
Systolic algorithms: concepts, synthesis, and evolution

Siang W. Song∗

University of São Paulo

Institute of Mathematics and Statistics

Department of Computer Science

C.P. 20570 - São Paulo, SP – 01452-990 – Brazil

e-mail: song@ime.usp.br

Abstract

In this mini-course we present the main concepts of systolic algorithms. Systolic algorithms
are designed with desirable characteristics to be implemented in VLSI silicon chips. The first
examples of systolic designs were conceived in an “ad hoc” manner, requiring enormous amount
of creativity and inspiration of its inventors. More recently, considerable amount of research
effort has been spent in the development of formal methods to synthesize and generate systolic
algorithms. In the first part of this mini-course we present the main ideas involved in these
systolic algorithm synthesis methods. We will attempt to illustrate the method of dependency
transformation by several examples and present a geometric interpretation to facilitate its
understanding. We then proceed to give a more formal presentation of the synthesis method.
In the second part we discuss an application of the results, originally derived for the area of
systolic computing, in another area. We show that these results can be very important in a
parallelizing compiler, to exploit parallelism in nested loops. We present a new method for
cycle shrinking that can outperforms previous results.

1 Introduction

During the previous decades, enormous technological advances have been achieved in the area
of VLSI (“Very Large Scale of Integration”) circuits. Such technological advances gave rise to a
totally new way of computing, constituted of highly parallel computing systems for specific appli-
cations. An interetersting approach is the so-called systolic array computing, proposed originally
by Kung and Leiserson [12], at the end of the seventies. A systolic array is a parallel computing
device for a specific application, that is constituted of large number of simple processing elements
called cells, interconnected in a regular way, with local communication. In a similar way as blood
circulates in the human body, data circulate inside the cells of a systolic array, and interact with
other data. Results computed in the cells are again pumped into other cells for further comput-
ing. The regularity and simplicity of the layout of the computing elements constitutes a desirable
characteristic for their direct implementation in silicon, in the form of VLSI chips. Some excellent
references about systolic algorithms include [3, 8, 11, 13, 14, 26, 29]. Some of the earlier systolic
designs are described in [36].

∗Supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) - Proc. No. 93/0603-1 and
CNPq (Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico) - Proc. No. 306063/88-3 and PROTEM-
CC/SP.

1

Systolic arrays implemented in silicon chips are typically laid out in a linear array or bi-
dimensional grid of cells. The first examples of systolic designs were conceived in an “ad hoc”
manner, requiring enormous amount of creativity and inspiration of its inventors. More recently,
considerable amount of interest has been aroused in the Computer Science community regarding
the development of formal methods to synthesize and generate systolic algorithms. Such efforts
gave rise to many works in this area, including the works by Fortes and Moldovan [6, 7, 18, 19],
Quinton and Robert [25, 26], Delosme and Ipsen [4], Nelis and Deprettere [20], Mirandker and
Winkler [17] and Huang and Lengauer [9]. In a certain way, all the proposed methods by the
above researchers vary very little, differing slightly in the degree of formalism and the way to
approach the problem. In the ultimate instance, they all use the concept of transformation of
dependencies.

In the first part of this mini-course we present the main ideas involved in these systolic algo-
rithm synthesis methods. We will attempt to illustrate the method of dependency transformation
by several examples and present a geometric interpretation to facilitate its understanding. We
then proceed to give a more formal presentation of the synthesis method. In the second part
we discuss an application of the results originally derived for the area of systolic computing, in
another area. We show that these results can be very important in a parallelizing compiler, to
exploit parallelism in nested loops. The text used here is based on several works [26, 30, 37].

2 Examples of systolic algorithms

The pioneer work that introduced the systolic algorithm concept was due to Kung and Leiserson
[12]. They proposed a novel way of computing the product of two matrices through the use of
very simple computing cells and very fine grain of parallelism. We refer to their algorithm as
version 1. Several other versions will be presented later on.

Consider two n × n matrices A = (aij) and B = (bij). To simplify the example, let n = 3.
The product C = (cij)

C =

c11 c12 c13

c21 c22 c23

c31 c32 c33

=

a11 a12 a13

a21 a22 a23

a31 a32 a33

b11 b12 b13

b21 b22 b23

b31 b32 b33

can be expressed as the following recurrence equations:

c1
ij = 0

ck+1
ij = ck

ij + aikbkj

cij = cn+1
ij

2.1 Version 1: Kung-Leiserson

We illustrate here the systolic solution version 1 (Kung-Leiserson [12]). We use a basic cell
constituted of three inputs ain, bin, cin and three outputs aout, bout, cout, as indicated in Figure 1.

The Figure 2 illustrates the layout of the cells to multiply 3 × 3 matrices.
The Kung-Leiserson systolic algorithm performs the multiplication of two n × n matrices in

linear time, or 5n steps, using a total of 3n2 processing elements or cells.

2

��
��

- -
?

?
@

@I

@
@I

ain

aout

bin bout

cin

cout

aout := ain

bout := bin

cout := cin + ainbin

Figure 1: Basic cell version 1

r r r
r r r r
r r r r r

r r r r
r r r

-

-

-

-

-

-

-

-

-

-

-

-

-

-

? ? ?

? ? ? ?

? ? ? ?

? ? ?

@
@

@I
@

@
@I

@
@

@I

@
@

@I
@

@
@I

@
@

@I
@

@
@I

@
@

@I
@

@
@I

@
@

@I
@

@
@I

@
@

@I
@

@
@I

@
@

@I

Figure 2: Systolic solution of Kung-Leiserson

2.2 Version 2: Weiser-Davis

Weiser and Davis [38] improved the previous solution by inverting the flow of the c values, as
indicated by Figure 3.

Figure 4 illustrates the systolic solution of Weiser-Davis.

Version 2 realizes the multiplication of n × n matrices in 3n steps, using the same number of
3n2 cells.

2.3 Version 3: Okuda-Song

In order to reduce the number of cells utilized, without affecting the processing time, Okuda and
Song [21] proposed a systolic solution illustrated in Figure 5, in which the c values stay in the
cells.

Version 3 performs matrix multiplication also in 3n steps and uses only n2 cells.

3

��
��

- -
?

?

@
@R

@
@R

ain

aout

bin bout

cout

cin

Figure 3: Basic cell version 2

r r r
r r r r
r r r r r

r r r r
r r r

-

-

-

-

-

-

-

-

-

-

-

-

-

-

? ? ?

? ? ? ?

? ? ? ?

? ? ?

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

Figure 4: Systolic solution of Weiser-Davis

3 Dependence between computations

The method of synthesis of systolic algorithms is based on the transformation of the so-called
dependence vectors. The method transforms a sequential algorithm, expressed in the form of up to
three nested loops, or in the form of uniform recurrence equations [10], into a systolic algorithm.
For this initial treatment, we use the form of nested loops. Later on we introduce also the form
of uniform recurrence equations.

3.1 Expressing an algorithm as nested loops

Consider again the example of matrix multiplication. We can write the following sequential
algorithm, as three nested loops.

for k := 1 to n do
for i := 1 to n do

for j := 1 to n do
cij := cij + aikbkj

Notice that the computation at a point (k, i, j) uses the computations done at other points.

4

r r r- -

r r r- -

r r r- -

? ? ?

? ? ?

Figure 5: Systolic solution of Okuda-Song

Let us rewrite this algorithm in another equivalent form, with the following restrictions.

1. Every variable is indexed by all the indices k, i, j.

2. Every variable is computed explicitly and appears once on the left side of an assignment
command.

3. No variable is used on both sides of the assignment operator.

Thus, we have the following equivalent sequential algorithm.

for k := 1 to n do
for i := 1 to n do

for j := 1 to n do
begin
aijk := ai j−1 k

bijk := bi−1 j k

cijk := ci j k−1 + aijkbijk

end

The following initial values are assumed, for 1 ≤ i, j, k ≤ n:

ai −1 k = aik

b−1 j k = akj

3.2 Dependence vectors

Consider any assignment command, for example,

xij := xi−1 j + yi−1 j zi j−1

The computation at the point of indices (i, j) utilizes values computed at points (i− 1, j) and
(i, j − 1). This requires the previous computations done by commands of the type

5

xi−1 j := · · ·

yi−1 j := · · ·

zi j−1 := · · ·

We say that the point (i, j) depends on points (i − 1, j) and (i, j − 1). We call the following
vectors by the name of dependence vectors

(

1
0

)

=

(

i
j

)

−

(

i − 1
j

)

(

0
1

)

=

(

i
j

)

−

(

i
j − 1

)

Let x be an indexed variable. If variable x is generated or computed at point i and used at
point i′, then we have a dependence vector i′ − i, associated to variable x.

In the example of matrix multiplication, we have the following dependence vectors, expressed
in the base (k, i, j), associated respectively to the variables c, a and b.

0
0
1

,

0
1
0

,

1
0
0

The dependence vectors of an algorithm form the so-called dependence matrix D.

D =

0 0 1
0 1 0
1 0 0

.

4 Method to synthesize systolic algorithms

The computations involved in a sequential algorithm, expressed as nested loops, can be repre-
sented in a space of n dimensions, where n is the number of indices used in the loops. Figure 6
represents the computations of our example, with the arrows indicating the dependences between
computations.

4.1 Computation graph

We can define a computation graph, where the nodes are points (k, i, j) of the space of the
indices of the algorithm and the edges indicate the dependences. Figure 6 represents therefore a
computation graph.

4.2 Transformation of the computation graph

Let us obtain a linear transformation T that transforms the computation graph into another
graph, called the transformed graph.

Computation graph
T

−→ Transformed graph

6

r
r

r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

6 6 6

6 6 6

6 6 6

6 6 6

6 6 6

6 6 6

����

-

6

i

j

k

Figure 6: The computations of the example

In the transformed graph, each node is denominated (t, x, y). The interpretation of t is a time
instant The interpretation of x and y is a position of a processing cell on a plane.

Transformation T should be such that if a node v = (k, i, j) of the computation graph is
mapped to node v′ = (t, x, y) of the transformed graph, then v is computed at the time instant
t, by a processing cell located at the position of coordinates (x, y).

Let

T =

t11 t12 t13
t21 t22 t23
t31 t32 t33

, tij integers.

We have then
(

t11 t12 t13
)

k
i
j

= time to compute (k, i, j)

(

t21 t22 t23
t31 t32 t33

)

k
i
j

= cell position (x, y) to compute (k, i, j)

4.3 Obtention of T

Let us consider a dependence vector d and a point i′ = (k′, i′, j′) dependent on another point
i = (k, i, j) in the computation graph, such that d = i′ − i. The computation at point i′ should

7

be executed after the computation at point i. We should be therefore

(

t11 t12 t13
)

k′

i′

j′

−
(

t11 t12 t13
)

k
i
j

> 0

In other words, we have
(

t11 t12 t13
)

d > 0

for all dependence vector d of the algorithm.

Considering points i′ and i,

(

t21 t22 t23
t31 t32 t33

)

k′

i′

j′

−

(

t21 t22 t23
t31 t32 t33

)

k
i
j

indicates the direction of the communication channel between neighboring cells. We require that
such directions be easily implemented. Let us choose for example

(

t21 t22 t23
t31 t32 t33

)

d =

±(1, 0)T

±(0, 1)T

±(1, 1)T

for all dependence vector d.

5 Examples

Let us go back to the matrix multiplication example. Consider the following transformation

T =

1 1 1
0 1 0
0 0 1

.

T transforms the dependence vectors D to the new vectors D′

TD = D′,

that is,

1 1 1
0 1 0
0 0 1

0 0 1
0 1 0
1 0 0

=

1 1 1
0 1 0
1 0 0

.

With such a transformation, we reproduce the solution of Okuda-Song.

Use now the transformation

T =

1 1 1
−1 1 0
−1 0 1

that transforms the dependence vectors to

1 1 1
−1 1 0
−1 0 1

0 0 1
0 1 0
1 0 0

=

1 1 1
0 1 −1
1 0 −1

.

8

Now we have reproduced the systolic solution of Kung-Leiserson.

Finally, let us use the transformation

T =

1 1 1
1 1 0
1 0 1

that transforms the dependence vectors to

1 1 1
1 1 0
1 0 1

0 0 1
0 1 0
1 0 0

=

1 1 1
0 1 1
1 0 1

.

In this case, we have reproduced the systolic solution of Weiser-Davis.

6 Systolic algorithm synthesis method

We now give a more formal presentation of the method to synthesize systolic algorithms. This
section is based almost entirely on the works of Quinton and Robert [25, 26]. We consider the
specification of an algorithm as a system of uniform recurrence equations, that defines the set
of computations associated with the points of a convex polyhedral domain. The computations
involved in an algorithm, as well as the dependences between computations, are transformed by a
time function and an space allocation function. The time function maps each computation of the
algorithm to a positive integer that represents the time at which the computation is executed. The
allocation function, on the other hand, obtains a position of the processing element to perform
the computation involved. By using adequate allocation functions, we can obtain a layout of the
processing elements easily implemented on a VLSI chip.

7 Uniform recurrence equations

Let D be the set of points of integer coordinates belonging to a convex polyhedral domain of Rn

D = {z ∈ Zn|Bz ≤ b}

where B is a m × n matrix and b a m × 1 vector over Z.

Denote as vertices of D those points of D that cannot be expressed as convex combinations
of other points of D. A point z is said to be a convex combination of points z0, z1, . . . , zq−1 if it
can be expressed in the form

z =
q−1
∑

i=0

µizi, with real numbers µi ≥ 0,
q−1
∑

i=0

µi = 1.

We consider limited convex polyhedral domains.

Definition 7.1 Let D be a convex polyhedral domain. A system of uniform recurrence equations
URE is a system of m equations of the type

Vi(z) = fi(Vi1(z − θi1), . . . , Vik(z − θik)), 0 ≤ i < m.

where z ∈ D, θi1 , . . . , θik are vectors of Zn.

9

We say that such a system computes m functions

V0, V1, . . . , Vm−1.

To simplify the presentation, without loss of generality, we also consider the simplified case
in which, among the computed functions, we are only interested in V0.

Definition 7.2 A system of (simplified) uniform recurrence equations URE is the following sys-
tem of m equations.

V0(z) = f(V0(z − θ0), V1(z − θ1), . . . , Vm−1(z − θm−1)),

V1(z) = V1(z − θ1),

...

Vm−1(z) = Vm−1(z − θm−1),

where z ∈ D and θi, 0 ≤ i < m, are vectors of Zn.

7.1 Dependence graph

Definition 7.3 Let Θ = {θ0, θ1, . . . , θm−1} the set of vectors θi of a URE system. The θi are
called dependence vectors of the system.

Consider points z, y ∈ D, we say that z is dependent on y, by θi, if there exists θi ∈ Θ, such
that

z = y + θi.

The dependences can be represented by a directed graph called dependence graph of the URE
system, denoted by (D,Θ). Its nodes are the points of D. If point z is dependent on y by θi, there
exists an edge from node y to node z. (See Figure 7.)

r r-
y z

θi

Figure 7: Point z dependent on y

A URE system can be used to specify an algorithm [10]. If z ∈ D and z − θi 6∈ D, we call
the values Vi(z − θi), 0 ≤ i < m as inputs of the algorithm. The instances of Vi(z) that appear
only on the right side of equations correspond to the outputs of the algorithm. In the case of
an algorithm specified by a simplified URE system, we are only interested in the output V0, the
remaining outputs being merely reproductions of the inputs of the algorithm.

7.2 Examples

Example 1 The algorithm to multiply two N ×N matrices, A = (aij) and B = (bij), giving the
product C = (cij) , cij =

∑N−1
k=0 aikbkj, can be expressed as a URE system.

10

0 ≤ i < N, 0 ≤ j < N, 0 ≤ k < N,
C(i, j, k) = C(i, j, k − 1) + A(i, j − 1, k)B(i − 1, j, k)
A(i, j, k) = A(i, j − 1, k)
B(i, j, k) = B(i − 1, j, k)

The input values A(i,−1, k) and B(−1, j, k) are defined as aik and bkj, respectively. The
initial values of C(i, j,−1) are 0. The output values C(i, j,N − 1), that appear only on the right
side of the equations, will be the results of cij .

The dependence vectors are

θc =

0
0
1

, θa =

0
1
0

, θb =

1
0
0

.

D is the convex polyhedral domain defined by

{z ∈ Zn|Bz ≤ b}

with

B =

−1 0 0
0 −1 0
0 0 −1
1 0 0
0 1 0
0 0 1

, b =

0
0
0

N − 1
N − 1
N − 1

Figure 8 illustrates the dependence graph for N = 3. The dependences are shown by directed
edges,

Example 2 The algorithm for the resolution of Laplace equation in a 3-dimensional space, by
the iterative method based on differences [41], can be described by the following URE system. The
algorithm performs M iterations.

0 ≤ t < M, 0 ≤ i < N, 0 ≤ j < N, 0 ≤ k < N,
U(t, i, j, k) = [U(t − 1, i − 1, j, k) + U(t − 1, i + 1, j, k)+

U(t − 1, i, j − 1, k) + U(t − 1, i, j + 1, k)+
U(t − 1, i, j, k − 1) + U(t − 1, i, j, k + 1)]/6

We have the following dependence vectors.

θ0 =

1
1
0
0

, θ1 =

1
−1

0
0

, θ2 =

1
0
1
0

,

θ3 =

1
0

−1
0

, θ4 =

1
0
0
1

, θ5 =

1
0
0

−1

.

The values of U(−1, i, j, k) are the inputs to the algorithm. The result of the algorithm is the
output U(M − 1, i, j, k).

11

r
r

r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r
r

r
r

r
r

r

r
r

r

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

6 6 6

6 6 6

6 6 6

6 6 6

6 6 6

6 6 6

����

-

6

i

j

k

Figure 8: Dependence graph (N = 3)

8 Time function τ

Given a URE system, we want to obtain a time function τ that schedules the computations
associated to the points of domain D.

For a given z ∈ D, we assume that the computations Vi(z) are performed in parallel, and take
a unit time.

In order to perform the computations of Vi(z), its arguments naturally should have been
computed before.

The time function τ associates to each point z ∈ D the time instant it is computed. If such a
function exists, then we say that the URE system is computable. Informally we note that in order
for Vi to be computable at point z, it should not depend on itself. For example, the following
two URE systems are not computable. One characterization for computability is given by Karp,
Miller and Winograd in [10].

0 ≤ i < N,
U(i) = f(V (i − 1), U(i))

0 ≤ i < N,
U(i) = g(V (i − 2),W (i − 1))
W (i) = h(U(i + 1))

12

Definition 8.1 Let x =

x0

x1
...

xn−1

∈ D.

Let δ ∈ Z, and λ =

λ0

λ1
...

λn−1

, λi ∈ Z.

The time function τ : Zn → Z is the following linear function

τ(x) = λ0x0 + λ1x1 + . . . + λn−1xn−1 + δ

= λT x + δ

that satisfies the two conditions:

1. τ is non negative over D.

2. If z depends on y, then τ(z) > τ(y).

The first condition is for a question of convenience, since τ is interpreted as time. The second
condition makes scheduling of dependent computations possible.

Theorem 1 (Quinton and Robert [26])
For a given URE system, with dependence graph (D,Θ) and set VD of vertices of D, the

parameters λ0, λ1, . . . , λn−1 and δ define a time function τ if and only if

1. ∀vi ∈ VD, λT vi + δ ≥ 0 and

2. ∀θi ∈ Θ, λT θi > 0, or, λT θi ≥ 1.

Proof:

The proof is immediate.

Condition 1 is equivalent to having τ non negative over D, or,

∀vi ∈ VD, λT vi + δ ≥ 0 is equivalent to ∀z ∈ D, τ(z) ≥ 0.

In fact, if τ is always non negative over D, in particular τ(vi) ≥ 0, where vi are vertices of D.
Therefore,

τ(vi) = λT vi + δ ≥ 0.

On the other hand, if λT vi + δ ≥ 0, ∀vi ∈ VD, let us show that τ(z) ≥ 0,∀z ∈ D.

Any point z ∈ D can be expressed as a convex combination of vertices of D. So,

z =
ν−1
∑

i=0

µivi, µi ≥ 0,
ν−1
∑

i=0

µi = 1.

13

We have then

τ(z) = λT z + δ =
ν−1
∑

i=0

µiλ
T vi + δ =

ν−1
∑

i=0

µi(λ
T vi + δ) ≥ 0.

Condition 2 is equivalent to requiring τ(z) > τ(y) if z depends on y.

In fact, if z depends on y, then

∃θi ∈ Θ, z − y = θi.

We can write

τ(z) − τ(y) = λT z + δ − λT y − δ = λT θi.

Thus,

τ(z) > τ(y) equivalent to λT θi > 0.

2

8.1 Examples

In Example 1 on page 10,

Θ = {θc =

0
0
1

, θa =

0
1
0

, θb =

1
0
0

}.

A time function τ(x) = λ0x0 + λ1x1 + λ2x2 + δ that satisfies the conditions of Theorem 1
should satisfy the following restrictions.

For condition 1, it suffices to consider vertex (0, 0, 0):

δ ≥ 0.

For condition 2, we should have

λ0 ≥ 1,

λ1 ≥ 1,

λ2 ≥ 1.

Thus we can have the following time function

τ(x) = x0 + x1 + x2.

In Example 2 of page 11, application of Theorem 1 gives the following restrictions.

δ ≥ 0,

λ0 + λ1 ≥ 1,

λ0 − λ1 ≥ 1,

λ0 + λ2 ≥ 1,

λ0 − λ2 ≥ 1,

λ0 + λ3 ≥ 1,

λ0 − λ3 ≥ 1.

14

A solution is
λ0 = 1, λ1 = λ2 = λ3 = 0.

We have then
τ(x) = x0.

8.2 Interpretation of the parameter λ
T
θi

Theorem 1 requires λT θi ≥ 1, for each dependence vector θi.

Let z be dependent on y, by θi, or z = y + θi. In the proof of Theorem 1 we saw:

λT θi = λT (z − y) = τ(z) − τ(y).

Thus λT θi expresses the delay between the computation of z and the computation of y.
Theorem 1 requires this delay to be greater or equal than 1.

8.3 Optimal time functions

Theorem 1 gives conditions for the obtention of a time function. We now consider the question
of optimality of time functions. Several criteria for optimality can be adopted.

Consider a URE system with dependence graph (D,Θ). One criterium is to minimize the
delay between dependent computations according to a dependence θk of Θ. Thus we want to:

minimize λT θk,

subject to
λT θi ≥ 1, ∀θi ∈ Θ.

Example 3 Let the URE system

0 ≤ i < 13, 0 ≤ j < 7,
W (i, j) = f (W (i − 1, j − 1),W (i − 1, j − 2),W (i − 2, j − 1))

We have the following dependence vectors, represented in Figure 9.

Θ = {θ0 =

(

1
1

)

, θ1 =

(

1
2

)

, θ2 =

(

2
1

)

}

The conditions of Theorem 1 give the following restrictions.

λ0 + λ1 ≥ 1,

λ0 + 2λ1 ≥ 1,

2λ0 + λ1 ≥ 1,

δ ≥ 1.

Minimizing the delay along the dependence

θ1 =

(

1
2

)

,

15

-

6

���������*

�
�
�
�
�
�
�
���

�
�

�
���

i

j

θ1

θ0 θ2

Figure 9: Dependence vectors

or, minimizing λ0 + 2λ1, we obtain

λ0 = 1,

λ1 = 0,

τ1(x) = x0.

Using the time function τ1, the URE system of this example takes 12 time units to be com-
puted.

Alternatively we can minimize the delay along the dependence

θ2 =

(

2
1

)

,

and we obtain the result

λ0 = 0,

λ1 = 1,

τ2(x) = x1.

Using the time function τ2, the URE system of this same example takes only 6 time units to
be computed.

Instead of using local criterium, we can also adopt a global one, by minimizing the maximum
difference between the computation times of the points of D:

minimize maxx,y∈D |τ(x) − τ(y)|,

subject to the restrictions of Theorem 1.

Returning to Example 3, the largest difference between the computation times occur at the
points x = (12, 6) and y = (0, 0).

By minimizing |τ(x) − τ(y)| = 12λ0 + 6λ1, we obtain

λ0 = 0,

λ1 = 1,

τ3(x) = τ2(x) = x1.

16

9 Allocation function α

The time function τ maps to each point of D the time instant in which the computation associated
to that point is performed. We now examine another function, called allocation function α : Zn →
Zn−1, that maps to each point of D a position α(z) where the computation associated to that
point is performed. Point α(z) can be interpreted as the position of a processing element of a
certain computing system.

We assume that each processing element is capable of realizing the computation associated
to a point of D in a unit time.

The allocation function α must not map to the same processing element different points of D
if the associated computations are executed at the same time.

Definition 9.1 The allocation function α : Zn → Zn−1 is a function of the form

α(x) = (α0(x), α1(x), . . . , αn−2(x))

where each αi is a linear function of Zn in Z, such that

∀x, y ∈ D, α(x) = α(y) ⇒ τ(x) 6= τ(y).

9.1 Time hyperplanes

A time hyperplane is a hyperplane of the points z ∈ D that possess the same value of τ(z), i.e.,
the points whose computations are executed at the same time. We illustrate this concept through
a simple example.

Example 4 Consider the following URE system.

0 ≤ i < 4, 0 ≤ j < 4,
U(i, j) = f (U(i, j − 1), U(i − 1, j))

We have

Θ = {θ0 =

(

0
1

)

, θ1 =

(

1
0

)

}

Let the time function be τ(x) = x0 + x1 = i + j, that is,

λ =

(

1
1

)

.

The time hyperplanes are orthogonal to λ. In Figure 10, the time hyperplanes are represented
by thick lines.

In the following theorem, we obtain an allocation function α by projecting the domain D
along a direction given by u, that is not orthogonal to λ.

Theorem 2 (Quinton and Robert [26])
Let u be a non-null vector of Zn such that λT u 6= 0.
Let uj 6= 0 be a component of u. The following application defines an allocation function

α(x) = (α0(x), α1(x), . . . , αn−2(x)), where

αk(x) = ujxk − ukxj if 0 ≤ k < j

αk(x) = ujxk+1 − uk+1xj if j ≤ k < n − 1.

17

r r r r- - -

r r r r- - -

r r r r- - -

r r r r- - -

6

6

6

6

6

6

6

6

6

6

6

6

i

j
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@@

@
@

@
@

@
@

@
@

@
@

@@

@
@

@
@

@
@

@

@
@

@

Figure 10: Time hyperplanes

Proof:

The allocation vector α(x) can be written as α(x) = Sx where S is the following (n − 1) × n
matrix.

S =

uj −u0

. . .
... 0

uj −uj−1

−uj+1 uj

0
...

. . .

−un−1 uj

We can verify that α(u) = 0.

Consider x, y ∈ D, x 6= y and α(x) = α(y). Then there exists a non-zero scalar µ such that
x − y = µu. In fact, let z = x − y. We have α(z) = 0, which implies

αk(z) = ujzk − ukzj = 0, 0 ≤ k < j

αk(z) = ujzk+1 − uk+1zj = 0, j ≤ k < n − 1.

Thus, zk = (zj/uj)uk = µuk and z = µu or x − y = µu.

As λT u 6= 0, we have
τ(x) − τ(y) = λT (x − y) = µλT u 6= 0.

2

From now on we use also the following notation to express the allocation function α:

α(x) = Sx =

s00 s01 . . . s0 n−1
...

...
. . .

...
sn−2 0 sn−2 1 . . . sn−2 n−1

x0

x1
...

xn−1

.

18

r r r
r r r r
r r r r r

r r r r
r r r

-

-

-

-

-

-

-

-

-

-

-

-

-

-

? ? ?

? ? ? ?

? ? ? ?

? ? ?

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

i

j

Figure 11: Revisiting the systolic solution of Weiser-Davis

9.2 Examples

We return to Example 1 of page 10. We have obtained

λ =

1
1
1

τ(x) = λT x = x0 + x1 + x2.

Let us apply Theorem 2, using

u =

−1
−1

1

.

We have λT u 6= 0. Let us choose uj = u2 = 1. We have

α0(x) = u2x0 − u0x2 = x0 + x2

α1(x) = u2x1 − u1x2 = x1 + x2.

Therefore,

α(x) = Sx =

(

1 0 1
0 1 1

)

x0

x1

x2

=

(

x0 + x2

x1 + x2

)

.

With this allocation function α, the points of D are mapped to the processing elements with
the layout of Figure 11.

Figure 11 shows a computing system that carries out the computations of the given URE
system. The communication between processing elements is indicated by the arrows of the figure.
The communication directions are obtained by applying function α to the dependence vectors of
the system. Thus,

α(θc) =

(

1 0 1
0 1 1

)

0
0
1

=

(

1
1

)

19

r r r
r r r r
r r r r r

r r r r
r r r

-

-

-

-

-

-

-

-

-

-

-

-

-

-

? ? ?

? ? ? ?

? ? ? ?

? ? ?

@
@

@I
@

@
@I

@
@

@I

@
@

@I
@

@
@I

@
@

@I
@

@
@I

@
@

@I
@

@
@I

@
@

@I
@

@
@I

@
@

@I
@

@
@I

@
@

@I
i

j

Figure 12: Revisiting the systolic solution of Kung-Leiserson

α(θa) =

(

1 0 1
0 1 1

)

0
1
0

=

(

0
1

)

α(θb) =

(

1 0 1
0 1 1

)

1
0
0

=

(

1
0

)

It is interesting to observe that with these time and allocation functions we have again re-
produced the systolic solution for matrix multiplication proposed by Weiser and Davis [38]. Fur-
thermore if we choose

u =

1
1
1

to project the domain D, we obtain the allocation function

α(x) = Sx =

(

1 0 −1
0 1 −1

)

x0

x1

x2

=

(

x0 − x2

x1 − x2

)

.

Figure 12 shows the layout of the processing elements obtained by this new allocation function.
Now we have derived again the systolic solution of Kung and Leiserson [12].

9.3 Choice of allocation function

We now examine the question of best allocation functions. There are many criteria to choose
allocation functions. One criterium usually considered is the number of processing elements or
cells needed. The computing systems obtained by Weiser-Davis and Kung-Leiserson, for example,
need 3N2 − 3N + 1 processing cells, to multiply N × N matrices. The criterium of minimizing
the number of cells is justified in systolic systems for VLSI implementation to obtain a smaller
silicon chip area.

We may wish to have an allocation function such that the resulting computing system can be
easily implemented on a given computing system with specific communication channels. Thus,
we may want an allocation function such that each dependence vector is mapped onto an existing
communication channel of the given computing system.

20

9.4 Examples

Consider again Example 1 of page 10. We wish to get an allocation function α such that

α(θc) = 0 or Is1

α(θa) = 0 or Is2

α(θb) = 0 or Is3
, with s1, s2, s3 = 0 or 1.

Let u =

uo

u1

u2

, λT u = u0 + u1 + u2.

Let uj = u2 6= 0.

We have

α0(x) = u2x0 − u0x2

α1(x) = u2x1 − u1x2

α(x) =

(

u2 0 −u0

0 u2 −u1

)

x0

x1

x2

.

By applying α to the dependence vectors, we have

α(θc) =

(

u2 0 −u0

0 u2 −u1

)

0
0
1

=

(

−u0

−u1

)

α(θa) =

(

u2 0 −u0

0 u2 −u1

)

0
1
0

=

(

0
u2

)

α(θb) =

(

u2 0 −u0

0 u2 −u1

)

1
0
0

=

(

u2

0

)

.

A possible solution is u2 = 1, u0 = u1 = 0, that is

u =

0
0
1

giving

α(x) =

(

1 0 0
0 1 0

)

x0

x1

x2

=

(

x0

x1

)

.

The computing system obtained is shown in Figure 13 and corresponds to the Okuda-Song
solution of [21].

We can obtain another interesting solution. Consider

u =

1
1
0

e uj = u0 = 1.

21

r r r- -

r r r- -

r r r- -

? ? ?

? ? ?

i

j

Figure 13: Reproducing the Okuda-Song solution

r
r
r

r
r
r

r
r
r

r
r
r

r
r
r

6

6

6

6

6

6

6

6

6

6

-

-

-

�

�

�

-

-

-

�

�

�

-

-

-

�

�

�

-

-

-

�

�

�

j

i

Figure 14: Communication channels on a rectangular grid

We have

α0(x) = u0x1 − u1x0 = x1 − x0

α1(x) = u0x2 − u2x0 = x2

α(x) =

(

−1 1 0
0 0 1

)

x0

x1

x2

=

(

−x0 + x1

x2

)

.

By applying α to the dependence vectors of the example, we have

α(θc) =

(

−1 1 0
0 0 1

)

0
0
1

=

(

0
1

)

α(θa) =

(

−1 1 0
0 0 1

)

0
1
0

=

(

1
0

)

α(θb) =

(

−1 1 0
0 0 1

)

1
0
0

=

(

−1
0

)

.

With this new function α, the points are transformed to the layout of Figure 14.

10 Systolic computation – evolution along another direction

In the previous sections, we have examined the main concepts of systolic algorithms. The first
systolic algorithms that appeared in the early eighties were conceived in an “ad hoc” manner. As

22

a natural evolution in the area of systolic computation, formal synthesis methods were proposed
so that many previous algorithms constitute mere special cases of this method, as we have seen.

Along another direction of this evolution, several researchers noticed that the dependence
transformation method, originally conceived to derive systolic algorithms, can also be useful in
other areas. For instance, Ribas used the Fortes-Moldovan synthesis method as a starting point
of a new method to generate code for the Warp machine [28]. Fortes and his collaborators used
it to generalize the so-called cycle shrinking technique. In other words, we are no longer using
the method to derive systolic algorithms, but rather to aid a parallelizing compiler. Many other
important topics, such as task partitioning in parallel computers, should also benefit from results
of systolic computing.

We now proceed to show some related results, along this direction, due to Robert and Song
[30].

11 Cycle shrinking

Several loop transformations techniques have been designed to extract parallelism from nested
loop structures [1, 5, 24, 39, 40]. As pointed out by Polychronopoulos [23], by Wolfe [39] or by
Shang, O’Keefe and Fortes [34, 35], this task is often performed by optimizing and parallelizing
compilers that have as their goal the transformation and mapping of a serial program into a
parallel form that can be executed on a particular architecture. Nested loop structures offer the
most fruitful sources of parallelism in serial programs, and it is therefore of paramount importance
that the analysis necessary for such programs be both precise and efficient.

In [23], three loop transformation techniques - simple cycle shrinking, selective cycle shrinking
and true dependence cycle shrinking - were introduced to transform sequential loops into paral-
lel loops. Shang, O’Keefe and Fortes [34, 35] have recently improved these results along two
directions:

• the three different transformations are put into a unified framework

• methods to derive optimal cycle shrinking are presented

Optimal cycle shrinkings are determined through an optimization procedure described in [33].

Another technique for improving the parallelism of loop structures has been introduced by
Liu, Ho and Sheu [16] as the Index Shift Method. The idea behind this method is to defer or
advance the execution steps of some statements such that the total execution time of loops can
be reduced.

The main result is a new methodology that permits to combine cycle shrinking techniques
with the index shift method.

12 Background material

Throughout the paper, we consider perfect nests of loops of the following form:

GLN (General Loop Nest) class

for i1 = l1 to u1 do
for i2 = l2(i1) to u2(i1) do

23

for i3 = l3(i1, i2) to u3(i1, i2) do
...

for in = ln(i1, i2, . . . , in−1) to un(i1, i2, . . . , in−1) do
begin

{ statement S1 }
{ statement S2 }

...
{ statement Sk }

end

Here, l1 and u1 are assumed to be constants, while lj(i1, . . . , ij−1) (resp: uj(i1, . . . , ij−1)) is
the minimum (resp: maximum) of a finite number of affine functions of i1, . . . , ij−1. Also, we
require that all variables instanciated in the statements S1 to Sk be affine functions of the loop
indices i1, i2, . . . , in. The index set for the loop nest is defined as Dom = {I = (i1, . . . , in) ∈
Zn, lj ≤ ij ≤ uj for 1 ≤ j ≤ n}. This framework seems to be pretty general and widely used
[1, 5, 40].

Data dependences between instances of the statements S1, . . . , Sk are defined according to
Banerjee [1] or Polychronopoulos [23]. We write SuδSv if there exist index values (i1, . . . , in) and
(j1, . . . , jn) in Dom such that

1. (i1, . . . , in) ≤ (j1, . . . , jn) where ≤ is the lexicographic order over Zn.

2. statement Su(i1, . . . , in) must be executed before statement Sv(j1, . . . , jn) to preserve the
semantics of the nest and we let δ = (j1 − i1, j2 − i2, . . . , jn − in) be the dependence vector
between the two statements.

As pointed out in [23], dependences can be further divided into three categories (flow-, anti-
or output-dependences). Also, given two statements Su and Sv, there can be several index pairs
(I, J) in Dom2 for which Sv(J) depends upon Su(I), hence several dependence vectors between
Su and Sv.

An important subclass of GLN is when all dependences between statements correspond to
a fixed dependence vector, independent of the index pairs instanciating the dependence. Such
nests of loops are termed uniform. Uniform nests of loops have a tremendous importance and
have received considerable attention, and this for at least the following reasons:

• they arise naturally in many scientific applications,

• powerful mathematical tools can be used to deal with them, and

• all results for uniform nests can be applied to general nests if the conservative approach
of retaining only the smallest dependence vector among all dependence vectors linking two
statements is taken.

Consider the following example.

Example 5 This is a slightly modified example from Polychronopoulos [23]:

24

for i = 0 to N1 do
for j = 0 to N2 do

begin
{ Statement S1 } a(i, j) = b(i − 3, j − 5)
{ Statement S2 } b(i, j) = a(i − 2, j − 4)

end

In Example 5, the index set is a rectangle

Dom = {(i, j) ∈ Z2, 0 ≤ i ≤ N1, 0 ≤ j ≤ N2}.

Variable a(i, j) is produced in statement S1(i, j) and consumed in statement S2(i − 2, j − 4)
so there is a dependence between S1 and S2 of vector (2, 4). Similarly, there is a dependence
between S2 and S1 of vector (3, 5). Both dependences are uniform, so we let

D =
(

d1 d2

)

=

(

2 3
4 5

)

represent all the dependences. Note that all dependence vectors are lexicographically positive
(their first non-zero component is greater than 0), due to the condition (i). The dependence
graph is represented in Figure 15.

d1 d2

S1

S2

'

&

$

%
?

6

Figure 15: Dependence graph of Example 5

In this example, there is a dependence cycle, since there is a dependence between S1 and S2

and another one between S2 and S1. More generally, we say that there is a dependence cycle
of length L if there are L different statements Sl1, Sl2 , . . . , SlL such that Sl1δSl2δ . . . δSlLδSl1 . In
our example the cycle is of length 2. Of course there can exist several cycles of different lengths
involving the k statements S1 to Sk.

In general, loops whose statements are involved in a dependence cycle are considered to be
serial. However, techniques such as cycle shrinking can be used to extract parallelism that may
still be present in the loop. We discuss such techniques in the next section.

Beforehand, we point out that most of the examples that we use hereafter will have the
following simplified form (as the previous example):

RUN (Regular Uniform Nest) class

1. the index set is a parallelepiped

for i1 = 0 to N1 do
for i2 = 0 to N2 do

...
for in = 0 to Nn do

25

begin
{ Statement S1 }

...
{ Statement Sk }

end

2. the dependences are uniform and all dependence vectors are recorded in the dependence
matrix D of size n × m, where m is the number of such vectors.

The restriction that the index domain is a parallelepiped is only for technical convenience.
We will even use hypercubic domains where all Ni’s are equal. Also, the fact that the loop indices
range from 0 to N by increment 1 is no loss of generality. Such nests are called normalized by
[23]. The main restriction is indeed that we deal with uniform nests.

13 Generalized Selective Cycle Shrinking

Generalized cycle shrinking has been introduced by Shang, O’Keefe and Fortes [35] as a generaliza-
tion of a well-known technique in compiler optimization called selective shrinking [23]. Consider
a GLN nest. The idea is to determine a vector Π = (π1, . . . , πn) such that all index points I, J
in Dom such that ΠI = ΠJ can be executed simultaneously (assuming a target multiprocessor
machine). Such a vector Π will be called a scheduling vector.

Of course not any vector can be used as a scheduling vector. The semantics of the loop has
to be preserved. In [35], the following theorem is proven:

GSS theorem: Consider a GLN nest with uniform dependences, and let D = (d1, . . . , dm) be
the n × m dependence matrix. Then any vector Π = (π1, . . . , πn) such that

(i) ΠD > 0

(ii) gcd(π1, . . . , πn) = 1

can be used as a scheduling vector. Any index I in Dom will be executed at time-step ⌊ ΠI
disp(Π)

⌋,

where disp(Π) = min { Πdj , 1 ≤ j ≤ m} is the displacement.

The idea can be cast into the following terms: we group the index points into packets, and to
execute the nest we have an outer sequential loop that represents time. All index points that are
assigned the same time are executed concurrently. In other words, we have something like:

for time = min time(Dom) to max time(Dom) do
execute all index points I in Dom such that

⌊ ΠI
disp(Π)

⌋ = time

Of course, min time(Dom) and max time(Dom) represent the smallest and largest values of
the scheduling time for an index I in Dom.

Intuitively, condition (i) ensures that the semantics of the loop will be preserved. In other
words the scheduling vector Π is safe if it forms an acute angle with the dependence vectors.

26

Also, we see that the scheduling time for an index point is homogeneous, hence the restriction
that the components of Π be relatively prime.

Now, the problem is to determine the best scheduling vector, that is a vector Π that satisfies
(i) and (ii) and for which max time(Dom) - min time(Dom) is minimum. This last condition is
clearly equivalent to minimizing

max{ΠI − ΠJ, I, J ∈ Dom}

disp(Π)
.

Shang, O’Keefe and Fortes [35] propose a procedure that is able to determine the best schedul-
ing vector in some cases, including the RUN case. The reason why they call their approach Gen-
eralized Selective Shrinking is the following: assume that there is a cycle between the statements
S1 to Sk of the nest. A technique from compiler optimization known as selective shrinking [23]
is to consider the rows of the dependence matrix D one after the other, and to select the first
one such that all entries are positive. The smallest of these entries can safely be chosen as the
displacement. We see that it amounts to try successively the basis vectors as possible scheduling
vectors.

Another technique from compiler optimization is known as true dependence shrinking [22, 23].
It consists in computing the true distance for each dependence vector di, defined to be the number
of loop iterations separating the instanciation of the corresponding dependent statements.

For a RUN, we get

true distance(di) = dn,i + dn−1,i ∗ (Nn + 1) + dn−2,i ∗ (Nn + 1)(Nn−1 + 1) + . . . + d1,i

n
∏

j=2

(Nj + 1)

where

di =

d1i

d2i
...
dni

and the displacement is the minimum of the true distances over all dependence vectors. This
technique can be interpreted as proposing Π = (

∏n
j=2(Nj +1),

∏n
j=3(Nj +1), . . . , 1) for scheduling

vector.

We conclude this section by stating the following problem.

GSS optimization problem: Find a vector Π with relatively prime components and such
that ΠD > 0 which minimizes

GSS(Π) =
max{ΠI − ΠJ, I, J ∈ Dom}

disp(Π)
.

Consider again Example 5. Let Π = (a, b) be a scheduling vector. We have Πd1 = 2a +
4b,Πd2 = 3a + 5b, hence disp(Π) = min(2a + 4b, 3a + 5b) and max time(Dom) - min time(Dom)
= | a | N1+ | b | N2. The problem is then to find two integers (a, b) such that the quantity

| a | N1+ | b | N2

min(2a + 4b, 3a + 5b)

27

is minimized, subject to the constraints

gcd(a, b) = 1, 2a + 4b ≥ 1, 3a + 5b ≥ 1.

Shang et al. use the method in [31] to find the best scheduling vector. They identify two
possible solutions, Π1 = (1, 0) and Π2 = (0, 1). Π1 leads to

GSS(Π1) =
N1

2

and Π2 leads to

GSS(Π2) =
N2

4
.

Depending upon the domain shape, either vector can be optimal.

14 The Index Shift Method

14.1 Description of the Index Shift Method

The Index Shift Method (ISM) has been introduced by Liu, Ho and Sheu [16]. Consider Example
6.

Example 6 This example is from Peir and Cytron [22]:

for i = 0 to N do
for j = 0 to N do

begin
{ Statement S1 } a(i, j) = b(i, j − 6) + d(i − 1, j + 3)
{ Statement S2 } b(i + 1, j − 1) = c(i + 2, j + 5)
{ Statement S3 } c(i + 3, j − 1) = a(i, j − 2)
{ Statement S4 } d(i, j − 1) = a(i, j − 1)

end

The dependences are the following:

S1 −→ S3 : d1 =

(

0
2

)

S3 −→ S2 : d2 =

(

1
−6

)

S2 −→ S1 : d3 =

(

1
5

)

S1 −→ S4 : d4 =

(

0
1

)

S4 −→ S1 : d5 =

(

1
−4

)

28

We obtain the following dependence matrix:

D =

(

0 1 1 0 1
2 −6 5 1 −4

)

.

The index domain is a square:

Dom = {(i, j) ∈ Z2, 0 ≤ i, j ≤ N}.

There are two dependence cycles, namely C1 = (S1, S3, S2) and C2 = (S1, S4).

Let us first compute the best scheduling vector with the GSS approach. We search for Π =
(a, b) such that

gcd(a, b) = 1

ΠD > 0 ⇐⇒

{

b ≥ 1
a ≥ 6b + 1

Note that a and b are necessarily positive. We get disp(Π) = min(2b, a − 6b, a + 5b, b, a − 4b) =
min(a − 6b, b) and we want to minimize the quantity

GSS(Π) =
(a + b)N

disp(Π)
.

The following straightforward case analysis shows that Π = (7, 1), for which GSS(Π) = 8N , is
the best solution:

1. if b = 1, then minimize GSS(Π) = (a + 1)N , hence take a = 6b + 1 = 7

2. if b ≥ 2, then consider two subcases:

(a) if 6b + 1 ≤ a ≤ 7b − 1, then disp(Π) = a − 6b, and GSS(Π) = a+b
a−6bN , hence take

a = 7b − 1 and get GSS(Π) = 8b−1
b−1 N ≥ 8N

(b) if 7b + 1 ≤ a, then disp(Π) = b, and GSS(Π) = a+b
b N , hence take a = 7b + 1 and get

GSS(Π) = 8b+1
b N ≥ 8N. (Note that a = 7b is excluded because gcd(7b, b) = b ≥ 2.)

Next, draw a directed graph (Figure 16) whose nodes are the statements S1 to S4 and whose
edges are weighted by the values ei = Πdi.

S1

S4

S3 S2

12

2 1

1 3

⇐= Cycle C2

⇐= Cycle C1

' $
'

&

$

%

�

?
6

- -

Figure 16: Dependence cycles of Example 6

The idea of the Index Shift Method is to apply some retiming to this graph. Indeed, consider
cycle C2 with the edge e14 = (S1, S4) weighted w14 = 1 and the reverse edge e41 = (S4, S1)

29

weighted w41 = 3. Since disp(Π) is the minimum of the weights of the edges in the graph, we
would like to remove 1 from w41 and to add 1 to w14. Similarly, w21 = 12 and we can shift part
of this weight to w13 and w32. Such shifts can be conducted so that the minimum weight of an
edge in the graph becomes 2.

Systolicians will have recognized the retiming procedure of Leiserson and Saxe [15]. The idea
is to modify weights by adding some given quantity (possibly negative) to all incoming edges to a
given node, and to subtract the same quantity from all outgoing edges from that node. Obviously,
such transformations do not modify the total weight of each cycle. Hence, if the goal is to achieve
a good balance among all weights involved in a cycle of length k and total weight T , the best
you can do is to assign the weight ⌊T/k⌋ + 1 to (T mod k) edges and the weight ⌊T/k⌋ to the
remaining ones.

Liu et al. [16] provide a method for determining the transformations needed to achieve this
balancing of the weights among all cycles. The method is the same as in [26, page 252], and it
is simpler than the one originally proposed in [15]. Let us denote by Sk

i the transformation that
consists of adding k to the weights of all incoming edges to node Si, and subtracting k from the
weights of all outgoing edges from Si. In our example, the (commutative) sequence S1

2S1
4 leads

to the graph of Figure 17.

S1

S4

S3 S2

11

2 2

2 2

⇐= Cycle C2

⇐= Cycle C1

' $
'

&

$

%

�

?
6

- -

Figure 17: New weights obtained by S1
2S1

4

The minimum weight is now 2, which means that the new displacement is 2.

What does it mean to apply a transformation Sk
i to the graph for the nest of loops, and how

the range of the loop indices is affected? First of all, applying the transformation Sk
i amounts

to replacing the execution of a given instance Si(J1) of statement Si by the execution of another
instance Si(J2) such that the scheduling difference between the two instances is equal to k. In
other words, J2 is such that

Π(J1 − J2) = k.

Liu et al. [16] have a very nice way of determining J2: let u be a vector such that Πu = 1
(remember that Π has relatively prime components). Then J2 = J1 − ku satisfies Π(J1 − J2) =
kΠu = k. Moreover, the vector u enables us to compute the new bounds for the loop indices. In
the example let u = (0, 1). Then the transformation S1

2 amounts to shifting index j by one unit
in statement S2. Hence the second loop index j will loop from 1 to N + 1 in statement S2. But
as it moves from 0 to N in statement S1, the total range is extended from 0 to N + 1. Some
iteration instances will be meaningless for some statements: in our example this is the case when
j = N + 1 for statements S1 and S3 or when j = 0 for statements S2 and S4. Applying this
process, we derive the new loop nest:

for i = 0 to N do
for j = 0 to N + 1 do

30

begin
{S1} : a(i, j) = b(i, j − 6) + d(i − 1, j + 3)
{S2} : b(i + 1, j − 2) = c(i + 2, j + 4)
{S3} : c(i + 3, j − 1) = a(i, j − 2)
{S4} : d(i, j − 2) = a(i, j − 2)
end

Suppose we were given this nest from the beginning: we would have computed the dependence
matrix as

D =

(

0 1 1 0 1
2 −5 4 2 −5

)

We check that Π = (7, 1) is a scheduling vector with displacement disp(Π) = 2, hence we can
achieve

GSS(Π) =
7N + (N + 1)

2
≤ 4N + 1,

nearly halving the execution time derived with the GSS approach.

We can now state more formally the ISM technique, as described by Liu et al [16]:

Index Shift Method: Given a scheduling vector Π with relatively prime components such
that ΠD > 0, let Cycl denote the set of all cycles in the dependence graph where nodes are the
statements S1 to Sk and each edge (Si, Sj) with dependence vector dij is weighted by the value
Πdij . For a cycle C in Cycl, let T (C) denote its total weight and k(C) denote its length.

The ISM technique enables us to replace the value of the reduction factor

λ1 = disp(Π) = min{Πdi, 1 ≤ i ≤ m}

by the value
λ2 = min{⌊T (C)/k(C)⌋, C ∈ Cycl}.

Since the transformation is at the price of an increase in the range of the loop index that depends
only on Π and not on the domain size, the improvement factor is very close to the ratio λ2

λ1
.

14.2 An improvement of the Index Shift Method

Consider again Example 5. Remember that depending upon the shape of the domain, the GSS
approach will determine either Π1 = (1, 0) or Π2 = (0, 1). Assume we want to use the ISM. For
Π1 we obtain the dependence graph of Figure 18(a), while similarly for Π2 we get the graph of
Figure 18(b).

2 3

S1

S2 (a)

'

&

$

%
?

6

Cycle C

⌊T (C)/k(C)⌋ = ⌊5/2⌋ = 2

4 5

S1

S2 (b)

'

&

$

%
?

6

Cycle C

⌊T (C)/k(C)⌋ = ⌊9/2⌋ = 4

Figure 18: Dependence graph obtained by (a) Π1 and (b) Π2

31

We see that there is no possible improvement. However, using Π1 say, we would like to replace
disp(Π1) = 2 by the real-valued average of the weights over the cycle, that is 2.5. The goal of this
section is to show how we can deduce from Π1 another scheduling vector Π∗

1 that will achieve a
reduction factor of 2.5.

In the general case, suppose we are given a cycle C of k statements S1 to Sk with dependence
matrix D = (d1, ..., dk). Here vector dj represents the dependence between statements Sj and
Sj+1 mod k. Suppose we are also given a scheduling vector Π with relatively prime components

and such that ΠD > 0. Finally, suppose that the total weight of the cycle T (C) = Πd1 + ...+Πdk

is not divisible by k.

Of course, scaling Π by multiplying all its components by k would render T (C) divisible by
k, but would also violate the constraint of relatively prime components. So the idea is indeed
to perform some scaling, but to use some perturbation afterwards to retrieve relatively prime
components while satisfying the constraint ΠD > 0.

Let r be a vector with relatively prime components and such that Πr = 0, and let s be a
vector such that rs = ±1 with

sd1 + ... + sdk ≥ 0.

Finding s from r is easy, and finding r from Π is done as follows. Compute the Hermite form of
Π to get

Π = Q

1
0
...
0

,

where Q is unimodular and let r be the second row of Q−1: r has relatively prime components
because Q−1 is unimodular, and rΠ = 0 by construction, since

1
0
...
0

= Q−1Π.

Now, let Π∗ = λkΠ + s. The weight T ∗(C) of cycle C with respect to Π∗ is

T ∗(C) = λkT (C) + s(d1 + .. + dk) ≥ λkT (C)

hence ⌊T ∗(C)/k⌋ ≥ λT (C).

Now rΠ∗ = ±1, hence Π∗ has relatively prime components. For λ large enough, Π∗D > 0,
and after application of the ISM method we do achieve a reduction factor arbitrarily close to the
real value of T (C)/k.

Rather than going on formally, let us apply the method to Example 5. Let us take Π1 = (1, 0).
Then we have trivially

Q = identity matrix =

(

1 0
0 1

)

and r = s = (0, 1).

With Π∗
1 = 2λΠ1 + s = (2λ, 1), we obtain the dependence graph of Figure 19 (a).

32

4λ + 4 6λ + 5

S1

S2 (a)

'

&

$

%
?

6
5λ + 4 5λ + 5

S1

S2 (b)

'

&

$

%
?

6

Figure 19: Dependence graph obtained (a) by Π∗
1 and (b) after Sλ

2

The transformation Sλ
2 produces the dependence graph of Figure 19 (b). Using u = (0, 1),

the second index j will loop from 0 to N2 + λ. The resulting time will therefore be

Time(Π∗
1) =

2λN1 + (N2 + λ)

5λ + 4
≤

N1

2.5
+ 1

for large λ.

Similarly, if we take Π2 = (0, 1), we can obtain a Π∗
2 that can achieve

Time(Π∗
2) ≤

N1

4.5
+ 1.

To conclude this section, we note that vector r has been introduced only to ease the pre-
sentation. In fact, computing Q−1 is needless: we just let s be the second column of Q (or its
opposite).

15 Combining both methods

There is no reason a priori for the application of the ISM method or its refinement to the best
GSS scheduling vector to give the best execution time. To see this, we return to Example 6.

15.1 GSS followed by ISM is not enough

We know that the best GSS scheduling vector is Π = (7, 1) and for such a Π we had the dependence
graph of Figure 16. Since for the cycle C2 the total weight 4 is divisible by the length 2, we cannot
improve on the original ISM method.

But why not try ISM with other scheduling vectors? Let Π = (a, b) be an arbitrary scheduling
vector. Hence b ≥ 1 and a ≥ 6b + 1, as seen earlier.

For cycle C1 we get T (C1) = Π(d1 + d2 + d3) = 2a + b and k(C1) = 3. For cycle C2 we
get T (C2) = Π(d4 + d5) = a − 3b and k(C2) = 2. For b ≥ 1 and a ≥ 6b + 1, we always have
(2a + b)/3 ≥ (a − 3b)/2, hence we want to minimize

(a + b)N

⌊(a − 3b)/2⌋
.

We can have this quantity as close to 2N as we want by letting a = 2c + 1 and b = 1 with c large
(necessarily, c ≥ 3). With Π = (2c + 1, 1) we get the dependence graph of Figure 20.

By applying the transformation S2−c
1 , we get the dependence graph of Figure 21. Usage of

u = (0, 1) gives

Time ≤
(2c + 1)N + (N + 2 − c)

c − 1
≤ 2

c + 1

c − 1
N.

33

S1

S4

S3 S2

2c + 6

2 2c − 5

1 2c − 3

' $
'

&

$

%

�

?
6

- -

Figure 20: Dependence cycles obtained by Π = (2c + 1, 1)

We conclude that time is close to 2N , obtaining thus a factor 2 over GSS+ISM.

S1

S4

S3 S2

c + 8

c 2c − 5

c − 1 c − 1

' $
'

&

$

%

�

?
6

- -

Figure 21: Dependence cycles obtained after S2−c
1

15.2 A new optimization method

Consider a RUN with an index set Dom and a dependence matrix

D =
(

d1 . . . dm

)

where

di =

d1i

d2i
...
dni

Let Cycl denote the set of all cycles between the statements S1 to Sk. For each cycle C in
Cycl, let k(C) denote its length.

The optimization problem can be stated as follows:

New Optimization Problem: Find a vector Π = (π1, . . . , πn) such that

(i) ΠD > 0

(ii) gcd(π1, . . . , πn) = 1

and which minimizes

NEW(Π) =
max{ΠI − ΠJ, I, J ∈ Dom}

cycle(Π)

34

where

cycle(Π) = min{⌊
TΠ(C)

k(C)
⌋, C ∈ Cycl}

with
TΠ(C) =

∑

d∈C

Πd

Note that dependence vectors that are not involved in any cycle need not be taken into account
for the computation of cycle(Π) (they still appear in condition (i)). This is clear from the ISM
method, shifts can be freely applied to the corresponding edges in the dependence graph.

Note also that the problem is not scalable: due to the floor function, NEW(Π) 6= NEW(αΠ)
for a nonzero constant α. However, our optimization problem is very close to the GSS problem.
In [33], Shang and Fortes show how to solve GSS for a RUN or for a larger class of problems
where the convex hull of the index set is a non-degenerate polyhedron. The idea is to partition
the solution space into convex subcones, and to solve a linear fractional problem for each of these
subcones. Two alternatives are proposed: either use a general linear programming approach or
benefit from a less expensive method derived by the authors.

We can use the results of [33] as follows: we first remove condition (ii) that expresses that a
scheduling vector must have relatively prime components. The problem can be expressed without
floor functions and solved using Shang and Fortes’ results. Finally, we perform some perturbation
on the solution vector to retrieve condition (ii), as explained in section 14.2.

15.3 Quantifying the improvement factor

In this section, we show that our new method can outperform GSS followed by ISM by an arbitrary
factor. Let λ be a positive integer, and consider the following example:

Example 7 Consider the nested loop:

for i = 0 to N do
for j = 0 to N do

begin
{ Statement S1 } a(i, j) = f1(b(i − 1, j − λ), c(i − 1, j + λ), . . .)
{ Statement S2 } b(i, j) = f2(a(i, j − 1), . . .)
{ Statement S3 } c(i, j) = f3(a(i, j − 1), . . .)

end

The dependences are the following:

S1 −→ S2 : d1 =

(

0
1

)

S2 −→ S1 : d2 =

(

1
λ

)

S1 −→ S3 : d3 =

(

0
1

)

S3 −→ S1 : d4 =

(

1
−λ

)

35

We obtain the following dependence matrix:

D =

(

0 1 0 1
1 λ 1 −λ

)

.

The index domain is a square:

Dom = {(i, j) ∈ Z2, 0 ≤ i, j ≤ N}.

There are two dependence cycles, namely C1 = (S1, S2) and C2 = (S1, S3).

Let us first compute the best scheduling vector with the GSS approach. We search for Π =
(a, b) such that

(i) gcd(a, b) = 1

(ii) ΠD > 0 ⇐⇒

{

b ≥ 1
a ≥ λb + 1

Note that a and b are necessarily positive. We get disp(Π) = min(b, a−λb, a+λb) = min(a−λb, b)
and we want to minimize the quantity

GSS(Π) =
(a + b)N

disp(Π)
.

The following straightforward case analysis shows that Π = (λ + 1, 1), for which GSS(Π) =
(λ + 2)N , is the best solution:

1. if b = 1, then minimize GSS(Π) = (a + 1)N , hence take a = λ + 1

2. if b ≥ 2, then consider two subcases:

(a) if λb + 1 ≤ a ≤ (λ + 1)b− 1, then disp(Π) = a− λb, and GSS(Π) = a+b
a−λbN , hence take

a = (λ + 1)b − 1 and get GSS(Π) = (λ+2)b−1
b−1 N ≥ (λ + 2)N

(b) if (λ+1)b+1 ≤ a, then disp(Π) = b, and GSS(Π) = a+b
b N , hence take a = (λ+1)b+1

and get GSS(Π) = (λ+2)b+1
b N ≥ (λ+2)N. (Note that a = (λ+1)b is excluded because

gcd((λ + 1)b, b) = b ≥ 2.)

Next, draw a directed graph (Figure 22) whose nodes are the statements S1 to S3 and whose
edges are weighted by the values ei = Πdi.

S3 S1 S2

' $' $

& %& %

� �

- -

1 2λ + 1

1 1

Figure 22: Dependence cycles of Example 7 with GSS

36

Because of cycle C2, there is no possible improvement using ISM. However, if we solve the
new optimization problem, we have to search for Π = (a, b) such that (i) and (ii) hold (note that

a and b are necessarily positive). We get cycle(Π) = min(⌊ b+(a+λb)
2 ⌋, ⌊ b+(a−λb)

2 ⌋) = ⌊a+(1−λ)b
2 ⌋,

and we want to minimize the quantity

NEW(Π) =
(a + b)N

cycle(Π)
.

We let λ = 2γ − 1 and we take Π = (a, b) = (4γ, 1) as a scheduling vector (we check that
a ≥ λb + 1, i.e., 4γ ≥ (2λ − 1).1 + 1). We obtain the new dependence graph shown in Figure 23.

S3 S1 S2

' $' $

& %& %

� �

- -

1 6γ − 1

2γ + 1 1

Figure 23: Dependence cycles with Π = (4γ, 1)

We have cycle(Π) = γ + 1. Next we perform the transformation Sγ
2 Sγ

3 (see Figure 24).

S3 S1 S2

' $' $

& %& %

� �

- -

γ + 1 5γ − 1

γ + 1 γ + 1

Figure 24: Dependence cycles obtained after Sγ
2 Sγ

3

We use vector u = (0, 1) such that Πu = 1 to compute the new index bounds:

0 ≤ i ≤ N
{

0 ≤ j ≤ N (statement S1)
γ ≤ j ≤ γ + N (statements S2 and S3)

The new domain is then

Dom = {(i, j) ∈ Z2, 0 ≤ i ≤ N, 0 ≤ j ≤ N + γ}.

We get

NEW(Π) =
4γN + (N + γ)

γ + 1
≤ 4N + 1.

Hence we gain a factor close to λ+2
4 = O(λ) over GSS+ISM, and this factor can be arbitrary

high, as was claimed.

37

16 Conclusion

Systolic algorithms have been conceived in an “ad hoc” manner, requiring a great amount of
effort. We have seen that some of the systolic algorithms proposed in the literature for matrix
multiplication are merely special cases of a synthesis method. Synthesis methods were proposed
by Fortes and Moldovan, Robert and Quinton and some other researchers. The geometric in-
terpretation used in the previous sections has the purpose of allowing a better understanding of
the proposed methods. We have been deliberately informal in the first part. We then presented
a more formal treatment, based mainly on the work by Quinton and Robert [26]. Finally we
have discussed the evolution of systolic computing along another direction. Several results from
the area of systolic computation have been used in other areas, namely that of a parallelizing
compiler. We have shown such an application, in the context of cycle shrinking of nested loops.

Several loop transformations techniques have been designed to extract parallelism from nested
loop structures. We have reviewed two important approaches, known as Generalized Cycle Shrink-
ing presented by Shang, O’Keefe and Fortes and the Index Shift Method introduced by Liu, Ho
and Sheu. We have used an illustrative example (Example 6) to show the gains that can be
obtained. The quadratic sequential time is reduced to 8N through GSS and to 4N through GSS
followed by ISM. One result of the paper is an improvement of the index shift method, for a
given scheduling vector Π. The main result of the paper is a new methodology that permits to
combine cycle shrinking techniques with the index shift method. Through this combination, the
illustrative example renders a further factor of 2, giving a time of 2N . The combination of the
two techniques gave rise to a new optimization method that produces the best scheduling vector.

References

[1] Banerjee, U. “An introduction to a formal theory of dependence analysis”. The Journal of
Supercomputing 2, 1988, pp. 133 - 149.

[2] Cappello, P. R. and Kenneth, S. “Unifying VLSI array design with linear transformations of
space-time”. Advances in Computing Research, vol. 2, p. 23-65, 1984.

[3] Cosnard, M., Quinton, P., Robert, Y. and Tchuente M. (editors) Parallel Algorithms and
Architectures. North Holland, 1986.

[4] Delosme, J. M. and Ipsen, I. C. F. “Systolic array synthesis: computability and time cones”,
in: Parallel Algorithms and Architectures, M. Cosnard et al. (editors), Elsevier Science Pub-
lishing, North Holland, p. 295-312, 1986.

[5] Dowling, M. L. “Optimal code parallelization using unimodular transformations”. Parallel
Computing, 16, 1990, pp. 157 - 171.

[6] Fortes, J. A. B. Algorithm Transformations for Parallel Processing and VLSI Architecture
Design. Ph.D. thesis, Department of Electrical Engineering-Systems, University of Southern
California, December, 1983.

[7] Fortes, J. A. B. and Moldovan, D. I. “Parallelism detection and transformation techniques
useful for VLSI algorithms”. Journal of Parallel and Distributed Computing 2, p. 277-301,
1985.

[8] Foster, M. J. and Kung, H. T. ”The design of special-purpose VLSI chips”. Computer, 13,
p. 26-40, 1980.

38

[9] Huang, C. H. and Lengauer, C. “The derivation of systolic implementations of programs”.
Acta Informatica, 24, p. 595-632, 1987.

[10] Karp, R. M., Miller, R. E. and Winograd, S. “The organization of computations for uniform
recurrence equations”. Journal of the ACM, 14, p. 563-590, 1967.

[11] Kung, H. T. “Let’s design algorithms for VLSI systems”. Proceedings of Caltech Conference
on VLSI, p. 65-90, January, 1979.

[12] Kung, H. T. and Leiserson, C. E. ”Systolic arrays for VLSI”, in:Introduction to VLSI Systems,
C. A. Mead and L. A. Conway, Chapter 8.3, Addison-Wesley, 1980.

[13] Kung, H. T. “The structure of parallel algorithms”. Advances in Computing, 19, p. 65-111,
1980.

[14] Kung, H. T. “Why systolic architectures”. Computer, 15, p. 37-46, 1982.

[15] Leiserson, C. E. and Saxe, J. B. “Optimizing synchronous systems”. Journal of VLSI Com-
puter Systems, Vol. 1, April, 1983, pp. 41 - 67.

[16] Liu, L. S., Ho, C. W. and Sheu, J. P. “On the parallelism of nested for-loops using index
shift method”. Proceedings of International Conference on Parallel Processing, August 1990,
pp. II-119 - II-123.

[17] Miranker, W. L. and Winkler A. “Spacetime representation of computational structures”.
Computing 32, p. 93-114, 1984.

[18] Moldovan, D. I. “On the design of algorithms for VLSI systolic arrays”. Proceedings of the
IEEE, vol. 71, no. 1, January, p. 113-120, 1983.

[19] Moldovan, D. I. “ADVIS: a software package for the design of systolic arrays”. IEEE Trans-
actions on Computer-Aided Design, CAD-6, p. 33-40, January, 1987.

[20] Nelis, H. W. and Deprettere, E. F. “Automatic Design and partitioning of systolic/wavefront
arrays for VLSI”. Circuit System Signal Processing , Vol. 7, number 2, p.235-252, 1988.

[21] Okuda, Kunio and Song, Siang W. “Um Algoritmo de Multiplicação de Matrizes para im-
plementação em VLSI”. Anais do I Congresso da Sociedade Brasileira de Microeletrônica,
Campinas, pp. 383-393, 1986.

[22] Peir, J. K. and Cytron, R. “Minimum distance: a method for partitioning recurrences for
multiprocessors”. IEEE Transactions on Computers, Vol. 38, No. 8, August 1989, pp. 1203
- 1211.

[23] Polychronopoulos, C. D. “Compiler optimization for enhancing parallelism and their impact
on architecture design”. IEEE Transactions on Computers, Vol. 37, No. 8, August 1988, pp.
991 - 1004.

[24] Polychronopoulos, C. D. Parallel Programming and Compilers. Kluwer Academic Publishers,
Boston, 1988.

[25] Quinton, P. “The systematic design of systolic arrays”, in:Automata Networks in Computer
Science, F. Fogelman, Y. Robert and M. Tchuente (editors) , Manchester University Press,
p. 229-260, 1987.

39

[26] Quinton, P. and Robert, Y. Algorithmes et architectures systoliques. Masson, Paris, 1989.

[27] Rajopadhye, S. V. and Fujimoto, R. M. “Systolic array synthesis by static analysis of program
dependencies”, in: Parallel Architectures and Languages Europe, J. W. Baker et al. (editors),
Springer-Verlag, p. 295-315, 1987.

[28] Ribas, H. B. “Automatic Generation of systolic programs from nested loops”, Ph.D. thesis,
Department of Electrical and Computer Engineering, Carnegie Mellon University, June,
1990.

[29] Robert, Y. “Systolic algorithms and architectures”, in:Automata Networks in Computer Sci-
ence, F. Fogelman, Y. Robert and M. Tchuente (editors) , Manchester University Press, p.
187-228, 1987.

[30] Robert, Yves and Song, Siang W. “Revisiting Cycle Shrinking”. Parallel Computing, Vol.
18, Number 5, May 1992, pp. 481-496.

[31] Shang, W. and Fortes, J. A. B. “Time optimal linear schedules for algorithms with uniform
dependences”. Proceedings of International Conference on Systolic Arrays, May 1988, pp.
393 - 402.

[32] Shang, W. and Fortes, J. A. B. “Time optimal and conflict-free mappings for uniform de-
pendence algorithms into lower dimensional processor arrays”. Proceedings of International
Conference on Parallel Processing, August 1990, pp. I-101 - I-110.

[33] Shang, W. and Fortes, J. A. B. “Time optimal linear schedules for algorithms with uniform
dependencies”. IEEE Transactions on Computers, Vol. 40, No. 6, June 1991, pp. 723-742.

[34] Shang, W., O’Keefe, M. T. and Fortes, J. A. B. “On loop transformations for generalized
cycle shrinking”. Proceedings of International Conference on Parallel Processing, August
1991, pp. II-132 - II-141.

[35] Shang, W., O’Keefe, M. T. and Fortes, J. A. B. “Generalized cycle shrinking”, in: Parallel
Algorithms and VLSI Architectures II, P. Quinton and Y. Robert (editors), North Holland,
1991.

[36] Song, S. W. Algoritmos Paralelos e Arquitetura VLSI. São Paulo, 1984.

[37] Song, S. W. “Método de śıntese de algoritmos sistólicos: uma interpretação geométrica”.
Anais da Jornada EPUSP/IEEE sobre Sistemas de Computação de Alto Desempenho, São
Paulo, março, 1991, pp. 165-176.

[38] Weiser, U. and Davis, A. “A wavefront notation tool for VLSI array design”, in:VLSI Systems
and Computations, H. T. Kung et al. (editors), p. 226-234, Computer Science Press, 1981.

[39] Wolfe, M. Optimizing Supercompilers for Supercomputers. MIT Press, Cambridge MA, 1989.

[40] Wolfe, M. “Data dependence and program restructuring”. The Journal of Supercomputing
4, 1990, pp. 321 - 344.

[41] Young, D. M. Iterative Solution of Large Linear Systems. Academic Press, 1971.

40

