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Abstract

The InteGrade middleware intends to exploit the idle
time of computing resources in computer laboratories.
In this work we investigate the performance of running
parallel applications with communication among pro-
cessors on the InteGrade grid. Since costly communi-
cation on a grid can be prohibitive, we explore the so-
called systolic or wavefront paradigm to design the par-
allel algorithms in which no global communication is
used. We consider the matrix chain product problem and
design a parallel algorithm to evaluate the performance
of the InteGrade middleware. We show that this applica-
tion running under the InteGrade middleware and MPI
takes slightly more time than the same application run-
ning on a cluster with only LAM-MPI support. The re-
sults can be considered promising and the time differ-
ence between the two is not substantial.

1. Introduction

A trend in parallel and distributed computer systems
is the use of grid computing. With the sharing of ex-
isting computer resources, universities, private and pub-
lic corporations can use grid computing to enhance their
computing infrastructure.

The InteGrade project is an on-going multi-university
research initiative with the objective of designing a grid
computing middleware to exploit and utilize the idle
computing power of existing resources in computer lab-
oratories [7, 11]. The InteGrade middleware allows the
use of existing computing infrastructure to run useful
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applications. At the same time, the middleware needs to
ensure that the users of the shared computing resources
do not have degraded quality of service. Transparency to
the users and ease of utilization are the main goals of the
InteGrade middleware. This middleware is responsible
for job submission, checkpointing, security, job migra-
tion, etc. Many publications on InteGrade can be found
on the InteGrade webpage [11].

The InteGrade project is being developed jointly by
researchers of several institutions: Department of Com-
puter Science of Universidade de São Paulo, Depart-
ments of Informatics of Pontifı́cia Universidade Católica
(Rio de Janeiro) and Universidade Federal do Maranhão,
and Department of Computing and Statistics of Univer-
sidade Federal de Mato Grosso do Sul.

With an object oriented architecture, InteGrade im-
plements each module of the system that communicates
with the other modules through remote method invoca-
tions. InteGrade uses CORBA [8] as its infrastructure of
distributed objects, thus benefiting from an elegant and
solid architecture. One important result is the ease of
implementation, since the communication with the sys-
tem modules is abstracted from the remote method in-
vocations.

Many existing grid computing systems restrict their
use to applications that can be decomposed into inde-
pendent tasks such asBag-of-Tasks[3]. InteGrade was
designed with the objective of allowing the development
of applications to solve a broad range of problems in
parallel. In addition to handling bag-of-tasks type appli-
cations, InteGrade also deals with parallel applications
with dependencies that require communication among
processors. For the purpose of evaluating the InteGrade
middleware under such conditions, we design a paral-
lel algorithm to solve the chain matrix product problem.



Experimental results are shown in this paper.

An important question we wish to address concerns
the overhead of the grid middleware. On the one hand,
a grid middleware ensures an integrated environment, to
ease the concern of the user, with special modules to
handle the job submission, checkpointing, security, task
migration, etc., in contrast to running a parallel algo-
rithm in a cluster without such a middleware. One the
other hand, it is natural that overhead is incurred. We
executed a parallel application both on a cluster using
LAM-MPI and on the grid using InteGrade middleware
and MPI. Our results show a slight performance degra-
dation when the parallel applications are run on the In-
teGrade. The difference in performance with respect to
running on a cluster is, however, small. This is encour-
aging and shows a small and acceptable overhead of the
InteGrade middleware.

2 The Systolic Algorithm Paradigm with
Low Communication Demand

In the early eighties, systolic arrays have been pro-
posed to implement numerically intensive applications,
e.g. image and signal processing operations such as the
discrete Fourier transform, product of matrices, matrix
inversion, etc. for VLSI implementation on silicon chips
[12]. After many such algorithms have been proposed in
an ad hocmanner, an important method was proposed
to formalize the design of systolic algorithms. Given a
sequential algorithm specified as nested loops, more for-
mally as a system of uniform recurrence equations, de-
pendence transformation methods [16, 17, 19] map the
specified computation into a time-processor space do-
main that can be mapped onto a systolic array.

The systolic array paradigm has low communication
demand because it does not use costly global communi-
cation and each processor communicates with few other
processors. It is thus suitable for implementation on a
cluster of computers in which we wish to avoid costly
global communication operations. A recent work [9] ex-
plores the systolic array paradigm in cluster computing.
This approach, however, is not adequate in a heteroge-
neous environment where the performance of the com-
puters may vary along time. Since the systolic structure
is based on tightly-coupled connections, the existence
of one single slow processor can compromise and de-
grade the overall performance. The systolic approach,
therefore, is vulnerable in a heterogeneous environment
where machines perform differently.

In [18] we proposed a redundant systolic solution
with high-availability to deal with this problem. There

are many techniques for dependable computing based on
check-pointing and roll-back recovery [20]. The redun-
dant approach is simple but we introduce some overhead
to coordinate the actions of the redundant processors.
We show that this overhead is worth the performance
improvement it provides. The experimental results show
that the incurred overhead is small compared to the over-
all performance we get over the non-redundant solution.
We analyzed the overhead that results from the need to
coordinate the actions of the redundant processors and
showed that this overhead is worth the performance im-
provement it provides.

3 The Coarse-Grained Multicomputer
CGM model

One of the earliest models to consider communica-
tion costs and to abstract the characteristics of parallel
machines with a few parameters is theBulk Synchronous
Parallel Model (BSP) [21]. It gives reasonable pre-
dictions on the performance of the algorithms imple-
mented on existing, mainly distributed memory, paral-
lel machines. A BSP algorithm consists of a sequence
of super-steps separated bysynchronization barriers. In
a super-step, each processor executes a set of indepen-
dent operations using local data available in each pro-
cessor at the start of the super-step, as well as commu-
nication consisting of send and receive of messages. An
h-relation in a super-step corresponds to sending or re-
ceiving at mosth messages in each processor.
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Figure 1. The Coarse-Grained Multicom-
puter.

Figure 1 shows a a similar and simpler model which
is called theCoarse Grained Multicomputers - CGM,



proposed by Dehneet al [4, 5]. It uses only two pa-
rameters: the input sizen and the number of proces-
sorsp. On a CGMp processors are connected through
any interconnection network. The termcoarse granu-
larity comes from the fact that the problem size in each
processorn/p is considerably larger than the number of
processorsp.

A CGM algorithm consists of a sequence of rounds,
alternating well defined local computing and global
communication. Normally, during a computing round
we use the best sequential algorithm for the processing
of data available locally. A CGM algorithm is a special
case of a BSP algorithm where all the communication
operations of one super-step are done in theh-relation.
In comparison with the BSP model, the CGM allows
only bulk messages in order to minimize message over-
head. Due to the similarity of the two models, we will
use the term BSP/CGM.

More precisely, letn denote the input size of the
problem. A BSP/CGM consists of a set ofp proces-
sors each with local memory and each processor is con-
nected by a router that can send messages in a point-
to-point fashion. A BSP/CGM algorithm consists of al-
ternating local computation and global communication
rounds separated by a synchronization barrier.

In a computing round, we usually use the best se-
quential algorithm in each processor to process locally
its data. In each communication round the total data
exchanged by each processor (sends/receives) is limited
by O(n/p). We require that all information sent from a
given processor to another processor in one communi-
cation round be packed into one long message, thereby
minimizing the message overhead. In the BSP/CGM
model, the communication cost is modeled by the num-
ber of communication rounds.

Finding an efficient algorithm on the BSP/CGM
model is equivalent to minimizing the number of com-
munication rounds as well as the total local computa-
tion time. The BSP/CGM model has the advantage of
producing results which are closer to the actual perfor-
mance on commercially available parallel machines. It
is particularly suitable in current parallel machines in
which the global computing speed is considerably larger
than the global communication speed.

The CGM algorithms implemented on currently
available multiprocessors present speedups similar to
the speedups predicted in theory [4]. The CGM algo-
rithm design goal is to minimize the number of super-
steps and the amount of local computation.

4. Matrix Chain Problem

The matrix chain product problem is defined as fol-
lows. Consider the evaluation of the product ofn matri-
ces

M = M1 ×M2 × . . .×Mn

whereMi is a matrix of dimensionsdi × di+1.

Since matrix multiplication satisfies the associative
law, the final result is the same for any order the matri-
ces are multiplied. However, the order of multiplication
affects the total number of operations to computeM .
The problem is to find an optimal order of multiplying
the matrices, such that the total number of operations is
minimized [14, 15, 10].

The first polynomial time algorithm for the matrix
chain product problem was proposed by Godbole [6].
The algorithm uses the Dynamic Programming tech-
nique and runs inO(n3) time withO(n2) space.

We give the main ideas of the Dynamic Program-
ming approach to solve the matrix chain product prob-
lem. Details can be found in [1]. Dynamic Program-
ming is a technique that computes the solution of a prob-
lem by first computing the solutions of the subproblems.
The computation proceeds from smaller subproblems to
larger subproblems, and the partial solutions of the sub-
problems are stored for future use so that they need not
be recomputed again.

Let us give a simple example. Consider the matrix
chain product of the following, sayn = 4, matrices.

M
︸︷︷︸

10×100

= M1
︸︷︷︸

10×20

× M2
︸︷︷︸

20×50

× M3
︸︷︷︸

50×1

× M4
︸︷︷︸

1×100

Let the dimensions ofM1, M2, M3 andM4 be10×
20, 20 × 50, 50 × 1 and1 × 100, respectively. In other
words,d1 = 10, d2 = 20, d3 = 50, d4 = 1 andd5 =
100.

The trivial matrix product algorithm to multiply a
matrix of dimensiona× b by another of dimensionb× c
requiresabc operations, giving rise to aa× c matrix.

If we compute the matrix chain product in the follow-
ing way

M1 × (M2 × (M3 ×M4))

then we would use 125000 operations.

However, if we compute the same product as

(M1 × (M2 ×M3))×M4



then we would require only 2200 operations.

The best way to compute the matrix chain product
can be obtained by a Dynamic Programming method as
follows.

We wish to compute the product ofn matrices

M = M1 ×M2 × . . .×Mn

whereMi is a matrix of dimensionsdi × di+1.

Let mi,j be the minimum cost (in terms of number of
operations) to compute

Mi ×Mi+1 × . . .×Mj

for 1 ≤ i ≤ j ≤ n.

We can thus formulatemi,j as follows.

mi,j =

{
0 if i = j
mini≤k<j(mi,k + mk+1,j + didk+1dj+1) if i < j

We can easily understand this formulation by con-
sidering the following product. The expression to be
minimized above attempts to find the best point (k) to
compute two partial products or sub-chains first, with
the minimum number of operations.

compute this first
︷ ︸︸ ︷

Mi
︸︷︷︸

dirows

×Mi+1 × . . . × Mk
︸︷︷︸

dk+1columns

×

compute this first
︷ ︸︸ ︷

Mk+1
︸︷︷︸

dk+1rows

× . . . × Mj
︸︷︷︸

dj+1columns

The main idea is find the costs of multiplying all the
sub-chains and combine them, first we compute all sub-
chains of size 2 and save their costs, then we compute
all sub-chain of size 3 using the costs already computed
and so on [13, 2].

The goal is to minimizem1,n, i.e. the cost to com-
puterM = M1 × M2 × . . . × Mn. To this end, we
first computemi,i (difference of the two indices = 0).
Obviouslymi,i = 0. Then we computemi,i+1 (differ-
ence of the two indices = 1),mi,i+2 (difference of the
two indices = 2), and so on. All such values computed
are stored for further use to computemi,j with larger
difference between the indices.

In the example product, we wish to obtainm14. So
we compute the following values, row by row, with in-
creasing difference between the indices.

m11 = 0 m22 = 0 m33 = 0 m44 = 0
m12 = 10000 m23 = 1000 m34 = 5000
m13 = 1200 m24 = 3000
m14 = 2200

Algorithm 1 THE SEQUENTIAL MATRIX CHAIN

PRODUCT ALGORITHM

Input: (1) Array d[0..n] containing the dimensions
d1, d2, . . . , dn, dn+1 of then matrices.d.length is
the size of arrayd.

Output: Array m[i, j] that will contain the minimum
cost to obtain the matrix chain productM = M1 ×
M2 × . . .×Mn.

1: m(d.length− 1, d.length− 1); // matrix of costs
2: for i← 0 to d.length− 2 do
3: m[i, i]← 0;
4: end for
5: for round← 1 to d.length− 2 do
6: for i← 1 to d.length− 2− round do
7: j ← i + round;
8: m[i, j]←∞;
9: for k ← 1 to j − 1 do

10: aux← m[i, k] + m[k + 1, j] + d[i]× d[k +
1]× d[j + 1];

11: if aux < m[i, j] then
12: m[i, j]← aux;
13: end if
14: end for
15: end for
16: end for
17: returnm[0, d.length− 2];

The sequential matrix chain product algorithm is
shown in Algorithm 1.

4.1. The parallel algorithm

In this section we present anO(p) communication
round andO(n3/p) complexity BSP/CGM algorithm
for computing the solution of the matrix chain product
problem withn + 1 dimensions (n matrices) andp pro-
cessors. In the parallel algorithm, the cost arraym[i, j]
will be divided intop parts of dimensionn/p× n. Each
processorPi will compute parti, 1 ≤ i ≤ p. At the
first parallel round, processorPi will compute a block
of dimensionn/p× n/p and send it to processorPi−1,
at the next parallel round a new block will be computed
using the block received and so on. At the first parallel
round all processor will be working, at end of roundr
processorPp−r+1 will stop working. Figure 2 shows an
example forp = 4, wherePi is the processor andRi is
the parallel round.

At the first round, all thep processors do useful work.
Then at each round, one processor stops working and so
on. The load is thus not balanced, which is a character-
istic of many systolic algorithms. This is a drawback of
the approach. What we gain is the modest communica-



Algorithm 2 THE PARALLEL MATRIX CHAIN PROD-
UCT ALGORITHM

Input: (1) Array d of dimensions (2) The number of
processorsp (3) The rank or idi of the processor.

Output: Array m[i, j] containing the minimum cost to
obtain the matrix chain productM .

1: block← (d.length− 1)/p;
2: m(block, d.length− 1); // matrix of costs
3: for round← 0 to p− i do
4: compute m[0..block − 1, round ∗

block..((round + 1) ∗ block)− 1];
5: if i 6= 1 then
6: send computed block toPi−1;
7: end if
8: if i 6= p then
9: receive block fromPi+1;

10: end if
11: end for
12: if i = p then
13: returnm[0, d.length− 2];
14: end if

tion demand, as mentioned earlier. Notice that data are
transmitted in a wavefront or systolic manner, with each
processor communication with a few other processors.
The parallel matrix chain product algorithm is shown in
Algorithm 2.

4.2. Experimental Results

n 1 2 4 8
256 0.158 0.135 0.095 0.078
512 2.464 2.205 1.704 1.174
1024 32.609 28.283 21.207 14.407
2048 259.346 227.029 175.939 117.089

Table 1. Running times for matrix chain
product on the cluster using LAM-MPI

We have run the BSP/CGM matrix chain product al-
gorithm on a cluster composed by 12 nodes consisting
of 6 CPU Intel Pentium IV of 1.7Ghz and 6 CPU AMD
Athlon of 1.6GHz. The nodes are connected by a 1Gb
fast-Ethernet switch. The data used in the tests were
generated randomly.

The matrix chain product parallel algorithm is imple-
mented using standard ANSI C and, on the cluster we
used LAM-MPI library while on the cluster used as an
InteGrade grid we used the InteGrade middleware and
MPI. The purpose of the experiment is to compare the

n

P1 R4
n
p

P2 R3

R3

P3 R2

R2

R2

P4 R1

R1

R1

R1

Figure 2. Parallel matrix chain product: di-
vision of tasks

n 1 2 4 8
256 0.180 0.165 0.159 -
512 2.756 2.449 2.045 -
1024 38.651 31.210 30.880 -
2048 325.776 276.156 272.819 -

Table 2. Running times for matrix chain
product on the grid using InteGrade MPI

two executions, on the cluster using LAM-MPI and on
the grid using the InteGrade middleware and MPI.

Table 1 and Figure 3 show the running times (in sec-
onds) for the matrix chain product parallel algorithm
running on the cluster using LAM-MPI.

Table 2 and Fig. 4 show the running times (in sec-
onds) for the matrix chain product parallel algorithm
running on the grid using InteGrade middleware and
MPI.

Tables 3 and 4 present a comparison between the run-
ning times on a cluster using standard LAM-MPI and
on the grid running the InteGrade middleware and MPI.
Column I and column II show the times on the cluster
and on the grid, respectively. Figure 5 shows the corre-
sponding curve.

We observe that the running time on the cluster us-
ing only LAM-MPI without the InteGrade middleware
is slightly better than the times on the grid. Only in one
case the times are the same. Notice that in the grid, the
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Figure 3. Running times for matrix chain product on the cluster using LAM-MPI

256 512
P I II I II
1 0.158 0.180 2.464 2.756
2 0.135 0.165 2.205 2.449
4 0.095 0.159 1.704 2.045
8 0.078 - 1.174 -

Table 3. Comparing running times for the
matrix chain product algorithm

1024 2048
P I II I II
1 32.609 38.651 259.346 325.776
2 28.283 31.210 227.029 276.156
4 21.207 30.880 175.939 272.819
8 14.407 - 117.089 -

Table 4. Comparing running times for the
matrix chain product algorithm

InteGrade middleware determines the choice of the ma-
chines.

The results can be considered promising and the time
difference between the two is not substantial. This
shows the overhead of the InteGrade middleware is ac-
ceptable, in view of the benefits obtained to facilitate the
use of grid computing by the user.

5. Conclusions

The InteGrade project is an on-going research initia-
tive that exploits the idle computing resources of exist-
ing hardware in computer laboratories. This paper in-
tends to investigate the performance of running parallel
applications with communication among processors un-
der the InteGrade middleware.

Due to the high communication cost in cluster and
grid computing, we are interested in designing parallel
applications with low demand on communication. To
this end, we revisit the systolic array approach and pro-
pose to design wavefront parallel algorithms with the
nice property of each processing having to communicate
with only a few others.

We presented a parallel systolic or wavefront algo-
rithm for the matrix chain product problem to evaluate
the performance of the InteGrade middleware. The ap-
plication running under the InteGrade grid takes slightly
more time than those running under the standard MPI in
a cluster. The results are considered to be satisfactory,
since the time difference is not substantial. This shows
the overhead of the InteGrade middleware is acceptable,
in contrast to the benefits obtained to ease the use of grid
computing by the user.

As a final note, although the purpose of designing
and using the proposed matrix chain product parallel al-
gorithm is to evaluate the performance of the InteGrade
grid middleware, the proposed algorithm is interesting
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Figure 4. Running times for matrix chain product on the grid using InteGrade MPI

in its own right. This parallel algorithm can also be used
to solve many other problems whose solutions are ob-
tained by a similar Dynamic Programming technique.
These includes the problem of finding the optimal bi-
nary search tree, the parenthesis matching problem, etc
[1].
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