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Abstract

We present a randomized parallel list ranking algorithm for distributed memory
multiprocessors, using a BSP like model. We first describe a simple version which
requires, with high probability, log(3p) +logln(n) = 6(10gp+ loglog n) communication
rounds (h-relations with h = (N)(%)) and 6(%) local computation. We then outline an
improved version which requires, with high probability, only r < (4k + 6) log( %p) +8 =
(~)(k log p) communication rounds where ¥ = min{7 > 0| It < (%p)“"’l}.

Note that k¥ < In"(n) is an extremely small number. For n < 101" and p > 4,
the value of k is at most 2. Hence, for a given number of processors, p, the number of
communication rounds required is, for all practical purposes, independent of n.

For n < 1,500,000 and 4 < p < 2048, the number of communication rounds in our
algorithm is bounded, with high probability, by 78, but the actual number of communi-
cation rounds observed so far is 25 in the worst case. For n < 101" and 4 < p <2048,
the number of communication rounds in our algorithm is bounded, with high probabil-
ity, by 118, and we conjecture that the actual number of communication rounds required
will not exceed 50.

Our algorithm has a considerably smaller number of communication rounds than the
list ranking algorithm used in Reid-Miller’s empirical study of parallel list ranking on
the Cray C-90 [21]. To our knowledge, [21] was the fastest list ranking implementation
so far. Therefore, we expect that our result will have considerable practical relevance.
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1 Introduction

The Model

Speedup results for theoretical PRAM algorithms do not necessarily match the speedups
observed on real machines [3] [22]. Given sufficient slackness in the number of processors,
Valiant’s BSP approach [24] simulates PRAM algorithms optimally on distributed memory
parallel systems. Valiant points out, however, that one may want to design algorithms that
utilize local computations and minimize global operations [23] [24]. The BSP approach
requires that g (= local computation speed / router bandwidth) is low, or fixed, even for
increasing number of processors. Gerbessiotis and Valiant [14] describe circumstances where
PRAM simulations can not be performed efficiently, among others if the factor ¢ is high.
Unfortunately, this is true for most currently available multiprocessors. The algorithm
presented here considers this case for the list ranking problem. Furthermore, as pointed out
in [24], the cost of a message also contains a constant overhead cost s. The value of s can
be fairly large and the total message overhead cost can have a considerable impact on the
speedup observed (see e.g. [8]).

We are therefore using a slightly enhanced version of the BSP model, referred to as
coarse grained multicomputer model [8], [9], [10]. It is comprised of a set of p processors
Py,..., P, with O(n/p) local memory per processor and an arbitrary communication net-
work (or shared memory). All algorithms consist of alternating local computation and
global communication rounds. Each communication round consists of routing a single h-
relation with » = O(n/p) ', i.e. each processor sends O(n/p) data and receives O(n/p)
data. We require that all information sent from a given processor to another processor
in one communication round is packed into one message. In the BSP model, a compu-
tation/communication round is equivalent to a superstep with L = %g (plus the above
“packing requirement”).

Finding an optimal algorithm in the coarse grained multicomputer model is equivalent to
minimizing the number of communication rounds as well as the totallocal computation time.
This considers all parameters discussed above that are affecting the final observed speedup
and it requires no assumption on g. Furthermore, it has been shown that minimizing the
number of supersteps also leads to improved portability across different parallel architectures
([23] [24] [13]). The above model has been used (explicitly or implicitly) in parallel algorithm
design for various problems ([6], [8], [9], [11], [12], [16], [10]) and shown very good practical
timing results.

The List Ranking Problem

Consider a linear linked list consisting of a set S of n nodes and, for each node z € S,
a pointer (z — mezt(z)) to its successor, nezt(z), in the list. Let A € S be the last list
element and nezt(A) = A. The list ranking problem consist of computing for each z € S
the distance of z to A, referred to as dist(z).

We assume that, initially, every processor stores n/p nodes and, for each of these nodes
the pointer (z — nezt(z)) to the next list element. See Figure 1. As output we require
that every processor stores for each of its n/p nodes z € S the value dist(z).

lO(n) denotes O(n) ”with high probability”. More precisely, X = O(f(n)), if and only if (V¢ > ¢o > 1)
Prob{X > cf(n)} < ﬁ where ¢g is a fixed constant and g(c) is a polynomial in ¢ with g(c¢) — oo for

¢ — oo [19].



A trivial sequential algorithm solves the list ranking problem in optimal linear time by
traversing the list. Several PRAM list ranking algorithms have been proposed [15] [20].
Wiyllie [25] proposed a non-optimal O(logn) time algorithm with total work greater than
O(n). The first optimal O(logn) EREW PRAM algorithm is due to Cole and Vishkin
[7]. Another optimal deterministic algorithm is given by Anderson and Miller [2]. Parallel
list ranking algorithms using randomization were proposed by Miller and Reif [17] [18].
The algorithms use O(n) processors. The optimal algorithm by Anderson and Miller [1]
improves this by using an optimal number of processors. A O(y/(n)) time mesh algorithm
is described in [4]. Reid-Miller [21] presented an empirical study for the Cray C-90 which
will be discussed in the next subsection. See Section 6 for some of the many applications
of list ranking

The Results

We present a randomized parallel list ranking algorithm for the coarse grained multicom-
puter model discussed above. We first describe a simple version which requires, with high
probability, log(3p) + logIn(n) = O(log p + loglog n) communication rounds. Then, we out-
line an improved version which requires, with high probability, only r < (4% + 6) log( %p) +8
= O(klogp) communication rounds where & = min{s > 0| In*+!) n < (3p)¥t1}.

We observe that £ < In*(n) is an extremely small number. For n < 1019 and p >4,
the value of k is at most 2. That is, for a given number of processors, p, the number of
communication rounds required is, for all practical purposes, independent of n.

For n < 1019 and 4 < p < 2048, the number of communication round, r, is bounded,
with high probability, by 118. See Table 1. Note that, the above is only an upper bound
on the number of communication rounds. For 100,000 < n < 1,500,000 and 4 < p < 2048,
with high probability, r is bounded by 78 in the worst case. See Table 2. We simulated 100
test runs of our algorithm for each of the n, p combinations shown in Table 2. The observed
numbers of communication rounds actually required where always much lower, and never
exceeded 25.

For n < 1019 and 4 < p < 2048, the number of communication rounds in our algo-
rithm is bounded, with high probability, by 118, and we conjecture that actual number of
communication rounds required will not exceed 50.

Our randomization technique is very different from the ones used in [1, 17, 18]. In the
above model, our algorithm uses considerably fewer communication rounds than [1, 2, 4, 5,
7,15, 17, 18, 20, 21, 25].

The simple version of our algorithm is a generalization of the algorithm used in Reid-
Miller’s [21] empirical study of parallel list ranking for the Cray C-90 in shared memory
mode. The analysis of our simple list ranking algorithm improves the estimates on the load
imbalance provided in [21]. Our improved algorithm also applies to the Cray C-90. Since
it requires significantly fewer communication rounds than the algorithm used in [21], we
expect that our result will considerably improve the running times observed in [21]. To our
knowledge, [21] was the fastest list ranking implementation so far. Therefore, we expect
that our result will have considerable practical relevance.

As in [21] we will, in general, assume that n >> p (coarse grained), because this is
usually the case in practice. Note, however, that our results hold for arbitrary ratios %.



Overview

In the remainder of this paper, we will first prove a result on random sampling in linear
linked lists. In Section 3 we will then outline the simple version of our algorithm which
is based on a single random sampling of list nodes. In Section 4 we will introduce an
incremental method to improve the first sample. We present a considerably improved list
ranking algorithm, which is the main result of this paper. In Section 5 we discuss the results
of our simulation of the improved list ranking algorithm and, finally, in Section 6, we outline
some applications.

2 Random Sampling in Linear Linked Lists

Consider a linear linked list with a set S of n nodes. In this section we will show that if we
select % random elements (pivots) of S then, with high probability, these pivots will split
S into sublists whose maximum size is bound by 3pIn(n); see Figure 2.

We recall the following Lemma from [6] in a slightly modified form for linked lists (rather
than for arrays).

Lemma 1 zk < n randomly chosen elements of S (pivots) partition list S into sublists S;
such that the size of the largest sublist is at most - with probability at least

1 zk
1-22(1- o)
Proof. (Analogous to [6]) Assume that the nodes of S are sorted by their rank. This
sorted list can be viewed as 2z segments of size ;-.
pivot (chosen element), then max;<;<.k |S;| < %. Consider one segment. Since the pivots
are chosen randomly, the probability that a specific pivot is not in the segment is (1 — %)
Since zk pivots are selected independently, the probability that none of the pivots are in the
segment is (1— %)Ik Therefore, even assuming mutual exclusion, the probability that there
exists a segment which contains no pivot is at most 2z(1 — %)”k Hence, every segment

contains at least one pivot with probability at least 1 — 2z(1 — %)”k

If every segment contains at least one

Corollary 1 zk < n randomly chosen pivots partition list S into ck+1 sublists S; such zihat
there exists a sublist S; of size larger than ¢ with probability at most 279”(1— ;—I)Ik < ZT;Ie_ECk.
Lemma 2 Consider zk < n randomly chosen pivots which partition S into xk + 1 sublists
S;, and let m = maxo<i<zk |Si|. If k > In(z) + 21n(n) then Prob{m > c2} < #, c> 2.

Proof. Corollary 1 implies that

2 .
Prob{m > cﬁ} < o5k
T c

We observe that, for ¢ > 2,
In(z) + 2In(n) < k

= 2102 4 21a(n) < k
C C

2 k
= ln(—x) + c¢ln(n) < %
¢



= Prob{m > cﬁ} <n”¢
T

Theorem 1 2 randomly chosen pivots partition S into %—I—l sublists S; with m = maxo<;<p
|S;| such that

1
Prob{m > ¢3pln(n)} < —,c> 2
nb

Proof. Let z = gy, k= In(z)+ 2In(n) = 31n(n) — In(3p1n(n)).
Then zk = %3ln(n);11§((2§)ln(n)) < % and Theorem 1 follows from Lemma 2.

3 A Simple Algorithm Using A Single Random Sample

In this section we will present a simple list ranking algorithm which requires, with high
probability, at most log(3p) + logIn(n) = O(logp + loglogn) communication rounds. This
algorithm is based on a single random sample of nodes. We will later improve the perfor-
mance of the algorithm by improving the sample through a sequence of sampling rounds.

Consider a random set S’ C S of pivots. For each z € S let neztPivot(z, S’) refer to the
closest pivot following z in the list S. (W.l.o.g. assume that the last element, A, of S is se-
lected as a pivot and let neztPivot(A, S') = X. Note that for z # A, neztPiwot(z,S’) # z.)
Let distToPivot(z,S") be the distance between z and neztPivot(z,S’) in list S. Further-
more, let m(S, S") = max,es distToPivot(z, S’).

The modified list ranking problem for S with respect to S’ refers to the problem of deter-
mining for each z € S its next pivot neztPivot(z, S’) as well as the distance distT oPivot(z, S').
The input /output structure for the modified list ranking problem is the same as for the list
ranking problem.

Algorithm 1

(1) Select a set S" C S of (3(%) random pivots as follows: Every processor P; makes for
each z € S stored at P; an independent biased coin flip which selects z as a pivot
with probability ]lo.

(2) All processors solve collectively the modified list ranking problem for S with respect
to S’ (details will be discussed later).

(3) Using an all-to-all broadcast, the values neztPivot(z, S’) and distToPivot(z,S") for
all pivots z € S’ are broadcast to all processors.

(4) Using the data received in Step 3, each processor P; can solve the list ranking problem
for the nodes stored at P; sequentially in time O(7).

— End of Algorithm —

For the correctness of Step 1, we recall the following



Lemma 3 [19] Consider a random variable X with binomial distribution. Let n be the
number of trials, each of which is successful with probability q. The expectation of X 1is
E(X)=nq and

Prob{X > cnq} < e_%(c_l)?'”q,for any ¢ > 1

In order to implement Step 2, we simply simulate the standard recursive doubling
technique. (For all z in parallel: WHILE nezt(z) # neztPivot(z,S’) DO nezt(z) :=
nezt(nert(z)).) From Theorem 1 it follows that, with high probability, m(S, S’) < 3pln(n).
Hence, Step 2 requires, with high probability, at most log(3pIn(n)) = log(3p) + logln(n)
communication rounds. Step 3 requires 1 communication round, and Step 4 is straightfor-
ward. In summary, we obtain

Theorem 2 Algorithm 1 solves the list ranking problem using, with high probability, at

most 1 4 log(3p) + logIn(n) communication rounds and O~(%) local computation.

We observe that, if % < e(®»)” for some o > 1 then,
In(n) < In(p) + (3p)*

= logIn(n) < log(In(p) + (3p)”) < log(2(3p)")
= logln(n) < 1 + alog(3p)
= log(3p) + logln(n) < 1+ (a + 1)log(3p)
This implies

Corollary 2 If % < B for some constant o > 1, then the number of communication
rounds required by Algorithm 1 is bounded by 2 + (a + 1)log(3p) = O(log p).

4 Improving The Maximum Sublist Size

We will now present an algorithm which improves the maximum sublist size obtained in
Algorithm 1 and solves the list ranking problem by using, with high probability, only » <

(4% + 6) log( %p) + 8 communication rounds and O(%) local computation where
k= min{i > 0| In{tV) n < (gp)%—l—l}'

Note that £ < In*(n) is an extremely small number (see Table 1). Figure 3 illustrates
I+ and (%p)%‘H as functions of 7, as well as their intersection point k.

The basic idea of the algorithm is that any two pivots should not be closer than O(p)
because this creates large “gaps” elsewhere in the list. If two pivots are closer than O(p),
then one of them is “useless” and should be “relocated”. The non-trivial part is to perform
the “relocation” without too much overhead and such that the new set of pivots has a
considerably better distribution. The algorithm uses three colors to mark nodes: black
(pivot), red (a node close to a pivot), and white (all other nodes).

Algorithm 2



1) Perform Step 1 of Algorithm 1. Mark all selected inOtS black and all other nodes
g

(2) Fori=1,...,k do

(2a) For each black node z, all nodes which are to the right of z (in list S) and have
distance at most %p are marked red. Note: previously black nodes (pivots) that
are now marked red are no longer considered pivots.

(2b) For each black node z, all nodes which are to the left of z (in list S) and have
distance at most %p are marked red.

(2¢) Every processor P; makes for each white node z € S stored at P; an independent

biased coin flip which selects = as a new pivot, and marks it black, with probability
1

"
(2d) Every processor P; marks white every red node z € S stored at P;.

(3) Let S’ € S be the subset of black nodes obtained after Step 2. Continue with Steps 2
— 4 of Algorithm 1.

— End of Algorithm —

Observe that Steps 2a and 2b have to be performed in a left-to-right scan, respectively,
as if executed sequentially. We can simulate this sequential scanning process in the parallel
setting because the number of pivots is bounded by n/p. For Step 2a, we build linked lists
of pivots by computing for each of them a pointer to the next pivot of distance at most 2
p/3, if any, and the distance. These linked lists of pivots are compressed into one processor
and we run on these lists a sequential left-to-right scan to mark pivots red. We return
the pivots to their original location and mark every non-pivot red for which there exists a
non-red pivot that attempts to mark it red. Step 2b is performed analogously. Note that
each node z requires a pointer to its predecessor prev(z) in the linked list. All prev(z)
values can be easily computed with one communication round and O(% local computation.

Let 7 be the number of communication rounds required by Algorithm 2. We will now
show that, with high probability,

2 ~
r < (4k + 6) log(gp) + 8 = O(klogp).

h

Let n; be the maximum length of a contiguous sequence of white nodes after the it
execution of Step 2b, and define ng = n.

Let S; be the set of black nodes after the ith execution of Step 2¢, 1 < ¢ <k, and let
Sy be the set of black nodes after the execution of Step 1. Note that, in Step 3, S’ = S.
Define m; = m(S;) for 0 < ¢ < k.

Lemma 4 With high probability, the following holds:
(a) ng =n andn; <3pln(n;_1),1<i <k
(b) m; <3pln(n;),0 <<k



Proof. It follows from Theorem 1 that, with high probability,

g = N

mg < 3pln(n)

and, for afixed 1 <1<k

n;g < mi—q

m; < 3pln(n;).
Since k£ < In*(n) and log*(n)nl—c < #,6 > 0, the above bounds for n; and m; hold, with
high probability, for all 1 <1 < k.

Lemma 5 With high probability, for all 1 <1 <k,
(a) n; < 3p(21n(3p) + ln(l)(n))
(b) m; < 6pIn(3p) + 3pIn{+)(n)

Proof.
(a) Applying Lemma 4 we observe that
n1 < 3pln(n)
ny < 3pln(3pln(n))
= 3p(In(3p) 4+ Inln(n))
ng < 3pln(ng)
< 3p(In(3p) + In(In(3p) 4+ Inln(n)))
< 3p(In(3p) + Inln(3p) + Inlnln(n))
ngy < 3pln(ng)
< 3p(In(3p) + Inln(3p) + Inlnln(3p) + InlnInln(n))
n; < 3p(2In(3p) + In(n))

(b) It follows from Lemma 4 that m; < 3pIn(n;) < 3pIn(3p(2 In(3p)+1nt)(n))) < 3p(In(3p)+
In(2) + [n(3p) + Ini+1)(n)) < 6pln(3p) + 3pIn+1)(n).

Theorem 3 With high probability, Algorithm 2 solves the list ranking problem with r <
(4k + 6)log(2p) + 8 = O(klogp) communication rounds and O(3) local computation.
Proof. With high probability, the total number of communication rounds in Algorithm 2
is bounded by

2k log(2p) + log(ms) + 1

< 2klog(2p) + log(6p) + logIn(3p) + log(3p) + logln*+1)(n) + 1

7



< (2k + 3)log(2p) + log9 + log 4.5 + logn®*+1)(n) 4+ 1
< (2k + 3)log(2p) + loglnt*+Y(n) + 8

< log((3p)**%) + log "+ (n) + 8

< 210g((2p)?4+%) + 8 if () H)(n) < (2p)24+3

< (4k + 6)log(3p) + 8 = O(klogp)

Condition (*) is true because we selected k& = min{i > 0| In{+") n < (2p)**'}. Note that,
this bound is not tight.

5 Simulation Results

We simulated the behaviour of Algorithm 2. In particular, we simulated how our above
method improves the sample by reducing the maximum distance, m;, between subsequent
pivots. We examined the range of 4 < p < 2048 and 100,000 < n < 1,500,000 as shown in
Table 2 and applied Algorithm 2 for each n,p combination shown 100 times with different
random samples. Table 2 shows the values of £ and the upper bound R on the number of
communication rounds required according to Theorem 3. We then measured the maximum
distance, mzbs, observed between two subsequent pivots in the sample chosen at the end
of the algorithm, as well as the number, 7°°°, of communication rounds actually required.
Each of the numbers shown is the worst case observed in the respective 100 test runs.
According to Theorem 3, for the range of test data used, the number of communication
rounds in our algorithm should not exceed 78. This is an upper bound, though. The actual
number of communication rounds observed in Table 2 is 25 in the worst case. The number
of rounds observed is usually around 30% of the upper bound according to Theorem 3. We
obs obs

also observe that for a given p (i.e. in a vertical column), the values of m?’® and r°°* are
essentially stable and show no monotone increase or decrease with increasing n.

6 Applications

The problem of list ranking is a special case of computing the suffix sums of the elements
of a linked list. The above algorithm can obviously be generalized to compute prefix or
suffix sums for associative operators (by replacing the addition operation for node distances
by the respective associative operator). List ranking is a very popular tool for obtaining
numerous parallel tree and graph algorithms [4] [5] [21].

An important application outlined in [4] is to use list ranking for applying Euler tour
techniques to tree problems. As demonstrated in [4], once an efficient distributed memory
parallel list ranking algorithm is available, it is easy to obtain efficient distributed memory
parallel algorithms for the following problems for an undirected forest of trees: rooting every
tree at a given vertex chosen as root, determining the parent of each vertex in the rooted
forest, computing the preorder (or postorder) traversal of the forest, computing the level of
each vertex, and computing the number of descendants of each vertex. All these problems
can be easily solved with one or a small constant number of list ranking operations.
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Conclusion

We presented a randomized parallel list ranking algorithm for distributed memory multi-
processors, using the coarse grained multicomputer model. The algorithm requires, with
high probability, r < (4k + 6)log(2p) + 8 = O(klog p) communication rounds. For all prac-
tical purposes, k < 2. The algorithm presented improves on the number of communication
rounds required in Reid-Miller’s [21] list ranking implementation for the Cray C-90 which
was, to our knowledge, the fastest list ranking implementation to date. Therefore, we expect
that our result will have considerable practical relevance.
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Figure 1: A Linear Linked List Stored In A Distributed Memory Multiprocessor
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Figure 2: A Linear Linked List With Random Pivots
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Figure 3: In(+) 7 and (2p)**! As Functions Of 4, And Their Intersection Point k.
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p= || 4 | 8 | 16 | 32 | 64 [ 128 | 256 | 512 | 1024 | 2048

n ksR| kR |kR| kR | kR | kiR | kR |\ kR kR | kiR
1010 1;18 [ 0;26 | 0;32 | 0;38 | 0;44 | 0;50 | 0;56 | 0;62 | 0;68 | 0;74
10100 1;18 | 1;38 | 0;32 | 0;38 | 0:44 | 0;50 | 0;56 | 0;62 | 0:68 | 0;74
101000 1| 1-18 | 1;38 | 1;48 | 0:38 | 0;44 | 0;50 | 0:56 | 0;62 | 0;68 | 0;74
10(19% | 1;18 | 1;38 | 1;48 | 1;58 | 044 | 0;50 | 0;56 | 0;62 | 0;68 | 0;74
10(19") | 1;18 | 1;38 | 1;48 | 1;58 | 1:68 | 0;50 | 0;56 | 0;62 | 0;68 | 0;74
10(19%) | 1;18 | 1;38 | 1;48 | 1;58 | 1;68 | 1;78 | 0;56 | 0;62 | 0;68 | 0;74
100107 || 1:18 | 1;38 | 1;48 | 1;58 | 1;68 | 1;78 | 1:88 | 0:62 | 0:68 | 0;74
10(19%) | 1;18 | 1;38 | 1;48 | 1;58 | 1:68 | 1;78 | 1;88 | 1;98 | 0;68 | 0;74
10010 | 1;18 | 1;38 | 1;48 | 1;58 | 1;68 | 1;78 | 1;88 | 1;98 | 1;108 | 0;74
10(10*") |1 1:18 | 1338 | 1;48 | 1;58 | 1;68 | 1;78 | 1;88 | 1;98 | 1;108 | 1;118
10010 |1 1:18 | 1;38 | 1;48 | 1;58 | 1;68 | 1;78 | 1;88 | 1;98 | 1;108 | 1;118
10010 |1 1:18 | 1338 | 1;48 | 1;58 | 1;68 | 1;78 | 1;88 | 1;98 | 1;108 | 1;118
10(10™) || 1:18 | 1;38 | 1;48 | 1;58 | 1;68 | 1:78 | 1;88 | 1;98 | 1;108 | 1;118
10(10™) || 2:22 | 1;38 | 1;48 | 1;58 | 1;68 | 1:78 | 1;88 | 1;98 | 1;108 | 1;118
10(10™) || 2:22 | 1;38 | 1;48 | 1;58 | 1;68 | 1:78 | 1;88 | 1;98 | 1;108 | 1;118
10(10™) || 2:22 | 1;38 | 1;48 | 1:58 | 1;68 | 1:78 | 1;88 | 1;98 | 1;108 | 1;118
10010 || 2:22 | 1;38 | 1;48 | 1;58 | 1:68 | 1:78 | 1;88 | 1;98 | 1;108 | 1;118
10(10™) || 2:22 | 1;38 | 1;48 | 1;58 | 1;68 | 1:78 | 1;88 | 1;98 | 1;108 | 1;118
10010™) || 2:22 | 1;38 | 1;48 | 1;58 | 1;68 | 1:78 | 1;88 | 1;98 | 1;108 | 1;118
10010%°) |l 2:22 | 1;38 | 1;48 | 1;58 | 1;68 | 1;78 | 1;88 | 1;98 | 1;108 | 1;118
10010°) |l 2:22 | 1;38 | 1;48 | 1;58 | 1;68 | 1;78 | 1;88 | 1;98 | 1;108 | 1;118
10010*) |l 2:22 | 1;38 | 1;48 | 1;58 | 1;68 | 1;78 | 1;88 | 1;98 | 1;108 | 1;118
10010°°) |l 2:22 | 1;38 | 1;48 | 1;58 | 1;68 | 1;78 | 1;88 | 1;98 | 1;108 | 1;118
10010°°) |l 2:22 | 1;38 | 1;48 | 1;58 | 1;68 | 1;78 | 1;88 | 1;98 | 1;108 | 1;118
10(10™) | 2:22 | 1;38 | 1;48 | 1:58 | 1:68 | 1:78 | 1;88 | 1;98 | 1;108 | 1;118
10(10°) || 2:22 | 1;38 | 1;48 | 1;58 | 1;68 | 1:78 | 1;88 | 1;98 | 1;108 | 1;118
10(10™) || 2:22 | 1;38 | 1;48 | 1;58 | 1;68 | 1:78 | 1;88 | 1;98 | 1;108 | 1;118
100107 | 2:22 | 1;38 | 1;48 | 1;58 | 1;68 | 1;78 | 1;88 | 1;98 | 1;108 | 1;118

Table 1: Values Of k and R := (4% + 6)log(2p) + 8 [Upper Bound On r] For Various
Combinations Of n And p.
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n k k k k k k k k k k
R R R R R R R R R R
obs obs obs obs obs obs obs obs obs obs
Tol% s Tol% s Tol% s Tol% s Tol% s Tol% s Tol% s Tol% s T:g‘: bs T:ok;) s
100,000 1 1 1 1 1 0 0 0 0 0
18 38 48 58 68 50 56 62 68 74
28 59 119 238 409 | 1400 | 2421 | 5900 | 9136 | 17158
8 13 16 19 22 12 13 14 15 16
200,000 1 1 1 1 1 0 0 0 0 0
18 38 48 58 68 50 56 62 68 74
35 72 127 283 444 | 1690 | 3023 | 5447 | 11047 | 17921
9 14 16 20 22 12 13 14 15 16
300,000 1 1 1 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74
31 65 130 235 468 859 | 3038 | 5076 | 9432 | 19636
8 14 17 19 22 25 13 14 15 16
400,000 1 1 1 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74
35 75 134 226 441 925 | 3497 | 6394 | 11627 | 17252
9 14 17 19 22 25 13 14 15 16
500,000 1 1 1 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74
32 72 117 264 474 860 | 3150 | 6144 | 11179 | 21552
8 14 16 20 22 25 13 14 15 16
600,000 1 1 1 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74
33 78 132 246 458 | 1015 | 2934 | 6295 | 11409 | 26526
9 14 17 19 22 25 13 14 15 16
700,000 1 1 1 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74
32 69 122 244 467 882 | 3420 | 6605 | 11622 | 21028
8 14 16 19 22 25 13 14 15 16

Table 2: k, R := (4k + 6)log(2p) + 8, m?** and r°** For Various Combinations of n and
p, Where mzbs and 7°%* Are The Observed Worst Case Values Of my, and r, Respectively.
(For each shown combination of n and p, the mzbs

observed during 100 test runs.)

obs

and 7°°° shown are the worst case values
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p= || 4 | 8 | 16 | 32 [ 64 [ 128 [ 256 | 512 | 1024 | 2048 |

n k k k k k k k k k k
R R R R R R R R R R
obs obs obs obs obs obs obs obs obs obs
bes bes bes bes bes bes bes bes Tol%s Tol%s
800,000 1 1 1 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74
35 79 147 260 510 989 | 4216 | 5905 | 11098 | 28814
9 14 17 20 22 25 14 14 15 16
900,000 1 1 1 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74
33 76 132 240 536 887 | 3023 | 6909 | 12244 | 24516
9 14 17 19 23 25 13 14 15 16
1,000,000 1 1 1 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74
40 69 127 264 440 851 | 3406 | 7924 | 11861 | 21552
9 14 16 20 22 25 13 14 15 16
1,100,000 1 1 1 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74
38 83 136 241 531 996 | 3469 | 6120 | 11938 | 23631
9 14 17 19 23 25 13 14 15 16
1,200,000 1 1 1 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74
36 75 134 279 510 974 | 3412 | 6394 | 11627 | 22720
9 14 17 20 22 25 13 14 15 16
1,300,000 1 1 1 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74
33 76 133 254 605 | 1011 | 4216 | 6390 | 11258 | 20613
9 14 17 19 23 25 14 14 15 16
1,400,000 1 1 1 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74
32 70 141 259 605 924 | 3722 | 6394 | 11627 | 22720
8 14 17 20 23 25 13 14 15 16
1,500,000 1 1 1 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74
33 89 172 270 551 903 | 3893 | 6120 | 11938 | 23631
9 14 17 20 23 25 13 14 15 16

Table 3: Continuation of Table 2.
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