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Abstract access time. Often there is no single data structure that min
imizes both measures and a solution of compromise is often

Adequate choice of data structures and special effort in necessary. A good example to illustrate this is the proposal
implementation are crucial to the good performance of par- of a data structure that was able to give considerable im-
allel algorithms. In this paper, we present experimental re provement on the performance of an algorithm to solve the
sults of a BSP/CGM implementation for the FPT (Fixed- the longest subsequence problem of two given strings, as
Parameter Tractability) Vertex Cover problem, also known well as some other related problems (e.g. the string editing
as k-Vertex Cover. We propose an alternative implementa-problem) [2].
tion that has as its basis an algorithm that combines the In this paper we discuss the choice of data structure and
parallel FPT algorithm proposed by Cheetham et al. and implementation issues to obtain an efficient execution of
the Downey’s et al. sequential FPT algorithm. Previously, a coarse-grained parallel algorithm to solve th¥&ertex
a better and refined implementation, based on the CheethanCover problem. This problem has important applications,
et al. Algorithm was presented by Hanashiro. In his exper- for example, in the analysis of alignment of multiple se-
iments, Hanashiro obtained better results than those pre-quences in Computational Biology [6, 18]. Moreover, this
sented by Cheetham et al. In this paper, implemented thewas one of the first problems proved to be fixed-parameter
new adapted algorithm for thé-Vertex Cover and com- tractable (FPT), a technique to deal with some of the so-
pared our experimental results with those of Hanashiro et called intractable problems. Given a graph= (V, E),
al, using the same input data (conflict graphs of amino whereV is a set of vertices andl' a set of edges, and an
acids). We report substantial improvement over the resultsintegerk, the k-Vertex Cover problem determines if there
of Hanahiro et al, with speedups from 3 to 20 times relative exists a subset of vertic&§ of I of maximum sizek, such
to that implementation. that every edge of’ has at least one vertex IrY.

Dealing with intractability has been one of the most im-
portant problems in theory and practice in Computer Sci-
ence. With the objective of attempting to deal with in-
tractability, methods that use approximation, randonorat
and heuristics have been considered [19]. However, such

Choice of adequate data structures is one of the impor-methods present the disadvantages of not always offering
tant issues in the design of parallel algorithms. The spacegyarantees about performance or exactness in the solution.
required to store the necessary data, as well as the accesphe parameterized Complexity, developed by Downey and
time of the data structure are two important measures. Thegg|iows [9, 10, 11, 13], is an alternative to those meth-
space requirement is particularly important if data struc- ogs, More recent works explore the use of parameterization,
tures are to be transmitted among processors, since it woulttgmpined with heuristic and parallelism [5, 14, 16].
then _affect also the overall exepu_tlon time (_)f_ the parallel  consider a problem whose input sizeisProblems are
algorithm. On the other hand, it is not sufficient to have g3iq to pe parameterizable if they can be divided in two
a space efficient data structure that does not provide q“iCkparts: the main partz) and one parameteic) [13]. A
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n andk [13]. The main idea is the following. Consider an of the problem andh/p > p. This model, to be referred to
intractable problem of input size that can be solved by an as BSP/CGM, is a simplification of thBulk Synchronous
exponential time algorithm (in). If the problem is param-  Parallel(BSP) model proposed by Valiant [21], one of the
eteriable, there is a fixed parameteand it can be solved first realistic models proposed in the literature. The stiali

in time O(f(k)n®), which may be polynomial in and expo- models define parameters to map the main characteristics of
nential ink. That is, the exponential nature of the solution parallel machines, and take into consideration, among othe
lies in the parametek, and not inn. In practice, depending  things, the communication time among processors.

on the problem, parametérmay besmall compared to In a BSP/CGM algorithm local computation rounds al-
and the exponential nature of the solution may be tractable.ternate with global communication among processors. In
This is the case in several FPT algorithms, as is the casea computation round, each processor executes a sequential
of the thek-Vertex Cover problem. Notice that a FPT al- algorithm on its local data. In a communication round, each
gorithm does not merely gives an approximate solution, but processor can send and recei¥e:/p) data. Synchroniza-

rather it solves the problem exactly. tion barriers separate local computation rounds from com-
FPT algorithms for the:-Vertex Cover problem have munication rounds.
been proposed by Cheethahal. [6] and Downeyet al The sum of times expended with local computation as

[12]. Hanashiro [16] presented a refined and improved im- well as with communication among processors defines the
plementation of the Parallel FPT Algorithm proposed by execution time of the BSP/CGM algorithm. The goal is
Cheethanet al. [6]. The results presented by Hanashiro to design a BSP/CGM algorithm that minimizes both the
have surpassed the results obtained by Chee¢hain even number of communication rounds and the local computa-
using an inferior computational environment. In this paper tion time.

we propose a even more efficient implementation forithe

Vertex Cover problem that has as its basis an algorithm that3 parameterized Complexity and FPT
combines the ideas presented by Cheetbtah. [6] and by

Downeyet al[12]. In our experiments, we use as inputdata  ag mentioned earlier, the main idea of fixed-parameter
the same conflict graphs of amino acids used by Hanashirg, otapility (FPT) is that if an intractable problem is para
and Cheetharat al. For three of these graphs, we obtained eterizable, then there is a fixed parametesuch that the
better results, in relation to the Hanashiro implementatio problem can be solved in tim@(f(k).®). That is, the ex-
using the same computational environment. The Comrib”'ponential nature of the solution may be in the parameter
tion in this work is in the proposal of an adapted Parallel and not inn. In practice, depending on the problem, pa-
FPT Alg.orithm gnd its efficient implement.ation through an ameterk may besmallcompared to: and the exponential
appropriate choice of data structures. This algorithm rm e of the solution may be tractable. This is the case in

the.b'asis for othgr alternative parallel FPT algorithms and several FPT algorithms, as is the case of thelthéertex
their implementations for the-Vertex Cover problem. Cover problem.

This work is organizgd as foII.ows. In Section 2 we Two techniques are usually applied in the FPT algo-
present the Coarse-Grained Multicomputer model used inji,ms design: the reduction to problem kernel and the

this work. In Section 3 we present concepts of Parame-y,nqeq search tree. These techniques can be combined
terized Complexity and FPT, with some of more technical to solve the problem.

detailis presented in the Appendix. In Section 4, we present  the annendix contains more technical details concerning
the k-vertex Cover problem. In Section 5 we give the FPT gp1

algorithms to solve this problem. We also present an im-
proved algorithm of our implementation that combines the
algorithms of Cheethamt al. and Downeyet al. This algo-
rithm will be referred to it as the Adapted Cheethatral. . ]
Algorithm. In Section 6, we present experimental results 1 N€ Vertex Cover problem is a central problem in Com-
and, finally, in Section 7 we conclude and discuss future puter Science based on the following considerations [18].

works.

4 \ertex Cover problem

e |t was among the first NP-complete problems.

e There have been numerous efforts to design approxi-
mation algorithms, but it is also known to be hard to
approximate.

2 Coarse-Grained Multicomputer Model

The Coarsed-Grained Multicomputé€GM) model was
proposed by Dehnet al[8] and consists of a set pfproces- e It is of central importance in parameterized complex-
sors, each one with local memory of si2én/p) and con- ity theory and has one of the most efficient FPT algo-
nected by some interconnection network, wheigthe size rithms.



e It has important applications, e.g., in Computational In this paper we propose an improved algorithm, called
Biochemistry, where it is used to solve conflicts be- the Cheetharet al. Adapted algorithm. It is based on sev-
tween sequences. eral other algorithms which we now describe in the next

subsections. The proposed Cheethetral. Adapted algo-

A vertex cover for a graply = (V. E) is a setV” C V/ rithm is presented in subsection 5.6.

of vertices such that, for each ed@e v) € E, at least one
of the verticesu or v belongs toV’. Figure 1 presents a .
vertex covel’’ = {uvy, vs, vg, v7} Of Sizek = 4. 5.1. Buss Algorithm

The Buss Algorithm [4] receives a gragh = (V, E)
and an integer k. This algorithm describes a method of re-
duction to the problem kernel that reduces in polynomial
time the graphG in G, being that the size o’ is limited
by a function of the parametér

The Buss Algorithm is based on the idea that all the ver-
tices of degree greater tharbelong to any vertex cover for
graphG of size smaller or equal th. Therefore, such ver-

Figure 1. The cover V' = {vy, vs, v, v7} is one tices must be added to the partial cover and removed from
of possible vertex covers. the graph. If there are more tharvertices in this situation,
there is no vertex cover of size smaller or equat for the
graphG.
Definition 1 k-Vertex Cover Problem In case there are more thawertices of degree greater or
Instance: GraphG = (V, E) and a positive integek. equal tok, it will not have a vertex cover fair of maximum
Parameter: k. sizek. From this moment on, if the number of edges is less
Question: Does the Graplt; have a vertex cover with size thenk.k’, we apply a brute force algorithm to determine if
less or equal ta:? there is a vertex cover fa’ of size less or equal t&’, for

the instancéG’, k') and vertex partial covell .
5 FPT Algorithms for the k-Vertex Cover

Problem 5.2. The Balasubramanian et al. Bl Algo-
rithm
Several sequential FPT algorithms for theVertex
Cover Problem have been proposed. See Table 1. Balasubramaniaet al. presented two algorithms to find
the k-Vertex Cover of a given a grapi = (V, E) and an
Author(s) Time Com2plke>;|ty integerk. The first Balasubramaniaet al. algorithm [3],
Buss [4] Olkn + (2k7)"k7) that we callB1 Algorithm) applies first the reduction to the
Downey e Fellows [9] Olkn + 2 k) problem kernel method, generating the instafce k') and
Balasubramaniamatal. [3] (B1) O(kn + V3EE2) . . ’
Balasubramaniaratal. [3] (B2) | O(kn + 1.324718Fk2) a partial covering?.
Downey, Fellows e Stege [12] O(kn + 1.319517k2) It then generates a ternary limited search tree with the
Niedermeider e Rossmanith [1§] ~ O(kn + 1.29175%k?) root node containing the instan@@’, k') andH, generated
Fellows e Stege [20] O(kn ;r;;ggk(;g;:’j;l?kk?v in the previous step. Notice that we only generate the nodes
Chen_ Ja e Kan 7] O(én " 1'2'71]%2) along the depth-first search path. _
Each node of the tree stores a vertex partial cévemd
Table 1. FPT sequential algorithms with their a reduced |/r/15tance of the proble@” = (V", E”), k”).
respective times The graphG” results from the removal of the incident edges

in H and any isolated vertex, and the numbgis the max-
imum size of the vertex cover”.
The first parallel FPT algorithm was published by The search tree has the following property: for each ex-
Cheetham, Dehne, Rau-Chaplin, Stege and Taillon [6], toisting vertex cover for grap&’ of size smaller or equal to,
be referred to as the Cheethatnal Algorithm. It requires there exists a corresponding tree node with an empty graph
O(logp) communication rounds. The algorithm has two and a vertex cover (not necessarily the same) of size smaller
phases: in the first phase a reduction to problem kernel isor equal tok. However, if there is no vertex cover of size
applied; the second phase consists of building a boundedsmaller or equal td: for graphG, then no tree node pos-
search tree that is distributed among the processors. sesses a resulting empty graph.



During the depth-first search we choose a vertexV”’ ers the unique path between the root and theggafihere
that passes through at most three edges, with the followingi/(p/3"*+1). The B1 Algorithm is interrupted when some
possible paths: simple paths of length three, cycles otleng node reaches the levielg; p (leafy;).
three, path of length two, and paths of length one. Each one  With this, we finish the first part of this phase. In the
of the two first paths originates three cover possibilitied a second part, each procesggrexecutes locally the instance
the last two reduce the graph inside its own node. (GY, k) corresponding to the leaf; of the treeT using

The tree interrupts the growth when the node that is be-the B2 Algorithm, as presented in Figure 2. This phase will
ing processed has an instance with a partial cover of sizefinish either if we find a vertex cover fa@r of size less or
less or equal tdc and with an empty resultant graph, or equalk, or if all the processors have traversed the entire

when we cover the entire tree, guaranteeing the limit.of tree, meaning that it was not possible to find a valid cover.

5.3. The B2 Balasubramanian et al. Algo- T N _
rithm

Algorithm B1 log; p

The second Balasubramanian et al. algorithm [3], that
we call B2 Algorithm applies the reduction to the prob-
lem kernel method and generates the instgii¢ek’) and
a partial covet . It then generates a limited search tfiee
which is not necessarily ternary. Tr&ewill have its root
node containing the instan¢é&’, k£’) and H, generated in
the previous step. Algorithm B2

In the depth-first search we choose a ventexom the
graphG” and we have the following paths, in order of prior-
ity: paths with vertex of degree one, paths with vertex of de-
gree two, paths with vertex of degree greater or equal to five, +
paths with vertex of degree three and paths with vertex of
degree four. According to the degree and the choice of the
vertex we have several possibilities for the cover, each one
of them from the source to a branch of the limited search
tree.

Figure 2. Processor P; traversed the path
from the root to leaf y; using B1 Algorithm.
After that, P, calculates the entire subtree
whose root is y; using B2 Algorithm.

5.4 The Cheetham etal. Algorithm The Cheethanet al. algorithm can be adapted by using
other FPT sequential algorithms, in each one of the parts

The algorithm of Cheetharat al. [6] parallelizes both  of the bounded search tree phases. Notice that the first part

phases: the reduction to problem kernel and bounded searchestricts the use of algorithms that generate strictlyagrn

tree. In the first phase, we use the Buss algorithm [4]. In trees. The second part is more flexible and constitutes the

the parallel version, each procesger0 < i < p—1 basis of our adapted algorithm.

computes the degree of the vertices labeled-aén/p) to

((i+1)%(n/p))—1andreceives/p edges fromthelistof 5.5 The Downey etal. Algorithm

edges of the grap¥. The edges are then sorted by the first

vertex. Each processor informs the other processors which In this section, we present the Downeyal algorithm

local vertices have degree greater tihain this way all pro- [13] for the k-Vertex Covert problem, to be referred to

cessors will be capable of removing these edges. Then eaclfrom now on as the Dk-VC algorithm. It is based on both

processor will exchange messages, informing the edges obtechniqueseduction to problem kernelndbounded search

tained. tree This algorithm consist of two phases. The first phase
In the phase of the bounded search tree, using B1 Al-computes th&ernelof an given instancéG, k), or answer

gorithm [3], we generate the complete ternary tfeaith “no” if it does not exist.

heighth = log; p andp leaves (denoteg, to y,_1) (see The kernel is an instand&’, k') where|G’| < k? and

Figure 2), where the root node stores the partial vertexrcove ¥’ < k, such thaiG’ has a vertex of siz&’ if and only if
and the instancéG’, k’). Observe that at the begin of this G has a cover of sizk. The reduction of G, k) to (G', k')
phase, all the processors have the same instance obtained e&n be computed i®(kn) time, wherek is the number of
the previous phase. The tr@gis not created explicitly by  vertices inG. In the second phase we build the search tree
the processors. Each processpro < i < p — 1 consid- of maximum height and the root is labeled &, £').



Phase 1 (Reduction to problem kernet) Starting with
(G, k) and, while possible, apply the following reduction
rules:

1. if G has a vertex with degree greater thah, then
replace(G, k) by (G — v, k — 1).

2. If G has two nonadjacent verticas v, such that
|N(u)UN(v)| > k, thenreplacéG, k) by (G+uv, k).

3. If G has adjacent vertices v such thatV (v) C N[v],
then replacéG, k) by (G — u, k —1).

4. If G has a pendant edgey with « having degree 1,
then replacéG, k) by (G — uv, k — 1).

5. If G has a vertex: of degree 2, with neighborsand
b, and none of the above cases applies, then replace
(G, k) by (G, k), whereG’ is obtained fronG, delet-
ing the vertexz, and adding the edge), and adding
all possible edges betweenb and N (a) U N (b).

6. If G has a vertex of degree 3, with neighbors b, ¢,
and none of the above cases applies, then replace
(G,k) by (G', k), whereG' is obtained fromG ac-
cording to the following cases depending on the num-
ber of edges between b andc:

6.1 There are no edges betweer e c. In this
case,G’ is obtained from& by deleting the vertex,
adding edges frona to all vertices inN(a), adding
edges fronu to all vertices inV (b), adding edges from
b to all vertices inN (c¢) and adding edgesh andbc.

6.2 There is exactly one edge @ between ver-
ticesa, b, ¢, assumed to be the edgé. In this case
G' is obtained from& by deletingz from G, adding
edges frome to all vertices inN (b) U N(a), froma to
all vertices inN(c), fromd to all vertices inN (¢), and
adding edgesc andac.

At the end ofPhase lwe have reduce@=, k) to (G', k')
andG’ has minimum degree 4, if we have not already an-
swered the question. The answer is “notif is more than
k2.

Phase 2 (Search Tree)

In this phase we build a search tree of heighwhere
the root is labeled with the output of phas¢@, k’). The
branch procedure is performed if there are vertices of degre
at least 6. The reductions of Phase 1 are applied in each
branch. We can assume that each leaf of the resulting search
tree is a graph with degree 4 or 5.

e Degree 4 vertices If there is a vertex: of degree 4,
then suppose that the neighbors aré, ¢, d. We con-
sider various cases according to the number of edges
present between the vertexb, c e d. Note that if not

all a,b,¢,d are in a vertex cove€’, then we can as-
sume that at most two of them are.

Case 1 The subgraph induced by the vertices
a,b,c,d has an edge, sayb. Thenc e d together
cannot be in a cover unless all fourb, c andd are
there. We branch accordingly: @) b,c,d C C, (ii)
N(c) C C, (i) cUN(d) C C..

Case 2 The subgraph induced by, b, c,d is
empty. We consider three subcases:

Subcase 2.Three of vertices (say, b, c) have
a common neighbay other thanc. We branch accord-
ingly: (i) a,b,¢c,d C C, (i) z,y C C.

Subcase 2.B Subcase 2.1 does not hold, there
may be a pair of vertices that have a total of six neigh-
bors other than:. Let this pair bex andb. If all of
a,b, c,d are not in the vertex covet, orc ¢ C, or
ce Candd ¢ C, or bothe € C'andd € C (in which
casea ¢ C andb ¢ C). We branch accordingly: (i)
a,b,c,d C C, (i) N(c) C C, (iii) cUN(d) C C, (iv)
¢,dU N(a,b) CC.

Subcase 2.3f Subcases 2.1 and 2.2 do not
hold, then the graph must have the following structure
in the vicinity of z: (1) = has four neighbors, b, ¢, d
and each these has degree 4. (2) There is & saft
six vertices, such that each vertexfhis adjacent to
exactly two vertices im, b, ¢, d, and the subgraph in-
duced byE U a, b, c,d is K4. In this case we branch
according to: (i}, b, ¢,d C C, (ii) (FUx) C C.

Degree 5 vertices If graph is regular of degree 5
and none of the reduction rules of Phase 1 can be ap-
plied, then we choose a vertexof degree 5 and do
the following. First, we can branch froG, k) to
(G—z,k—1)and(G — N|z],k—5). Then we choose

a vertexu of degree 4 inG —z and branch according to
one of above cases. The result of these two combined
steps is that from{G, k) we created a subtree where
one of following cases hold: (i) there are four children
with parametek — 5, from Case 1, (ii) there are three
children with parametet; = k — 5,k = k — 5 and

ks = k — 3, from Subcase 2.1, (iii) there are five chil-
drenwith parametet; = k—5, ko = k—5, ks = k-3,

ks =k —6andks; = k — 9, from Subcase 2.2.

Note that if reduction rule (2) of Phase 1 cannot be
applied toG — x, then at least one the neighbors of
u has degree 5, and so Sucacse 2.3 is impossible. In
the degree 5 situation, four children are produced with
parameter valué — 5. The total running time of the
algorithm isO(r*k? + kn), r = 4'/5, our =1.31951
approximately.



5.6 The Cheetham et al. Adapted algo- the degrees. Then we test the adjacency condition and if the
rithm required property holds. In this way, the verification ensls a
soon as property (u) + N(v) < k is valid. To do this, we
This algorithm is a combination of the Cheethatral. use a data structure c@legree Controllerltis a Ii_nked list
Algorithm [6] and the Downet al. Algorithm [13]. Note of nodes calledegree NodesEach node contains a value

that both algorithms can solve thevertex Cover problem, ~ ©f @n existing degree iy and a pointer to a linked list of
i.e they are not complementary and any one suffices to solve/€rtices ofG that have that degree. The Degree Nodes are

the problem. The proposed adapted algorithm combines the®°rted by the degree value. , _

best parts of both, with the aim of improving the perfor- With this data structure we check the vertices starting
mance of the solution as a whole. While the algorithm of ffom those with large degrees and proceed to smaller de-
Cheetharret al. is in essence parallel, at the same time the 9"€€S, until we can stop testing. At each test, we check
parallelization of the algorithm of Downest al. is not a the non-adjacency condition and the required property. The

trivial task and, indeed, the subject of future work. tests are aided by the use of a bit vector of (@gin each
The Cheetharet al. Adapted algorithm is described as vertex, with 1 in the bit vector denoting an adjacent vertex.

follows. In the phase of reduction to problem kernel phase In this way, to test _the adjacency betweeandy, we n.eed
the algorithm of Cheethaset al,, based on Busst al.. This onlyto chec_k the bit vector, for example, o the position
algorithm receives as input data the insta€g, k;) and _corre;pondlng to. Totest the properth(_u)UN(v)| = k

performs the reduction to problem kernel in parallel. On it suffices to computeN (u) (1) N(v)| (quickly, also using

the instancg(G”, k') resulting from the algorithm of re- "€ bit vector) and subtract it fro (u) + N (v).
duction to problem kernel, we execute the algorithm B1 de

Balasubramaniaet al,, in the parallel version of Cheetham 6 Experimental Results

etal The B1 algorithm computes a complete ternary search

tree with heightog; p, wherep is the number of processors. In this section we present the experimental results of the
After this phase, each processBr possesses an instance FPT BSP/CGM Adapted Cheetham textitet al.

(GY",k}") generated by a single path from the root to the  The computational environment is @luster consist-
leaves, i.e. each processor has a single instance of the proling of 12 nodes: one node is AMD Athlon(tm) 1800+
lem, which was set from a number of different ramification 1GB RAM:; one Intel(R) Pentium(R) 4 CPU 1.70GHz 1GB
choices in the descending path in the tree. Finally, each pro RAM: three Pentium IV 2.66GHz 512MB; one Pentium IV
cessorP; exhaustively executes the sequential algorithm of 2 8GHz 512MB; one Pentium IV 1.8GHz 480MB RAM:;
Downeyet al on the reduced instan¢€&;”, k). Figure 2 four AMD Athlon(tm) 1.66GHz 480MB RAM; AMD Sem-
shows how the Cheethaet al. Adapted algorithm works,  pron(tm) 2600+ 480 MB RAM. The nodes are connected
changing to the B2 Algorithm for the Donwey Algorithet by a 1Gbfast-Ethernet switch Each node runs on Linux
al.. Fedora 6 with g++ 4.0 and MPI/LAM 7.1.2.

In our implementation, we paid special attention to the  The input data used in our experiments are conflict
operation of verifying rule 2 of the reduction to kernel graphs that represent sequences of amino acids collected
phase, not only due to its high cost, but also its recurring by the NCBI database. This input is the same used by
nature in the execution of the algorithm. The control of the Cheethamet al. [6] and Hanashiro [16] in their experi-
cost of this operation was fundamental to obtain the final ments. Each value of the running time in the curves cor-
good result. The operation of verification of rule 2 is to responds to the average time of 30 rounds. The times are
find a certain pair of non-adjacent vertides v), such that  in seconds and include the time to read de input data, to
|N(u) U N(v)| > k. Itis not obvious how to find such deallocate data structures and the time to write the output
non-adjacent vertices efficiently. To represent the gidph data.
we used adjacency list. A naive algorithm, for example,  We now show the performance results of running the
could start at one vertexand traverse its adjacency listto Adapted Cheethamet al. algorithm, executed on 3 and
detect each non-adjacent vertexo obtain the paifu, v) 9 processors with input graphs Kinase, SH2 and Somato-
and check the required property (i|&V (u) U N(v)| > k). statin. The values shown represent the average time of 30
But then all the non-adjacent paifs, v) of G would be experiments.
tested, even those that do not have any chance to possess We emphasize here the use of adequate data structures
such property. and the backtracking technique in our implementation that

We need an algorithm to find such vertices quickly by have contributed to the good performance of the imple-
testingonly those non-adjacent vertex pairs that have somemented algorithm, as shown in the next paragraphs. Im-
chance of possessing the required property. To this end, welementing FPT algorithms it is not a simple task. We have
first sort the pairs of vertice@:, v) in increasing order of  tried using different data structures to achieve the prtesken



results. We have dedicated much effort to reduce the com- Grafo 3 processorg 9 processors
putational cost of Case 2 of the reduction to the problem Kinase 19,82 8,05
kernel phase of the Algorithm of Downey al., one of the SH2 14,53 3,25
most costly operations in the algorithm. Somatostatin 4,33 4,08

2048 e — Table 2. Speedups between the two imple-

Hanashiro [18] sesssss

mentations with 3 and 9 processors

1024

512

256 In Table 2, we show the improvement of our proposed al-
" gorithm with respect to the Hanashiro implementation, with
3 and 9 processors.

For the PHD and WW graphs we do not obtain better
ol results. It would be possible to develop an implementation
that alternates the B2 and Downey et al. algorithms in the
processors, in order to get good results for all the tested

64

Time in Seconds (Base 2 Logarithm)

16

s _ v graphs. We noticed that, for the Kinase, SH2 and Somato-
e i Acids Semacsan statin graphs, our implementation could reduce the instanc

of the problem more quickly, diminishing the search space
Figure 3. Average time obtained with Adapted in the search tree. This justifies the much smaller time spent
Cheetham and Hanashiro [16] with 3 proces- to find the cover. Moreover, we observed that the improve-
sors. ment rate kept diminishing as we increased the number of

processors. This is justifiable because with more proces-
sors, the space in the search tree is diminished in both im-

In figure 3, we compare the results obtained in our im- .
plementations.

plementation versus the Hanashiro implementation, with 3
processors. We emphasize the good speedups obtained (rel- .
ative to the other implementation) of 19.8 times for Kinase, / Conclusions and Future Works
14.53 time for SH2 and 4.33 for Somatostatin.
FPT Algorithms have been successful in solving in-

e v —— stances of NP-complete problems in practice for some im-

renestiplie) === portant applications. The use of parallelism in FPT Algo-
rithms has shown to be very useful and constitutes a fur-
ther boost in performance. In the case of this paper, the
proposed Adapted Algorithm of Cheethatnal., produced
an improved performance and substantial results were ob-
tained.

We also consider that the use of good data structures and
the backtracking technique have contributed to the good
performance of the implementation. The implementation
has gone through successive refinements until reaching this
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\ version. Implementing FPT algorithms it is not a simple
Kinase e e Somatostatin task. Some versions, using different data structures have
been implemented. We emphasize Case 2 of the reduction
Figure 4. Average time obtained with the to the problem kernel phase of the Algorithm of Dowregy
Adapted Cheetham and Hanashiro [16] using al. as one of the most costly operations that we have dedi-
9 processors. cated particular effort to reduce its computational cost.

Among the works under development there are imple-
mentations of parallel FPT algorithms for theVertex
In figure 4, we compare the results obtained in our im- Cover problem that use other sequential algorithms. The
plementation versus the Hanashiro implementation, with 9 implementations also will be executed in computational
processors. We again emphasize the good speedups (relaid, as, for example, the InteGrade [15]. There are
tive to the other algorithm) of 8.05 times for Kinase, 3.25 also FPT parallel algorithms being studied for other NP-
times for SH2 and 4.08 times for Somatostatin. Complete problems.



As a future work, it would be interesting to compare the
presented algorithm with the one proposed by Abu-Khzam
et al. [1]. We thank the anonymous referee for the sugges-

[6] J. Cheetham, F. Dehne, A. Rau-Chaplin, U. Stege, and P. J.
Taillon. Solving large fpt problems on coarse-grained para
lel machinesJ. Comput. Syst. S¢b7(4):691-706, 2003.

(7]

Chen, Kanj, and Jia. Vertex cover: Further observations

tion.
and further improvementsALGORITHMS: Journal of Al-
) gorithms 41, 2001.
Appendix [8] F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable paralle

More formally, we state in the following the definition of paneterizable prob-
lem and fixed-parameter tractable according to Downey atidv®[9].

Definition 2.1 A parameterized language is a subsel. C X* x X*.if L is
a parameterized language afid, y) € L then we will refer tox as themain part
and refery as theparameter.

Definition 2.2 A parameterized languagde s fixed-parameter tractablé it can
be determined in timef (k).n® whether(z,y) € L, where|z| = n, ais a

(9]

computational geometry for coarse grained multicomputers
In Proceedings of the ACM 9th Annual Computational Ge-
ometry pages 298-307, 1993.

R. G. Downey and M. R. Fellows. Fixed-parameter tradtabi
ity and completeness II: on completeness for W[Theor.
Comput. Scj.141(1-2):109-131, 1995.

constant independent of bothandk and f is an arbitrary function. The family of [10] R G. D_Owney and M. R. Fellows?arameterized Complex-
fixed-parameter tractable parameterized languages ideFBT. ity. Springer, 1999.
) Ifa pro_bler_nL isin theFP_T class, then each associated problBgpis solved [11] R. G. Downey and M. R. Fellows. Parameterized Commxit
;Eszg/rr;c:]rﬂlrgtael;me by an algorithm whose exponent does npede on the value of after (almost) 10 years: Review and open questions, 19-99.
To study and compare the complexity of parameterized pnablBowney and [12] R. G. Downey, M. R. Fellows, A. Vardy, and G. Whit-
Fellows [13] propose a notion of reduction of parametefiz@poblems that define a tle. Parameterized Complex|ty A framework for. Sys-
class hierarchy of parameterizable problems [13, 17, tematically confronting computational. intractability.In
The most successful techniques employed to design effifiied parameter y . g_ A p : ; Y.
tractable algorithms arkounded search treend reduction to problem kerndlL9]. AMS-DIMACS Series in Discrete Mathematics and Theo-
The idea of the reduction to problem kernel, is to quicklyveatome parts of the retical Computer Sciencepages 49-99 Proceedings of the
instance of the problem that are relatively easy to work witlne general idea of ’
bounded search tree method is to identify a small subseeofasits of which at least DIMACS-DIMATIA Workshop, 1999.
one must be imnyfeasible solution of problem. [13] R.G. Downey, M. R. Fellows, A. Vardy, and G. Whittle. The
Reduction to problem kernel. Let I be an instance of a parameterizable prob- parametrized complexity of some fundamental problems in
lem and a given parametér A reduction to problem kernel is an algorithm in poly- i .
nomial time that transformg into a new instanceé”’ and k into a new parameter coding theorySIAM J. Comput.29(2):545-570, 1999.
k' < k that is independent of the size of the original probléniThe size ofl’ de- [14] S. Gilmour and M. Dras. Kernelization as heuristic stru
pends only on a function ik. Besides, the new instan@é has a solution regarding ture for the vertex cover problem. WNTS '06: Fifth Inter-
to k', if and only if the instancd has a solution regarding to the original parameter i p ' L. :
k. national Workshop on Ant Colony Optimization and Swarm
Bounded search tree The idea behind the phase of the Bounded search tree, is Intelligence Darlinghurst, Australia, Australia, 2006. Aus-
in how the search in trees is considered in relation to thehdefthe search, that is . .
limited by the parameter. Combined with some previous, butlwious, knowledge tralian Computer Society, Inc. . .
from more efficient search mechanisms, the space for exjgoraf the searches [15] A. Goldchleger, F. Kon, A. G. vel Lejbman, and M. Fin-
becomes a lot smaller than those using a naive brute forceanesm. ger. InteGrade: Object-Oriented Grid Middleware Leverag-
ing Idle Computing Power of Desktop Machines. Rro-
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