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Abstract

Adequate choice of data structures and special effort in
implementation are crucial to the good performance of par-
allel algorithms. In this paper, we present experimental re-
sults of a BSP/CGM implementation for the FPT (Fixed-
Parameter Tractability) Vertex Cover problem, also known
as k-Vertex Cover. We propose an alternative implementa-
tion that has as its basis an algorithm that combines the
parallel FPT algorithm proposed by Cheetham et al. and
the Downey’s et al. sequential FPT algorithm. Previously,
a better and refined implementation, based on the Cheetham
et al. Algorithm was presented by Hanashiro. In his exper-
iments, Hanashiro obtained better results than those pre-
sented by Cheetham et al. In this paper, implemented the
new adapted algorithm for thek-Vertex Cover and com-
pared our experimental results with those of Hanashiro et
al, using the same input data (conflict graphs of amino
acids). We report substantial improvement over the results
of Hanahiro et al, with speedups from 3 to 20 times relative
to that implementation.

1. Introduction

Choice of adequate data structures is one of the impor-
tant issues in the design of parallel algorithms. The space
required to store the necessary data, as well as the access
time of the data structure are two important measures. The
space requirement is particularly important if data struc-
tures are to be transmitted among processors, since it would
then affect also the overall execution time of the parallel
algorithm. On the other hand, it is not sufficient to have
a space efficient data structure that does not provide quick
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access time. Often there is no single data structure that min-
imizes both measures and a solution of compromise is often
necessary. A good example to illustrate this is the proposal
of a data structure that was able to give considerable im-
provement on the performance of an algorithm to solve the
the longest subsequence problem of two given strings, as
well as some other related problems (e.g. the string editing
problem) [2].

In this paper we discuss the choice of data structure and
implementation issues to obtain an efficient execution of
a coarse-grained parallel algorithm to solve thek-Vertex
Cover problem. This problem has important applications,
for example, in the analysis of alignment of multiple se-
quences in Computational Biology [6, 18]. Moreover, this
was one of the first problems proved to be fixed-parameter
tractable (FPT), a technique to deal with some of the so-
called intractable problems. Given a graphG = (V, E),
whereV is a set of vertices andE a set of edges, and an
integerk, thek-Vertex Cover problem determines if there
exists a subset of verticesV ′ of V of maximum sizek, such
that every edge ofE has at least one vertex inV ′.

Dealing with intractability has been one of the most im-
portant problems in theory and practice in Computer Sci-
ence. With the objective of attempting to deal with in-
tractability, methods that use approximation, randomization
and heuristics have been considered [19]. However, such
methods present the disadvantages of not always offering
guarantees about performance or exactness in the solution.
The Parameterized Complexity, developed by Downey and
Fellows [9, 10, 11, 13], is an alternative to those meth-
ods. More recent works explore the use of parameterization,
combined with heuristic and parallelism [5, 14, 16].

Consider a problem whose input size isn. Problems are
said to be parameterizable if they can be divided in two
parts: the main part(n) and one parameter(k) [13]. A
parameterizable problem is fixed-parameter tractable (FPT)
if it can be solved by an algorithm in timeO(f(k)nα), where
f is an arbitrary function andα is a constant independent of



n andk [13]. The main idea is the following. Consider an
intractable problem of input sizen that can be solved by an
exponential time algorithm (inn). If the problem is param-
eteriable, there is a fixed parameterk and it can be solved
in timeO(f(k)nα), which may be polynomial inn and expo-
nential ink. That is, the exponential nature of the solution
lies in the parameterk, and not inn. In practice, depending
on the problem, parameterk may besmall compared ton
and the exponential nature of the solution may be tractable.
This is the case in several FPT algorithms, as is the case
of the thek-Vertex Cover problem. Notice that a FPT al-
gorithm does not merely gives an approximate solution, but
rather it solves the problem exactly.

FPT algorithms for thek-Vertex Cover problem have
been proposed by Cheethamet al. [6] and Downeyet al
[12]. Hanashiro [16] presented a refined and improved im-
plementation of the Parallel FPT Algorithm proposed by
Cheethamet al. [6]. The results presented by Hanashiro
have surpassed the results obtained by Cheethamet al., even
using an inferior computational environment. In this paper,
we propose a even more efficient implementation for thek-
Vertex Cover problem that has as its basis an algorithm that
combines the ideas presented by Cheethamet al. [6] and by
Downeyet al [12]. In our experiments, we use as input data
the same conflict graphs of amino acids used by Hanashiro
and Cheethamet al. For three of these graphs, we obtained
better results, in relation to the Hanashiro implementation,
using the same computational environment. The contribu-
tion in this work is in the proposal of an adapted Parallel
FPT Algorithm and its efficient implementation through an
appropriate choice of data structures. This algorithm forms
the basis for other alternative parallel FPT algorithms and
their implementations for thek-Vertex Cover problem.

This work is organized as follows. In Section 2 we
present the Coarse-Grained Multicomputer model used in
this work. In Section 3 we present concepts of Parame-
terized Complexity and FPT, with some of more technical
detailis presented in the Appendix. In Section 4, we present
thek-vertex Cover problem. In Section 5 we give the FPT
algorithms to solve this problem. We also present an im-
proved algorithm of our implementation that combines the
algorithms of Cheethamet al. and Downeyet al. This algo-
rithm will be referred to it as the Adapted Cheethamet al.
Algorithm. In Section 6, we present experimental results
and, finally, in Section 7 we conclude and discuss future
works.

2 Coarse-Grained Multicomputer Model

TheCoarsed-Grained Multicomputer(CGM) model was
proposed by Dehneet al[8] and consists of a set ofp proces-
sors, each one with local memory of sizeO(n/p) and con-
nected by some interconnection network, wheren is the size

of the problem andn/p ≥ p. This model, to be referred to
as BSP/CGM, is a simplification of theBulk Synchronous
Parallel (BSP) model proposed by Valiant [21], one of the
first realistic models proposed in the literature. The realistic
models define parameters to map the main characteristics of
parallel machines, and take into consideration, among other
things, the communication time among processors.

In a BSP/CGM algorithm local computation rounds al-
ternate with global communication among processors. In
a computation round, each processor executes a sequential
algorithm on its local data. In a communication round, each
processor can send and receiveO(n/p) data. Synchroniza-
tion barriers separate local computation rounds from com-
munication rounds.

The sum of times expended with local computation as
well as with communication among processors defines the
execution time of the BSP/CGM algorithm. The goal is
to design a BSP/CGM algorithm that minimizes both the
number of communication rounds and the local computa-
tion time.

3. Parameterized Complexity and FPT

As mentioned earlier, the main idea of fixed-parameter
tractability (FPT) is that if an intractable problem is param-
eterizable, then there is a fixed parameterk such that the
problem can be solved in timeO(f(k)nα). That is, the ex-
ponential nature of the solution may be in the parameterk,
and not inn. In practice, depending on the problem, pa-
rameterk may besmallcompared ton and the exponential
nature of the solution may be tractable. This is the case in
several FPT algorithms, as is the case of the thek-Vertex
Cover problem.

Two techniques are usually applied in the FPT algo-
rithms design: the reduction to problem kernel and the
bounded search tree. These techniques can be combined
to solve the problem.

The appendix contains more technical details concerning
FPT.

4 Vertex Cover problem

The Vertex Cover problem is a central problem in Com-
puter Science based on the following considerations [18].

• It was among the first NP-complete problems.

• There have been numerous efforts to design approxi-
mation algorithms, but it is also known to be hard to
approximate.

• It is of central importance in parameterized complex-
ity theory and has one of the most efficient FPT algo-
rithms.



• It has important applications, e.g., in Computational
Biochemistry, where it is used to solve conflicts be-
tween sequences.

A vertex cover for a graphG = (V, E) is a setV ′ ⊆ V
of vertices such that, for each edge(u, v) ∈ E, at least one
of the verticesu or v belongs toV ′. Figure 1 presents a
vertex coverV ′ = {v2, v5, v6, v7} of sizek = 4.

1v v2 v3 4v

5v 6v v7

8v v109v

Figure 1. The cover V ′ = {v2, v5, v6, v7} is one
of possible vertex covers.

Definition 1 k-Vertex Cover Problem
Instance: GraphG = (V, E) and a positive integerk.
Parameter: k.
Question: Does the GraphG have a vertex cover with size
less or equal tok?

5 FPT Algorithms for the k-Vertex Cover
Problem

Several sequential FPT algorithms for thek-Vertex
Cover Problem have been proposed. See Table 1.

Author(s) Time Complexity
Buss [4] O(kn + (2k2)kk2)

Downey e Fellows [9] O(kn + 2kk2)

Balasubramaniametal. [3] (B1) O(kn +
√

3kk2)

Balasubramaniametal. [3] (B2) O(kn + 1.324718kk2)

Downey, Fellows e Stege [12] O(kn + 1.31951kk2)

Niedermeider e Rossmanith [18] O(kn + 1.29175kk2)

Fellows e Stege [20] O(kn + max(1.25542kk2,

1.2906k2.5k))

Chen, Jia e Kanj [7] O(kn + 1.271kk2)

Table 1. FPT sequential algorithms with their
respective times

The first parallel FPT algorithm was published by
Cheetham, Dehne, Rau-Chaplin, Stege and Taillon [6], to
be referred to as the Cheethamet al Algorithm. It requires
O(log p) communication rounds. The algorithm has two
phases: in the first phase a reduction to problem kernel is
applied; the second phase consists of building a bounded
search tree that is distributed among the processors.

In this paper we propose an improved algorithm, called
the Cheethamet al. Adapted algorithm. It is based on sev-
eral other algorithms which we now describe in the next
subsections. The proposed Cheethamet al. Adapted algo-
rithm is presented in subsection 5.6.

5.1. Buss Algorithm

The Buss Algorithm [4] receives a graphG = (V, E)
and an integer k. This algorithm describes a method of re-
duction to the problem kernel that reduces in polynomial
time the graphG in G′, being that the size ofG′ is limited
by a function of the parameterk.

The Buss Algorithm is based on the idea that all the ver-
tices of degree greater thank belong to any vertex cover for
graphG of size smaller or equal tok. Therefore, such ver-
tices must be added to the partial cover and removed from
the graph. If there are more thank vertices in this situation,
there is no vertex cover of size smaller or equal tok for the
graphG.

In case there are more thank vertices of degree greater or
equal tok, it will not have a vertex cover forG of maximum
sizek. From this moment on, if the number of edges is less
thenk.k′, we apply a brute force algorithm to determine if
there is a vertex cover forG′ of size less or equal tok′, for
the instance(G′, k′) and vertex partial coverH .

5.2. The Balasubramanian et al. B1 Algo-
rithm

Balasubramanianet al. presented two algorithms to find
thek-Vertex Cover of a given a graphG = (V, E) and an
integerk. The first Balasubramanianet al. algorithm [3],
that we callB1 Algorithm, applies first the reduction to the
problem kernel method, generating the instance(G′, k′) and
a partial coveringH .

It then generates a ternary limited search tree with the
root node containing the instance(G′, k′) andH , generated
in the previous step. Notice that we only generate the nodes
along the depth-first search path.

Each node of the tree stores a vertex partial coverH and
a reduced instance of the problem(G′′ = (V ′′, E′′), k′′).
The graphG′′ results from the removal of the incident edges
in H and any isolated vertex, and the numberk′′ is the max-
imum size of the vertex coverG′′.

The search tree has the following property: for each ex-
isting vertex cover for graphG of size smaller or equal tok,
there exists a corresponding tree node with an empty graph
and a vertex cover (not necessarily the same) of size smaller
or equal tok. However, if there is no vertex cover of size
smaller or equal tok for graphG, then no tree node pos-
sesses a resulting empty graph.



During the depth-first search we choose a vertexv ∈ V ′′

that passes through at most three edges, with the following
possible paths: simple paths of length three, cycles of length
three, path of length two, and paths of length one. Each one
of the two first paths originates three cover possibilities and
the last two reduce the graph inside its own node.

The tree interrupts the growth when the node that is be-
ing processed has an instance with a partial cover of size
less or equal tok and with an empty resultant graph, or
when we cover the entire tree, guaranteeing the limit ofk.

5.3. The B2 Balasubramanian et al. Algo-
rithm

The second Balasubramanian et al. algorithm [3], that
we call B2 Algorithm, applies the reduction to the prob-
lem kernel method and generates the instance(G′, k′) and
a partial coverH . It then generates a limited search treeT ,
which is not necessarily ternary. TreeT will have its root
node containing the instance(G′, k′) andH , generated in
the previous step.

In the depth-first search we choose a vertexv from the
graphG′′ and we have the following paths, in order of prior-
ity: paths with vertex of degree one, paths with vertex of de-
gree two, paths with vertex of degree greater or equal to five,
paths with vertex of degree three and paths with vertex of
degree four. According to the degree and the choice of the
vertex we have several possibilities for the cover, each one
of them from the source to a branch of the limited search
tree.

5.4 The Cheetham et al. Algorithm

The algorithm of Cheethamet al. [6] parallelizes both
phases: the reduction to problem kernel and bounded search
tree. In the first phase, we use the Buss algorithm [4]. In
the parallel version, each processorpi, 0 ≤ i ≤ p − 1
computes the degree of the vertices labeled asi ∗ (n/p) to
((i+1)∗(n/p))−1 and receivesm/p edges from the list of
edges of the graphG. The edges are then sorted by the first
vertex. Each processor informs the other processors which
local vertices have degree greater thank. In this way all pro-
cessors will be capable of removing these edges. Then each
processor will exchange messages, informing the edges ob-
tained.

In the phase of the bounded search tree, using B1 Al-
gorithm [3], we generate the complete ternary treeT with
heighth = log3 p andp leaves (denotedyo to yp−1) (see
Figure 2), where the root node stores the partial vertex cover
and the instance(G′, k′). Observe that at the begin of this
phase, all the processors have the same instance obtained at
the previous phase. The treeT is not created explicitly by
the processors. Each processorPi, 0 ≤ i ≤ p − 1 consid-

ers the unique path between the root and the leafyi, where
i/(p/3h+1). The B1 Algorithm is interrupted when some
node reaches the levellog3 p (leafyi).

With this, we finish the first part of this phase. In the
second part, each processorPi executes locally the instance
(G′′

i , k′′
i ) corresponding to the leafyi of the treeT using

the B2 Algorithm, as presented in Figure 2. This phase will
finish either if we find a vertex cover forG of size less or
equalk, or if all the processors have traversed the entire
tree, meaning that it was not possible to find a valid cover.

log  p
3

10 p−1

<G´,k´>

k´

Algorithm B2

Algorithm B1

i

Figure 2. Processor Pi traversed the path
from the root to leaf yi using B1 Algorithm.
After that, Pi calculates the entire subtree
whose root is yi using B2 Algorithm.

The Cheethamet al. algorithm can be adapted by using
other FPT sequential algorithms, in each one of the parts
of the bounded search tree phases. Notice that the first part
restricts the use of algorithms that generate strictly ternary
trees. The second part is more flexible and constitutes the
basis of our adapted algorithm.

5.5 The Downey et al. Algorithm

In this section, we present the Downeyet al algorithm
[13] for the k-Vertex Covert problem, to be referred to
from now on as the Dk-VC algorithm. It is based on both
techniquesreduction to problem kernelandbounded search
tree. This algorithm consist of two phases. The first phase
computes thekernelof an given instance(G, k), or answer
“no” if it does not exist.

The kernel is an instance(G′, k′) where|G′| < k2 and
k′ ≤ k, such thatG′ has a vertex of sizek′ if and only if
G has a cover of sizek. The reduction of(G, k) to (G′, k′)
can be computed inO(kn) time, wherek is the number of
vertices inG. In the second phase we build the search tree
of maximum heightk and the root is labeled as(G′, k′).



Phase 1 (Reduction to problem kernel): Starting with
(G, k) and, while possible, apply the following reduction
rules:

1. if G has a vertexv with degree greater thank, then
replace(G, k) by (G − v, k − 1).

2. If G has two nonadjacent verticesu, v, such that
|N(u)∪N(v)| > k, then replace(G, k) by (G+uv, k).

3. If G has adjacent verticesu, v such thatN(v) ⊆ N [v],
then replace(G, k) by (G − u, k − 1).

4. If G has a pendant edgeuv with u having degree 1,
then replace(G, k) by (G − uv, k − 1).

5. If G has a vertexx of degree 2, with neighborsa and
b, and none of the above cases applies, then replace
(G, k) by (G′, k), whereG′ is obtained fromG, delet-
ing the vertexx, and adding the edgeab, and adding
all possible edges betweena, b andN(a) ∪ N(b).

6. If G has a vertexx of degree 3, with neighborsa, b, c,
and none of the above cases applies, then replace
(G, k) by (G′, k), whereG′ is obtained fromG ac-
cording to the following cases depending on the num-
ber of edges betweena, b andc:

6.1 There are no edges betweena, b e c. In this
case,G′ is obtained fromG by deleting the vertexx,
adding edges fromc to all vertices inN(a), adding
edges froma to all vertices inN(b), adding edges from
b to all vertices inN(c) and adding edgesab andbc.

6.2 There is exactly one edge inG between ver-
ticesa, b, c, assumed to be the edgeab. In this case
G′ is obtained fromG by deletingx from G, adding
edges fromc to all vertices inN(b) ∪ N(a), froma to
all vertices inN(c), from b to all vertices inN(c), and
adding edgesbc andac.

At the end ofPhase 1we have reduced(G, k) to (G′, k′)
andG′ has minimum degree 4, if we have not already an-
swered the question. The answer is “no” ifG′ is more than
k2.

Phase 2 (Search Tree):
In this phase we build a search tree of heightk where

the root is labeled with the output of phase 1(G′, k′). The
branch procedure is performed if there are vertices of degree
at least 6. The reductions of Phase 1 are applied in each
branch. We can assume that each leaf of the resulting search
tree is a graph with degree 4 or 5.

• Degree 4 vertices: If there is a vertexx of degree 4,
then suppose that the neighbors area, b, c, d. We con-
sider various cases according to the number of edges
present between the vertexa, b, c e d. Note that if not

all a, b, c, d are in a vertex coverC, then we can as-
sume that at most two of them are.

Case 1: The subgraph induced by the vertices
a, b, c, d has an edge, sayab. Then c e d together
cannot be in a cover unless all foura, b, c andd are
there. We branch accordingly: (i)a, b, c, d ⊆ C, (ii)
N(c) ⊆ C, (iii) c ∪ N(d) ⊆ C..

Case 2: The subgraph induced bya, b, c, d is
empty. We consider three subcases:

Subcase 2.1Three of vertices (saya, b, c) have
a common neighbory other thanx. We branch accord-
ingly: (i) a, b, c, d ⊆ C, (ii) x, y ⊆ C.

Subcase 2.2If Subcase 2.1 does not hold, there
may be a pair of vertices that have a total of six neigh-
bors other thanx. Let this pair bea andb. If all of
a, b, c, d are not in the vertex coverC, or c /∈ C, or
c ∈ C andd /∈ C, or bothc ∈ C andd ∈ C (in which
casea /∈ C andb /∈ C). We branch accordingly: (i)
a, b, c, d ⊆ C, (ii) N(c) ⊆ C, (iii) c ∪ N(d) ⊆ C, (iv)
c, d ∪ N(a, b) ⊆ C.

Subcase 2.3If Subcases 2.1 and 2.2 do not
hold, then the graph must have the following structure
in the vicinity of x: (1) x has four neighborsa, b, c, d
and each these has degree 4. (2) There is a setE of
six vertices, such that each vertex inE is adjacent to
exactly two vertices ina, b, c, d, and the subgraph in-
duced byE ∪ a, b, c, d is K4. In this case we branch
according to: (i)a, b, c, d ⊆ C, (ii) (E ∪ x) ⊆ C.

• Degree 5 vertices: If graph is regular of degree 5
and none of the reduction rules of Phase 1 can be ap-
plied, then we choose a vertexx of degree 5 and do
the following. First, we can branch from(G, k) to
(G−x, k−1) and(G−N [x], k−5). Then we choose
a vertexu of degree 4 inG−x and branch according to
one of above cases. The result of these two combined
steps is that from(G, k) we created a subtree where
one of following cases hold: (i) there are four children
with parameterk − 5, from Case 1, (ii) there are three
children with parameterk1 = k − 5, k2 = k − 5 and
k3 = k − 3, from Subcase 2.1, (iii) there are five chil-
dren with parameterk1 = k−5, k2 = k−5, k3 = k−3,
k4 = k − 6 andk5 = k − 9, from Subcase 2.2.

Note that if reduction rule (2) of Phase 1 cannot be
applied toG − x, then at least one the neighbors of
u has degree 5, and so Sucacse 2.3 is impossible. In
the degree 5 situation, four children are produced with
parameter valuek − 5. The total running time of the
algorithm isO(rkk2 + kn), r = 41/5, our =1.31951
approximately.



5.6 The Cheetham et al. Adapted algo-
rithm

This algorithm is a combination of the Cheethamet al.
Algorithm [6] and the Downeyet al. Algorithm [13]. Note
that both algorithms can solve thek-Vertex Cover problem,
i.e they are not complementary and any one suffices to solve
the problem. The proposed adapted algorithm combines the
best parts of both, with the aim of improving the perfor-
mance of the solution as a whole. While the algorithm of
Cheethamet al. is in essence parallel, at the same time the
parallelization of the algorithm of Downeyet al. is not a
trivial task and, indeed, the subject of future work.

The Cheethamet al. Adapted algorithm is described as
follows. In the phase of reduction to problem kernel phase
the algorithm of Cheethamet al., based on Busset al.. This
algorithm receives as input data the instance(Gi, ki) and
performs the reduction to problem kernel in parallel. On
the instance(G′′

i , k′′
i ) resulting from the algorithm of re-

duction to problem kernel, we execute the algorithm B1 de
Balasubramanianet al., in the parallel version of Cheetham
et al. The B1 algorithm computes a complete ternary search
tree with heightlog3 p, wherep is the number of processors.
After this phase, each processorPi possesses an instance
(G′′′

i , k′′′
i ) generated by a single path from the root to the

leaves, i.e. each processor has a single instance of the prob-
lem, which was set from a number of different ramification
choices in the descending path in the tree. Finally, each pro-
cessorPi exhaustively executes the sequential algorithm of
Downeyet al on the reduced instance(G′′′

i , k′′′
i ). Figure 2

shows how the Cheethamet al. Adapted algorithm works,
changing to the B2 Algorithm for the Donwey Algorithmet
al..

In our implementation, we paid special attention to the
operation of verifying rule 2 of the reduction to kernel
phase, not only due to its high cost, but also its recurring
nature in the execution of the algorithm. The control of the
cost of this operation was fundamental to obtain the final
good result. The operation of verification of rule 2 is to
find a certain pair of non-adjacent vertices(u, v), such that
|N(u) ∪ N(v)| > k. It is not obvious how to find such
non-adjacent vertices efficiently. To represent the graphG
we used adjacency list. A naive algorithm, for example,
could start at one vertexv and traverse its adjacency list to
detect each non-adjacent vertexu to obtain the pair(u, v)
and check the required property (i.e.|N(u) ∪ N(v)| > k).
But then all the non-adjacent pairs(u, v) of G would be
tested, even those that do not have any chance to possess
such property.

We need an algorithm to find such vertices quickly by
testingonly those non-adjacent vertex pairs that have some
chance of possessing the required property. To this end, we
first sort the pairs of vertices(u, v) in increasing order of

the degrees. Then we test the adjacency condition and if the
required property holds. In this way, the verification ends as
soon as propertyN(u) + N(v) ≤ k is valid. To do this, we
use a data structure callDegree Controller. It is a linked list
of nodes calledDegree Nodes. Each node contains a value
of an existing degree inG and a pointer to a linked list of
vertices ofG that have that degree. The Degree Nodes are
sorted by the degree value.

With this data structure we check the vertices starting
from those with large degrees and proceed to smaller de-
grees, until we can stop testing. At each test, we check
the non-adjacency condition and the required property. The
tests are aided by the use of a bit vector of size|G| in each
vertex, with 1 in the bit vector denoting an adjacent vertex.
In this way, to test the adjacency betweenu andv, we need
only to check the bit vector, for example, ofu to the position
corresponding tov. To test the property|N(u)∪N(v)| > k,
it suffices to compute|N(u)

⋂
N(v)| (quickly, also using

the bit vector) and subtract it fromN(u) + N(v).

6 Experimental Results

In this section we present the experimental results of the
FPT BSP/CGM Adapted Cheetham textitet al.

The computational environment is aCluster consist-
ing of 12 nodes: one node is AMD Athlon(tm) 1800+
1GB RAM; one Intel(R) Pentium(R) 4 CPU 1.70GHz 1GB
RAM; three Pentium IV 2.66GHz 512MB; one Pentium IV
2.8GHz 512MB; one Pentium IV 1.8GHz 480MB RAM;
four AMD Athlon(tm) 1.66GHz 480MB RAM; AMD Sem-
pron(tm) 2600+ 480 MB RAM. The nodes are connected
by a 1Gbfast-Ethernet switch. Each node runs on Linux
Fedora 6 with g++ 4.0 and MPI/LAM 7.1.2.

The input data used in our experiments are conflict
graphs that represent sequences of amino acids collected
by the NCBI database. This input is the same used by
Cheethamet al. [6] and Hanashiro [16] in their experi-
ments. Each value of the running time in the curves cor-
responds to the average time of 30 rounds. The times are
in seconds and include the time to read de input data, to
deallocate data structures and the time to write the output
data.

We now show the performance results of running the
Adapted Cheethamet al. algorithm, executed on 3 and
9 processors with input graphs Kinase, SH2 and Somato-
statin. The values shown represent the average time of 30
experiments.

We emphasize here the use of adequate data structures
and the backtracking technique in our implementation that
have contributed to the good performance of the imple-
mented algorithm, as shown in the next paragraphs. Im-
plementing FPT algorithms it is not a simple task. We have
tried using different data structures to achieve the presented



results. We have dedicated much effort to reduce the com-
putational cost of Case 2 of the reduction to the problem
kernel phase of the Algorithm of Downeyet al., one of the
most costly operations in the algorithm.
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Figure 3. Average time obtained with Adapted
Cheetham and Hanashiro [16] with 3 proces-
sors.

In figure 3, we compare the results obtained in our im-
plementation versus the Hanashiro implementation, with 3
processors. We emphasize the good speedups obtained (rel-
ative to the other implementation) of 19.8 times for Kinase,
14.53 time for SH2 and 4.33 for Somatostatin.
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Figure 4. Average time obtained with the
Adapted Cheetham and Hanashiro [16] using
9 processors.

In figure 4, we compare the results obtained in our im-
plementation versus the Hanashiro implementation, with 9
processors. We again emphasize the good speedups (rela-
tive to the other algorithm) of 8.05 times for Kinase, 3.25
times for SH2 and 4.08 times for Somatostatin.

Grafo 3 processors 9 processors
Kinase 19,82 8,05
SH2 14,53 3,25

Somatostatin 4,33 4,08

Table 2. Speedups between the two imple-
mentations with 3 and 9 processors

In Table 2, we show the improvement of our proposed al-
gorithm with respect to the Hanashiro implementation, with
3 and 9 processors.

For the PHD and WW graphs we do not obtain better
results. It would be possible to develop an implementation
that alternates the B2 and Downey et al. algorithms in the
processors, in order to get good results for all the tested
graphs. We noticed that, for the Kinase, SH2 and Somato-
statin graphs, our implementation could reduce the instance
of the problem more quickly, diminishing the search space
in the search tree. This justifies the much smaller time spent
to find the cover. Moreover, we observed that the improve-
ment rate kept diminishing as we increased the number of
processors. This is justifiable because with more proces-
sors, the space in the search tree is diminished in both im-
plementations.

7 Conclusions and Future Works

FPT Algorithms have been successful in solving in-
stances of NP-complete problems in practice for some im-
portant applications. The use of parallelism in FPT Algo-
rithms has shown to be very useful and constitutes a fur-
ther boost in performance. In the case of this paper, the
proposed Adapted Algorithm of Cheethamet al., produced
an improved performance and substantial results were ob-
tained.

We also consider that the use of good data structures and
the backtracking technique have contributed to the good
performance of the implementation. The implementation
has gone through successive refinements until reaching this
version. Implementing FPT algorithms it is not a simple
task. Some versions, using different data structures have
been implemented. We emphasize Case 2 of the reduction
to the problem kernel phase of the Algorithm of Downeyet
al. as one of the most costly operations that we have dedi-
cated particular effort to reduce its computational cost.

Among the works under development there are imple-
mentations of parallel FPT algorithms for thek-Vertex
Cover problem that use other sequential algorithms. The
implementations also will be executed in computational
grid, as, for example, the InteGrade [15]. There are
also FPT parallel algorithms being studied for other NP-
Complete problems.



As a future work, it would be interesting to compare the
presented algorithm with the one proposed by Abu-Khzam
et al. [1]. We thank the anonymous referee for the sugges-
tion.

Appendix

More formally, we state in the following the definition of parameterizable prob-
lem and fixed-parameter tractable according to Downey and Fellows [9].

Definition 2.1 A parameterized languageL is a subsetL ⊆ Σ∗ × Σ∗. if L is
a parameterized language and(x, y) ∈ L then we will refer tox as themain part
and refery as theparameter.

Definition 2.2 A parameterized languageL is fixed-parameter tractableif it can
be determined in timef(k).nα whether(x, y) ∈ L, where|x| = n, α is a
constant independent of bothn andk andf is an arbitrary function. The family of
fixed-parameter tractable parameterized languages is denotedFPT.

If a problemL is in theFPT class, then each associated problemLy is solved
in polynomial time by an algorithm whose exponent does not depend on the value of
the parametery.

To study and compare the complexity of parameterized problems Downey and
Fellows [13] propose a notion of reduction of parameterizable problems that define a
class hierarchy of parameterizable problems [13, 17].

The most successful techniques employed to design efficientfixed parameter
tractable algorithms arebounded search treeand reduction to problem kernel[19].
The idea of the reduction to problem kernel, is to quickly solve some parts of the
instance of the problem that are relatively easy to work with. The general idea of
bounded search tree method is to identify a small subset of elements of which at least
one must be inanyfeasible solution of problem.

Reduction to problem kernel. Let I be an instance of a parameterizable prob-
lem and a given parameterk. A reduction to problem kernel is an algorithm in poly-
nomial time that transformsI into a new instanceI′ andk into a new parameter
k′ ≤ k that is independent of the size of the original problemI. The size ofI′ de-
pends only on a function ink. Besides, the new instanceI′ has a solution regarding
to k′, if and only if the instanceI has a solution regarding to the original parameter
k.

Bounded search tree. The idea behind the phase of the Bounded search tree, is
in how the search in trees is considered in relation to the depth of the search, that is
limited by the parameter. Combined with some previous, but no obvious, knowledge
from more efficient search mechanisms, the space for exploration of the searches
becomes a lot smaller than those using a naı̈ve brute force mechanism.

References

[1] F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A.
Langston, W. H. Suters, and C. T. Symons. Kernelization
algorithms for the vertex cover problem: theory and experi-
ments. L. Arge, G. F. Italiano, and R. Sedgewick (eds.). In
Proc. 6th Workshop on Algorithm Engineering and Experi-
ments and the First Workshop on Analytic Algorithmcs and
Combinatorics (ALENEX-04), pages 62–69, 2004.
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