ing the three previous valuesS(r−1, s), S(r−1, s−1) and
S(r, s − 1), because there are only three ways of comput-
ing an alignment betweenA[1 . . . r] andC[1 . . . s]. We can
alignA[1..r] with C[1..s− 1] and match a space withC[s],
or alignA[1..r − 1] with C[1..s − 1] and matchA[r] with
B[s], or alignA[1..r − 1] with C[1..s] and match a space
with A[r].

An l1 × l2 grid DAG (Fig. 5) is a directed acyclic graph
whose vertices are thel1l2 points of anl1 × l2 grid, with
edges from grid pointG(i, j) to the grid pointsG(i, j + 1),
G(i+1, j) andG(i+1, j+1). It is easy to see that the sim-
ilarity problem can be viewed as computing the minimum

a
c
b

c
b

a
a
b

(0, 0) b a a b c a b c a b

(8, 10)

(i, j − 1)

(i − 1, j − 1)

(i, j)

(i − 1, j)

Figure 5. Grid DAG G for A = baabcbca and
B = baabcabcab.

source-sink path in a grid DAG. In Fig. 5 the problem is to
find the minimum path from (0,0) to (8,10).

We use the CGM (coarse-grained multicomputer) model
with p processors, where each processor hasO(mn/p) lo-
cal memory. It can be seen that this can be reduced to
O((m + n)/p).

To compute the similarity matrixS by p processors, the
stringA is broadcasted to all processors, and the stringC
is divided intop pieces, of sizen

p
, and each processorPi,

1 ≤ i ≤ p, receives thei-th piece ofC (c(i−1) n
p
+1 . . . ci n

p
).

Algorithm 2 presents the details. The notationP k
i denotes

the work of ProcessorPi at roundk. Thus initiallyP1 starts
computing at round 0. ThenP1 andP2 can work at round
1, P1, P2 andP3 at round 2, and so on. In other words, af-
ter computing thek-th part of the sub-matrixSi (denoted
Sk

i), processorPi sends to processorPi+1 the elements of
the right boundary (rightmost column) ofSk

i . These ele-
ments are denoted byRk

i . It is easy to see that in roundk,
all processorsPi work, where1 ≤ i ≤ k. Since the to-
tal number of rounds is increased with smaller values ofα
the processors start working earlier.

It can be proven that Algorithm 2 uses(1 + 1/α)p − 2
communication rounds withO(mn

p
) sequential computing

time in each processor [6].
The routine DP-align(x, y) is similar to DP-score(x, y).

In addition to obtaining the score of the alignment, it also
obtains the alignment proper.

5. Parallel Longest Common Subsequence

Given two stringsX andY of lengthsm andn, respec-
tively, thelongest common subsequence(LCS) problem ob-
tains the length of the subsequences common toX andY .

Consider a string of symbols from a finite alphabet. A
substringof a string is any contiguous fragment of the given
string. A subsequenceof a string is obtained by deleting
zero or more symbols from the original string. A subse-
quence can thus have noncontiguous symbols of a string.

Algorithm 2 DP-score: Parallel Similarity Algorithm
Input: (1) The numberp of processors; (2) The numberi
of the processor, where1 ≤ i ≤ p; and (3) The stringA
and the substringCi of sizem and n

p
, respectively; (4) The

constantα.
Output: S(r, s) = max{S[r, s− 1] − k, S[r − 1, s− 1] +
p(r, s), S[r − 1, s] − k}, where(i − 1) m√

p
+ 1 ≤ r ≤ i m√

p

and(j − 1)n
p

+ 1 ≤ s ≤ j n
p

.
(1) for 1 ≤ k ≤ p

α

(1.1) if i = 1 then
(1.1.1)for α(k − 1)m

p
+ 1 ≤ r ≤ αk m

p
and

1 ≤ s ≤ n
p

compute S(r, s);
(1.1.2)send(Rk

i ,Pi+1);
(1.2) if i 6= 1 then

(1.2.1)receive(Rk
i−1, Pi−1);

(1.2.2)for α(k − 1)m
p

+ 1 ≤ r ≤ αk m
p

and
1 ≤ s ≤ n

p

compute S(r, s);
(1.2.3)if i 6= p then

send(Rk
i ,Pi+1);

a

c
b

c
b

a

a
b

(0, 0)

b a a b c a b c a b a c a

(8, 13)

Figure 6. GDAG for the LCS problem, with
X = baabcbca and Y = baabcabcabaca.

Given the stringlewiscarroll, an example of a subsequence
is scroll. Given two stringsX andY , the longest common
subsequence(LCS) problem finds the length of the longest
subsequence that is common to both strings. IfX = twas-
brillig andY = lewiscarroll, the length of the longest com-
mon subsequence is 5 (e.g.warll).

Sequential algorithms for the LCS problem are sur-
veyed in [7, 14]. It can be solved sequentially inO(mn)
time. PRAM algorithms for LCS are presented in [11]. The
LCS problem can be solved on a PRAM [11] inO(log n)
time with mn/ logn processors, whenlog2 m log log m ≤
log n. In the following we show that a parallel CGM algo-
rithm similar to the string alignment algorithm of the previ-

ous section can be easily derived.
As in the string alignment problem, the longest common

subsequence (LCS) problem can be modeled by agrid di-
rected acyclic graph(GDAG). Consider two stringsX and
Y of lengthsm and n, respectively. LetX = baabcbca
and Y = baabcabcabaca. The corresponding GDAG has
(m+1)× (n+1) vertices (see Fig. 6). We number the rows
and columns starting from 0. All the vertical and horizon-
tal edges have weight 0. The edge from vertex (i− 1, j− 1)
to vertex(i, j) has weight 1 ifxi = yj . If xi 6= yj , this edge
has weight 0 and can be ignored.

Thus the same ideas of the previous section apply here
and we have a parallel algorithm for LCS that is similar to
DP-score or DP-align of the previous section.

6. Experimental Results

We have implemented the proposed comparison strat-
egy to compare the two genomesXanthomonas axonopodis
pv. citri (Xac) andXanthomonas campestrispv. campestris
(Xcc). The parallel platform used is a Beowulf cluster of
64 nodes consisting of low cost microcomputers with 256
MB RAM, 256 MB swap memory, CPU Intel Pentium III
448.956 MHz, 512 KB cache, in addition to two access
nodes consisting of two microcomputers each with 512 MB
RAM, 512 MB swap memory, CPU Pentium 4 2.00 GHz,
and 512 KB cache.

The cluster is divided into two blocks of 32 nodes each.
The nodes of each block are connected through a 100 Mb
fast-Ethernet switch. Each of the access nodes is connected
to the switch that connects the block of nodes and the two
switches are connected. Our code is written in standard
ANSI C using the LAM-MPI library.

The input data is obtained from Genbank (National Cen-
ter for Biotechnology Information of the National Institute
of Health [12]). The following is a summary of the input:

• Xanthomonas axonopodispv. citri (Xac):
5,175,554 base pairs and 4,313 protein-coding
genes. The main files used were NC003919.fna,
NC 003919.ptt and NC003919.faa.

• Xanthomonas campestrispv. campestris(Xcc):
5,076,187 base pairs and 4,182 protein-coding
genes. The main files used were NC003902.fna,
NC 003902.ptt and NC003902.faa.

We summarize the implementation results as follows.
For both phases we used 64 processors.

6.1. Phase I - Find Pairs of Homologous Genes

This is a very time consuming phase. All the genes of one
genome are compared to all the genes of the other genome,
giving rise to a total of more than 18 million comparisons.

We have exploited parallelism in two ways. First a stan-
dard master-slave approach is used where a master proces-
sor distributes the many comparison tasks to the slave pro-
cessors. Second we use parallelism to find the similarity be-
tween two sequences, whenever the sequences are longer
than a certain size (in this case 5,000 base pairs). To com-
pare such sequences we used the parallel algorithm of Sec-
tion 4.

The parallel solution performed this phase in one hour
and 15 minutes, including computation and communication.
The solution of [13] took about 3 hours. This gain does not
seem to be so significant. However, it must be emphasized
that, as described in our comparison strategy, we used a dy-
namic programming approach to compare the sequences as
opposed to the method used in [13] where Blast [2, 3] and
EGG [1] were used. Blast and EGG use heuristics and are
less accurate, in a biological point of view, than the dynamic
programming approach. Therefore the results we obtain are
better in quality. Thus it is not meaningful to compare the
time by Blast/EGG and our time by dynamic programming.
For example it is not adequate to say that we obtain only a
gain of 2.4.

We did not run the experiment by using only one proces-
sor because of memory and time constraints. So we do not
present a speedup of the parallel solution relative to the se-
quential one. Notice however that we gain by nearly a factor
of 64 in that part where comparisons are done by the slaves,
since that part is trivially parallelizable. Furthermore,we
also gain when we use the parallel algorithm for compari-
son of sequences longer than 5,000.

6.2. Phase II - Find the Non-Crossing Pairs

We used the parallel LCS - Parallel Longest Common
Subsequence algorithm (shown in the previous section).
Actually we could have used a less expensive approach,
namely theLIS - Longest Increasing Subsequence[8]. In
a practical viewpoint this is relatively cheap phase. Our par-
allel LCS solution took only 20 seconds. Of course this can
be improved if we used the less expensive LIS approach.

6.3. Phase III - Compare the Intergenic Regions

The third phase compared the intergenic regions corre-
sponding to the gaps between two consecutive homologous
genes in each genome. The parallel solution took less than 3
minutes to compute the similarity of the intergenic regions.
This phase has not been performed in previous works and
so comparison is not possible. The relevance of this phase
in a biological viewpoint is yet to be investigated.

7. Conclusion

With recent advances of DNA sequencing technology,
the genomes of many organisms have been sequenced. The
amount of genome information already available is astound-
ing. In this area so overwhelmed by data and incomplete
information we are urgently in need of high-performance
computing tools to analyze and interpret the vast amount of
raw data and fragments of information. Comparison of the
DNA sequences and genes of two whole genomes can be
useful to investigate the common functionalities of the cor-
responding organisms.

In this paper we use high-performance parallel comput-
ing to compare the whole genomes of two organisms of the
genusXanthomonas, namelyXanthomonas axonopodispv.
citri andXanthomonas campestrispv. campestris.

We have implemented the proposed comparison strategy
to compare the two genomes each consisting of more than 5
million base pairs and four thousand protein-coding genes.
The parallel platform used is a Beowulf cluster of 64 nodes
consisting of low cost microcomputers.

The most time consuming phase is to find homologous
genes, with a total of more than 18 million pairs of genes to
be compared. We have exploited parallelism in two ways.
First a standard master-slave approach is used to distribute
the many comparison tasks to the slave processors. Second
we use parallelism to find the similarity between two se-
quences, whenever the sequences are longer than a certain
size (in this case 5,000 base pairs). The parallel solution
performed this phase in one hour and 15 minutes. The so-
lution of [13] took about 3 hours. While this gain does not
seem to be so significant, it must be noted that we used a
dynamic programming approach to compare the sequences
as opposed to the method using Blast and EGG. Our re-
sults are more accurate and give richer biological informa-
tion. The more costly dynamic programming approach was
made possible by the use of high performance parallel com-
putation.

It can be argued whether it is worthwhile to spend more
time by using the dynamic programming approach to get
better quality results. We argue that the longer time is worth
the effort for the sake of richer biological information if this
time is tolerable, which is clearly the case in this parallelap-
proach.

It must also be emphasized that we do not wish merely an
alignment that reflects brute similarity between two genome
sequences, but rather an alignment that takes into account
the functional information. This was obtained by consider-
ing the homologous genes found between the two genomes.

Our comparison strategy also compares the intergenic re-
gions corresponding to the gaps between two consecutive
homologous genes in each genome. The relevance of this in
a biological viewpoint is yet to be investigated.

The purpose of the paper is to show that with a high per-
formance parallel approach, it is possible to explore new
horizons and tread on new terrain, eventually paving the
way for new discoveries.

Acknowledgments

The authors wish to thank the anonymous referees for
their helpful comments.

References

[1] N. F. Almeida Jr. Tools for genome comparison.Ph. Thesis
- IC/Universidade Estadual de Campinas, May 2003.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman. A basic local alignment search tool.Journal of
Molecular Biology, 215(403):403–410, 1990.

[3] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang,
Z. Zhang, W. Miller, and D. J. Lipman. Gapped blast and
psi-blast: a new generation of protein database search pro-
grams.Nucleic Acid Research, 25:3389–3402, 1997.

[4] C. E. R. Alves, E. N. Cáceres, F. Dehne, and S. W. Song.
A CGM/BSP parallel similarity algorithm. InProceedings
I Brazilian Workshop on Bioinformatics, pages 1–8, Oct.
2002.

[5] C. E. R. Alves, E. N. Cáceres, F. Dehne, and S. W. Song.
Parallel dynamic programming for solving the string edit-
ing problem on a CGM/BSP. InFourteenth ACM Sympo-
sium on Parallel Algorithms and Architectures - SPAA 2002,
pages 275–281. ACM, Aug. 2002.

[6] C. E. R. Alves, E. N. Cáceres, F. Dehne, and S. W. Song. A
parallel wavefront algorithm for efficient biological sequence
comparison. In V. Kumar, M. L. Gavrilova, C. J. K. Tan, and
P. L’Ecuyer, editors,The 2003 International Conference on
Computational Science and its Applications - ICCSA 2003,
volume 2667 ofLecture Notes in Computer Science, pages
249–258. Berlin, Springer-Verlag, May 2003.

[7] A. Apostolico and C. Guerra. The longest common subse-
quence problem revisited.Algorithmica, 2:315–336, 1987.

[8] C. Cérin, C. Dufourd, and J. F. Myoupo. An efficient paral-
lel solution for the longest increasing subsequence problem.
In International Conference on Computing and Information,
pages 220–224, Dec. 1993.

[9] DIMACS. Workshop on whole genome comparisons. DI-
MACS Center, Rutgers University, Feb. 2001.

[10] D. Gusfield. Algorithms on Strings, Trees, and Sequences.
Computer Science and Computational Biology. Cambridge
University Press, 1997.

[11] M. Lu and H. Lin. Parallel algorithms for the longest com-
mon subsequence problem.IEEE Transactions on Parallel
and Distributed Systems, 5(8):835–848, 1994.

[12] NCBI/NIH. National Center for Biotechnology Information:
GenBank growth statistics. http://www.ncbi.nih.gov/, 2003.

[13] A. C. Rasera da Silva, J. C. Setubal, N. F. Almeida, et al.
Comparison of the genomes of two Xanthomonas pathogens
with differing host specifications.Nature, 417(6887):459–
463, May 2002.

[14] C. Rick. New algorithms for the longest common subse-
quence problem. Technical Report 85123–CS, Institut fr In-
formatik, Universitt Bonn, 1994.

[15] J. C. Setubal and N. F. Almeida. Detection of related genes
in procaryotes using syntenic regions. InDIMACS Workshop
on whole genome comparison, Feb. 2001.

[16] J. C. Setubal and J. Meidanis.Introduction to Computational
Molecular Biology. PWS Publishing Co., 1997.

[17] TIGR. The Institute for Genomic Research.
http://www.ncbi.tigr.org/, 2003.

[18] D. W. Wood, J. C. Setubal, N. F. Almeida, et al. The genome
of Agrobacterium tumefaciens: insights into the evolutionof
a natural genetic engineer.Science, 294(2323):2317–2323,
Dec. 2001.

[19] D. W. Wood, J. C. Setubal, N. F. Almeida, et al. Sequenc-
ing and analysis of the Agrobacterium tumefaciens genome.
In 10th International Congress on Molecular Plant-microbe
Interactions, Dec. 2001.

